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Likelihood-based belief function: justification and some
extensions to low-quality data

Thierry Denceux

Université de Technologie de Compiégne, CNRS, UMR 7253 Heudiasyc

Abstract

Given a parametric statistical model, evidential methods of statistical in-
ference aim at constructing a belief function on the parameter space from
observations. The two main approaches are Dempster’s method, which re-
gards the observed variable as a function of the parameter and an auxiliary
variable with known probability distribution, and the likelihood-based ap-
proach, which considers the relative likelihood as the contour function of
a consonant belief function. In this paper, we revisit the latter approach
and prove that it can be derived from three basic principles: the likelihood
principle, compatibility with Bayes’ rule and the minimal commitment prin-
ciple. We then show how this method can be extended to handle low-quality
data. Two cases are considered: observations that are only partially rele-
vant to the population of interest, and data acquired through an imperfect
observation process.

Keywords: Statistical Inference, Dempster-Shafer Theory, Evidence
Theory, Likelihood Principle, Uncertain data, Partially relevant data.

1. Introduction

Belief functions were initially introduced by Dempster as part of a new
approach to statistical inference, in which lower and upper posterior proba-
bilities can be constructed without having to postulate the existence of prior
probabilities [10, 11, 12]. Dempster’s initial ideas were later formalized by
Shafer [37] and transformed into a general system for reasoning under un-
certainty, now usually referred to as Dempster-Shafer theory!. Whereas this

!The fundamental notions of Dempster-Shafer theory will be assumed to be known
thoughout this paper. The reader is referred to Shafer’s monograph [37] for a thorough
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work has had a strong impact in some research fields such as Pattern Recog-
nition, Information Fusion and Artificial Intelligence, statistical applications
have until now remained quite limited. Recently, however, there has been re-
vived interest in this topic, perhaps under the influence of Dempster’s more
recent work along his initial ideas [14]. New variants of Dempster’s method
of inference leading to belief functions having some well-defined long-run
frequency properties have been proposed, such as the Weak Belief approach
[32], the Elastic Belief method [30] and the Inferential Models [31].

Let X € X denote the observable data, # € © the parameter of in-
terest and f(x;0) the probability mass or density function describing the
data-generating mechanism. The key idea underlying Dempster’s method
of inference and its variants is to represent such a sampling model by an
equation

X =a(0,U), (1)

where U is an unobserved auxiliary variable with known probability distri-
bution p independent of 6. This representation is similar to that of Fraser
[27]. It is quite natural in the context of data generation. For instance,
to generate a continuous random variable X with cumulative distribution
function (cdf) Fy, one might draw U from a continuous uniform distribution
in [0,1] and set X = F, *(U). Equation (1) defines a multi-valued mapping

[:U —D(U) = {(X,0) € X x O|X = a(6,U)}. 2)

This mapping, together with measure . on U, defines a random set, i.e., a
belief function on X x © [33]. Conditioning this belief function on 6 yields
the sampling distribution f(-;6) on X, while conditioning it on X = z gives
a belief function? Belg(+;x) on ©.

While this inference method is conceptually elegant, it often leads to
cumbersome or even intractable calculations except for simple models, which
imposes the use of Monte-Carlo simulations. A more fundamental criticism
that may be raised against this approach is the fact that representation (1)
and, consequently, Belg(-;x) are not unique for a given statistical model
{f(;0),0 € ©}. As the auxiliary variable U is not observable, it is not
clear how one could argue for one model or another, except from practical
considerations.

exposition and to some papers cited in reference such as, e.g, [42, 18] for short introduc-
tions.
2Throughout this paper, the domain of set functions will be indicated as subscript.



An alternative approach to statistical inference was proposed by Shafer
in [37]. In this approach, the evidence about ©, after ofter observing X = =z,
is postulated to be represented by a consonant “likelihood-based” belief
function, whose contour function equals the normalized likelihood function:

pi{f; o) = Supei(cjf()@’; )’ )

where L(-;x) : 0 — f(x;6) is the likelihood function. The corresponding
plausibility function is thus defined as:

supgea L(0; ) ()

i

Plg(A;x) zlelgpl(ﬁ,a:) SUpgce L(0:2)
for all A C ©.

In [37], Shafer did not present any formal justification for (3) and (4).
Moreover, in later writings, he rejected the likelihood-based approach ap-
proach on the ground that it is not compatible with Dempster’s rule of
combination in the case of independent observations [38]. More precisely,
assume that X is an independent sample (Xi,...,X,). We could com-
bine the n observations at the “aleatory level” by computing Plg(-;x) using
(4), or we could combine them at the “epistemic level” by first comput-
ing the consonant plausibility functions Plg(-;x;) induced by each of the
independent observations and using Dempster’s rule. Obviously, these two
procedures yield different results in general, as consonance is not preserved
by Dempster’s rule.

In spite of this apparent deficiency, Wasserman [47] provided an ax-
iomatic justification of (3) and (4) in the case where O is finite and showed
this approach to yield interesting results for realistic inference problems.
Other authors questioned the use of Dempster’s rule for combining indepen-
dent observations in statistical inference problems [44][1].

The objective of this paper is two-fold. First, we provide new arguments
in favor of the evidential likelihood-based approach, by showing that it can
be derived from three principles: the likelihood principle [22], compatibility
with Bayesian inference when a prior probability distribution is available
and the least-commitment principle [40]. The second goal of this paper is
to extend likelihood-based belief functions to low-quality data. Specifically,
two cases will considered. In the first case, data are only partially relevant
to the problem at hand, a situation previously addressed using, e.g., the
concept of weighted likelihood [28, 46]. The second case concerns uncertain
data, i.e., data that have been generated by a random mechanism and a
non-random, imperfect observation process [17, 18].



The rest of this paper is organized as follows. In Section 2, we provide a
new justification for the construction of a consonant belief function based on
the likelihood and we demonstrate its application to some simple statistical
inference problems. Extensions to partially relevant and uncertain data
are then introduced in Sections 3 and 4, respectively. Finally, Section 5
concludes the paper.

2. Likelihood-based belief function

A key argument in favor of the likelihood-based approach to the construc-
tion of belief functions for statistical inference is the Likelihood Principle,
which will be discussed in Subsection 2.1. Once this principle is accepted,
Equations (3) and (4) follow directly from two additional requirements: com-
patibility with Bayes’ rule and the least commitment principle, as will be
shown in Subsection 2.2. The practical application of this approach will be
demonstrated using some simple inference problems in Subsection 2.5.

2.1. Likelihood principle

As is well know, most approaches to statistical inference fall in two main
categories: Bayesian approaches, assuming the existence of a prior probabil-
ity distribution on © and frequentist methods relying on confidence intervals
and tests of hypotheses with well-defined long-run frequency properties. Yet,
a third tradition can be traced back from Fisher’s later work [26] to Barnard
[3], Birnbaum [6] and Edward [22], among others. This third approach to
statistical inference centers on direct inspection of the likelihood function
L(0; ) alone, without relying on the concept of repeated sampling (under-
lying long-run frequency considerations) and without assuming the existence
of a prior probability distribution. For proponents of this approach as Birn-
baum [6], “reports of experimental results in scientific journals should in
principle be descriptions of likelihood functions, when adequate mathemat-
ical models can be assumed, rather than reports of significance levels or
interval estimates”.

The likelihood principle underlies the likelihood-based approach to sta-
tistical inference [6]. Let E denote a statistical model representing an ex-
perimental situation. Typically, E is composed of the parameter space ©,
the sample space X and a probability mass or density function f(z;0) for
each § € ©. Following Birnbaum [6], let us denote by Ev(E,z) the evi-
dential meaning of the specified instance (F,z) of statistical evidence. The
likelihood Principle (L) can be stated as follows:



The likelihood principle (L). If E and E’ are any two experiments with the
same parameter space O, represented by probability mass or density func-
tions f(xz;0) and g(y; ), and if  and y are any two respective outcomes
which determine likelihood functions satisfying f(z;60) = cg(z;0) for some
positive constant ¢ = ¢(z,y) and all § € O, then Ev(E,z) = Ev(E',y).

As noted by Birnbaum [6], (L) is an immediate consequence of Bayes’
principle, which implies that the evidential meaning of (E,z) is contained
in the posteriori probability distribution distribution p(6|z) < f(z,0)p(),
where p(f) is the prior probability distribution. However, it was also ac-
cepted as self-evident by statisticians who did not adhere to the Bayesian
school, including Fisher [26] and Barnard [3]. From a non Bayesian perspec-
tive, it was placed on firm ground by Birnbaum [6], who showed that (L)
can be derived from the principles of sufficiency (S) and conditionality (C),
which can be stated as follows.

The principle of sufficiency (S). Let E be an experiment, with sample space
{z}, and let t(z) is any sufficient statistic (i.e., any statistic such that the
conditional distribution of x given ¢ does not depend on ). Let E’ be an
experiment, derived from FE, having the same parameter space, such that
when any outcome z of F is observed the corresponding outcome ¢t = t(x)
of E’ is observed. Then for each x, Ev(,z) = Ev(E’,t), where t = t(z).

The principle of conditionality (C). If E is mathematically equivalent to
a mixture of component experiments E}, with possible outcomes (Ey, zp),
then Ev(E, (En,xp)) = Ev(Ep, xp,).

In short, (C) means that component experiments that might have been
carried out, but in fact were not, are irrelevant once we know that Ej has
been carried out. For instance, assume that two measuring instruments
provide measurements x1 and xo of an unknown quantity 6. An instrument is
picked at random (experiment E). Assume we know that the first instrument
(h = 1) is selected and we observe x;. Then, the fact that the second
instrument could have been selected is relevant and the over-all structure of
the original experiment E can be ignored.

Birnbaum [6] showed that (S) and (C) are jointly equivalent to (L).
Unless we reject (S) or (C), which very few statisticians would be willing to
do, we are thus compelled to accept (L), i.e., to accept the idea that all the
information which the data provide about the parameter is contained in the



likelihood function.

Fisher, who introduced the likelihood function [22, 2], repeatedly stressed
that “probability and likelihood are quantities of an entirely different na-
ture” [24] as, in particular, likelihoods are not additive. Yet, Fisher held
the view that “in an important class of cases the likelihood may be held to
measure the degree of our rational belief in a conclusion” [25]. This con-
ception of a measure of belief that does not obey the rules of probability
theory seems to have been welcomed with skepticism in some statistical cir-
cles where it was sometimes claimed that the concept of likelihood does not
have a clear meaning [22]. The idea of a non additive measure of belief is, of
course, more easily understood now than it was in the 1950’s. However, the
concept of likelihood needs to be linked to that of Dempster-Shafer belief
function, as was done on intuitive grounds by Shafer [37] (see also [39]). An
attempt to achieve this goal will be presented in the next section.

2.2. From likelihoods to beliefs

In this section, as in the rest of this paper, we accept the Dempster-Shafer
theory of belief functions as a suitable framework for representing evidence
about any unknown quantity. It follows that statistical evidence x about a
parameter 6 should be representable by a belief function Belg(-;x) defined
on the parameter space ©. According the likelihood principle (L), whose jus-
tification has been recalled in the previous section, Belg(+; ) should be de-
fined only from the likelihood function. It now remains to be decided which
additional requirement should be imposed on Belg(+; ) for it to qualify as
a sound representation of statistical evidence.

As noticed by Wasserman [47], the most natural requirement is com-
patibility with Bayesian inference when a Bayesian prior is available. More
precisely, let m(0) be a prior probability mass or density function on ©,
representing what was known about 6 before observing the result of the
random experiment. Combining it with Belg(-;x) using Dempster’s rule
yields a Bayesian belief function with probability mass of density function
given by

p(0]z) o< pl(6; 2)m(6), (5)
where, as before, pl(0;2) = Plg({0};x) denotes the contour function asso-
ciated to Belg(+;x). Since the posterior probability function on 6 verifies

p(0]x) o< f(z;0)(6), (6)
it is clear that compatibility with Bayes’s rule imposes that
pl(0;2) = cf (x;0) = cL(b;x) (7)



for some constant ¢ > 0 depending only on the likelihood function L(-; z).

Let B, denote the set of belief function on € verifying (7). Assuming
that Belg(:;x) € B, and in the absence of additional requirements, the
Least Commitment Principle [40] leads to selecting the least informative
element in B, (assuming such an element exists), according to some infor-
mational ordering between belief functions. As noted in [20], several such
meaningful orderings can be defined. In particular, Bel; is said to be g-least
committed than Bels if Q1 > Q)2, where ()1 and )2 are the commonality
functions associated to Bel; and Bely. Intuitively, this ordering can be jus-
tified as follows: the commonality function associated to Bel; & Bely, where
@ denotes Dempster’s rule, is proportional to Q1Q2. The closer is Q1(A)
to 1, for any A C O, the less influence has the combination with Bel; on
Bels and, hence, the less informative is Bel;. Now, the following proposition
holds.

Proposition 1. The g-least committed element in B, is the consonant belief
function whose contour function is equal to the relative likelihood function:

a_ L)
pi(0; ) = supgree L(0';2)

(8)

Proof. Let Belg(+;x) be the consonant belief function whose contour func-
tion is defined by (8), and let Qo(-;x) be the corresponding commonality
function. Similarly, let Belg(-;2) and Qg (-;z) denote any corresponding
belief and commonality functions verifying (7) for some constant c. For any

6 € ©, we have Qo ({0}; z) = pl(0;x), Qu({0};x) = pl'(#; ) and
Qo({0}:2) = Qo ({0}; 2),

as ¢ < [supgeg L(6';2)] L. Now, let us consider any nonempty A C © such
that Qg (A; z) exists. For any 6 € A,

Qo(Asz) < Qo({0};2).

Hence,
Qo(A;z) < inf Qo({0}; ).

Now, it follows from the consonance of Qg(+;x) that

Qo(s2) = jnf Qo({6};) > inf Qo({0}i2) > Qo(Aia),

which completes the proof. O



The focal sets of Belg(-; z) are the levels sets of pl(6; z) defined as follows:
[2(w) = {0 € Olpl(0; ) > w}, (9)

for w € [0,1]. These sets may be called plausibility regions and can be
interpreted as sets of parameter values whose plausibility is greater than
some threshold w.

Belg(+; z) can be regarded as being induced by a random set [33] defined
by a probability measure Py on ©Q = [0,1] and the multi-valued mapping
I';, in the sense that

Belg(A;x) = Po({w € [0,1]|T,(w) C A}) (10)

and
Plo(A;z) = Pol{w € [0, 1]|Ta(w) N A # 0}) (11)

for all measurable subsets A of ©. When pl(#; ) is continuous, Py can be
taken as the Lebesgue measure on ).

2.8. Gaussian approximation

The construction of a belief function on © from the normalized likeli-
hoods as justified above is in line with Barnard’s precept to “have regard
to the whole course of the likelihood function” [3]. However, plotting and
manipulating the contour function pl(#;x) when © has more than two di-
mensions may be difficult. In particular, plausibility regions may be difficult
to describe analytically.

This problem can sometimes be tackled by computing a Taylor expansion
of the logarithm of the contour function about the maximum likelihood
estimate (or maximum plausibility estimate — MPE) 6 up to the second
order [43]:

log pl(6; z) = log pl(B; z) + (0 — )" 9log pl(6; z)

00 0—0
1 ~ . 0% logpl(0; x) -

The first term on the right-hand side of the above equation is zero by defi-
nition, and the second term is zero in the usual case where 6 is a stationary
point of pl(#;x). Neglecting the remaining terms of the Taylor expansion,
we get the following approximation

pl(0: ) ~ exp —%(9 — )T 1(6: (0 — é)} , (13)

8



where [ (é, x) is the observed information matriz defined as

B 0% log pl(0; ) B _82 log L(6; x)

I(6;2) = 00007 |,_, 00007 |,_;

(14)
Equation (13) defines a Gaussian approximation to the contour function.
As noted in [43], this approximation is usually well verified when X =
(X1,...,Xp) is an independent and identically distributed (iid) random vec-
tor and n is large.

We may observe that function pl(6; z) tends to be all the more “peaked”
around 6 and, consequently, all the more informative, that the diagonal ele-
ments of I(0; x) are large. It thus makes sense to regard I(0; x) as reflecting
proportional to the amount of information contained in the observations.

2.4. Discussion

Consistency with statistical practice. In support of the method outlined
above for constructing belief functions from data, we can remark that view-
ing the relative likelihood function as the contour function of a consonant
belief function or, equivalently, as a possibility distribution [49, 21] is, to
a large extent, consistent with statistical practice. For instance, likelihood
intervals [29, 43] are focal intervals of the relative likelihood viewed as a
possibility distribution. In the case where 6 = (01, 62) € ©; x O3 is a vector
parameter, the marginal contour function on 01 is

pl(01;2) = sup pl(61,02; ), (15)

02609
which is the relative profile likelihood function when 6, is considered as a
nuisance parameter. As another example, the usual likelihood ratio statistics

A(x) for a composite hypothesis Hy C © can be seen as the plausibility of
Hy, as

supge g, L(0; x) L ,
A(z) = (s OSEuII{)Opl(H, x) = Plg(Ho; x). (16)
Incompatibility with Dempster’s rule. As already mentioned above, Shafer
[38] questioned the likelihood-based construction of belief functions because
it is not compatible with Dempster’s rule. One might as well question Demp-
ster’s rule for combining independent statistical evidence, as was done by
Aickin [1] and Walley [44], among others. Let E and E’ be two indepen-
dent random experiments with the same parameter space ©, producing out-
comes z and y according to frequency distributions f(z,0) and g(y,0). Let
Belg(+;x) and Belg(+;y) denote the belief functions on © obtained after



observing = and y, respectively. It is clear that Belg(+;x) @ Belo(+;y) and
Belg(+;xy) are different, although they have the same contour function.
However, Belg(-;zy) can be obtained from Belg(+;x) and Belg(+;y) using
the product rule of Possibility theory [21], which amounts to multiplying
the contour functions (or possibility distributions) and renormalizing:

pl(0; 2)pl(0; y)
supgce pl(0"; x)pl(6';y)
The apparent inadequacy of Dempster’s rule in this case remains to be

convincingly explained. It might be that different kinds of evidence require
different combination mechanisms, as suggested by Dubois et al. in [19].

pl(0;xy) = (17)

Inconsistency with the imprecise probability view. Linking the relative likeli-
hood function with more general uncertainty representation formalisms has
been attempted by other authors, within different frameworks. For instance,
Walley and Moral [45] addressed the problem of defining lower and upper
posterior probabilities from likelihoods in the case of a finite parameter space
©. They showed that the plausibility function defined by (4) does not qualify
as a valid upper probability measure because it may be strongly inconsis-
tent, in the sense that it may incur sure loss. However, this objection does
not apply in our case, since we are not placing ourselves in the imprecise
probability framework. In particular, we do not consider the plausibility
function (4) as the upper envelope of a set of probability measures.

2.5. Ezxamples

We will conclude this section with a few examples showing the applica-
tion of the method outlined above to some simple statistical problems. To
avoid technicalities and emphasize basic principles, we will restrict ourselves
to the very simple binomial model.

Assume that we observe a random variable X having a binomial distri-
bution:

Flz;0) = <Z> 6% (1 — 6)" . (18)

The likelihood-based belief function induced by x has the following contour

function:
pl(0;z) = M = <€> <9A> ; (19)
0r(1 — Q)= 0 1-06

for all §# € © = [0, 1], where § = 2/n is the MPE. The observed information
is

1(0;2) = ———, (20)
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Figure 1: Contour functions (normalized likelihoods) for the binomial distribution (solid
lines) and their Gaussian approximations (interrupted lines) with n = 20 and « = 10 (left)
and x = 15 (right).

from which we get the following Gaussian approximation of pl,:

é(1—é)(9—é)2>. 1)

2n

pl(0;z) ~ exp (—

The contour function pl(6;z) and its Gaussian approximation are plotted
in Figure 1 for n = 20 and * = 10,15. We can see that the Gaussian
approximation is already good for small n, especially when the likelihood
function is symmetric.

As pl(6; x) is unimodal and continuous, each level set I'y (w) for w € [0, 1]
is a closed interval and Belg(+;x) is a closed random interval [13].

Example 1. As a first example of a very simple problem, assume that we
wish to assess the extent to which the data supports a hypothesis H C [0, 1].
This may be achieved by computing the plausibility of that hypothesis:

Plg(H;z) = sup pl(0; z). (22)
0cH

For instance, assume that H = [6p,01]. We have

pl(0;2) if 61 <0
Ple([60,0:);2) = { 1 if 60 < 0 <61, (23)
pl(0o; ) if 6 < 6.

11
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Figure 2: Upper and lower cumulative distributions Ple([0,6]) and Bele([0,6]) = 1 —
Plo((0,1]) for n = 20 and =z = 10.

Table 1: Data of Example 2.

Treatment S F | Total
Ramipril | 834 170 | 1004
Placebo | 760 222 | 982
Total | 1594 392 | 1986

The upper and lower cumulative distributions Plg([0,6]) and Belg([0,0]) =
1 — Ple((0,1]) for n =20 and x = 10 are plotted in Figure 2.

Example 2. Let us now assume that we wish to compare two proportions.
For instance, Table 1 shows data, reported in [43], from a clinical trial to
investigate the efficacy of ramipril in enhancing survival after an acute my-
ocardial infection. There were 1986 subjects, of which 1004 randomly chosen
subjects were given ramipril, and the remaining 982 were given a placebo. Let
01 and 0y denote the survival probability in the ramipril and control group,
respectively. We wish to compute the plausibility that the two probabilities
are equal, i.e., PI(H) with

H = {(«91,92) S @1 X @2|91 = 92} (24)

Let x and y denote the number of survivals in each group; let 'y and I,
be the multi-valued mappings corresponding to pl(61; ) and pl(02;y) (Figure

12
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Figure 3: Contour functions (normalized likelihoods) for the data of Example 2.

3). We have

PI(H) = P ({(wi,w2) € [0,1]*] (Tu(wr) x Ty(w2)) N H # 0) (25a)
P ({(w1,w2) € [0, 1]*|Tu(w1) NTy(w2) # 0) (25b)
= 1—P ({(w1,w2) € [0,1]*T(w1) NTy(ws) =0).  (25¢)

We can see that PI(H) is equal to one minus the degree of conflict [37]
between Bel, and Bel,. This quantity can easily be approximated by Monte
Carlo simulation. Here, we find PI(H) ~ 0.0227.

3. Partially relevant data

In the above framework, we have assumed, as usually done in statistics,
that the data generation process is well defined and that its outcomes are
perfectly observed. There are practical situations, however, where such as-
sumptions are not realistic. Sometimes, we are interested in some parameter
0 of a certain population, but we collect data from one or several populations
that are only known to “resemble” the population of interest. For instance,
we may have hospital admissions for different geographical regions that are
close together. In such a situation, some of the data are only “partially
relevant” to the problem at hand [46]. This situation will be studied in this
section.

Assume that we are interested in a parameter # € O related to a certain
population and we observe a random variable X with probability density or
mass function f(z;6’), where 6’ € © is a parameter believed to be “close”

13



to 6, in some not necessarily well defined sense. Having observed X = x,
our belief about 6’ is represented by the contour function
L(¢;x)
(0 2) = ———"~ . 26

pi(0';z) supg L(0'; x) (26)
What does x tell us about 67 Arguably, the contour function pl(; x) repre-
senting the information on © provided by x should be less committed than
pl'(0'; ), i.e., we should have pl(-;x) > pl’(-; ). In the following, we propose
two solutions to this problem, described in the following two subsections.

8.1. Weighted likelihood-based belief function

Assume that X is distributed according to f(z;#) and we observe n times
the same value x in n independent outcomes. The induced contour function
would be:

L(O;z)"
1(0;x,--- =77 = pl(f;2)". 27
p ( s L, a$) Supg L(Q,IE)TL p ( 7:6) ( )
Thus, for a compound observation x, ...,z containing n times more infor-

mation than x, the contour function is raised to power n. Conversely, if
contains n times less information than it would do if we had 6’ = 6, it makes
sense to define pl(6; x) as:

L(0;x)v

1(0;2) = pl' (0;2)" = ——————
pll;) = pll(Br0)" = LT

(28)
with w = 1/n. Equation (28) can be extended to any value w € [0,1] and
w can be interpreted as a relevance coefficient: w = 1 means that x is com-
pletely relevant to estimate 6 (as it is the case when 6’ = ), whereas w =0
means that x is totally irrelevant, in which case the belief function Belg(+; x)
induced by pl(0;x) is vacuous. We can observe that the numerator of the
fraction on the right-hand side of (28) is the relevance weighted likelihood
[28, 46]. Hu and Zidek showed that it can be derived from the maximum en-
tropy principle in the discrete case, and Wang [46] extended this derivation
in the continuous case.

Examples of weighted contour functions for the binomial case are plotted
in Figure 4.

3.2. Delation of the contour function

An alternative and arguably more principled approach to inference from
partially relevant data can now be described as follows. Assume that the
statement “f" is close to 6” can be formalized as d(6,6) < d, where d is a
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Figure 4: Weighted contour functions for the binomial distribution with n = 20 and
r = 15.

dissimilarity measure defined on © and ¢ is a known constant. This piece of
information can be modeled by a logical belief function with focal set S5 =
{(0,0"]d(6,0") < §} C ©2. Combining it with pl’(#’; ) using Dempster’s
rule yields a consonant belief function on ©2, with contour function

pl(0,0; ) :pl'(ﬁl;x)llgé(Q,H’). (29)

Marginalizing out € yields the following contour function for 6:

pl(0;x) = suppl(0,0;2) = sup pl'(0;z), (30)
o 9'c B3 ()
where
Bs(0) = {0 € ©|d(0,0") < 6}. (31)

It is obvious that pl(#; x) defined by (30) verifies pl(-;x) > pl’(:; x). Its focal
sets are

Iy(w) = {0€0Opl(d;z) > w} (32a)

= {0 €030 €6,dd,0) <dand pl'(0;2) > w}  (32b)

= U 35(9/)7 (32C)

el (w)

where I' (w) is the w-level cut of pl’(-;z). Each level set T'z(w) of pl(-;z) is
thus obtained from the corresponding level set I",(w) of pl’(+; x) by a delation
operation, as defined in mathematical morphology [36, 7].
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Figure 5: Delated contour functions for the binomial distribution with n = 20 and x = 15.

Figure 5 shows “delated” contour functions for the binomial distribution
with n = 20, z = 15, d(6,60") = |# — 0’| and 6 € {0,0.05,0.1}.

4. Uncertain data

Another “non standard” situation that may arise in practice is that were
the data are observed with some uncertainty. For instance, assume that 6
is the proportion of patients with some disease in a population. Let X be a
Bernoulli variable indicated if a patient randomly selected from the popula-
tion has the disease. Sometimes, the value of X cannot be determined with
certainty. A physician may examine the patient and give, say, a degree plau-
sibility pl(1) that the patient has the disease, and a degree of plausibility
pl(0) that he/she does not have the disease. How can we extend the above
inference framework to such uncertain data? This issue has been addressed
in [16, 17, 18], with emphasis on point estimation using en Expectation-
Maximization (EM) algorithm. In Subsection 4.1, we will first reexamine
some previously introduced notions from the viewpoint adopted in this pa-
per. A comparison with Bayesian analysis of the same problem will then be
undertaken in Subsection 4.2.

4.1. Contour function on © induced by uncertain data

We consider in this section the situation where the data = have been gen-
erated by a random process but have been imperfectly observed, i.e., after
the random experiment has taken place and a value x has been generated,
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we gather evidence on z. Such evidence can be described by a belief func-
tion Belx on the sample space X. To simplify exposition, and because the
emphasis in this paper is on principles and not on technical aspects, we will
assume X to be finite, so that Belx can be described by a mass function mx
on X. All the notions introduced here can be extended to the continuous
case, as was done in [17, 18].

It must be stressed that, given z, the uncertain data myx is not assumed
to be randomly generated, i.e., no repeatable mechanism for producing mass
functions myx with given frequencies is postulated in our model. This is in
sharp contrast with other approaches based on random sets [34] or fuzzy
random variables [23], in which a crisp or fuzzy set is assumed to be gen-
erated at random. In practice, mx will usually be obtained from human
experts or using indirect methods. A real-world application in the area of
technical diagnosis where this formalism has been used has been described
in [8].

Definition of the belief function on © induced by mx. As our approach is
based on likelihoods, let us first extend the likelihood function to uncertain
data mx. The likelihood of a hypothesis given data is usually defined as
a quantity proportional to the probability of observing the data, given the
hypothesis [22]. Here, the data are uncertain, i.e., we do not know exactly
what has been observed. Let (Q,2%, Po,T) denote the finite random set
inducing myx, where () is seen as a finite set of possible interpretations of
the evidence about z. If interpretation w holds, then the evidence tells us
that « € I'(w). The conditional probability of observing this event is

PeDw)i0) = 3 f(a:6). (33)
z€l'(w)
Averaging over w yields the mean probability:

P mx, Z PQ {w} PX Z mX PX A 0) (34)
weN ACX

which can be seen as the “probability of mass function myx”, defined as
the mean probability of its focal sets. The likelihood function given the
uncertain observation myx can then be defined as L(0;mx) = P(mx;0) for
all 0 € ©. It is easy to show that L(6;mx) only depends on the contour
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function pl(z) associated to mx. To see this, we may write:

L(O;mx) = > mx(A) <Z f($;‘9)> ; (35a)

ACX z€A

= Y f@o | D> mx(4)], (35b)

zeX {ACX|A3z}
= ) fx:0)pl(x) (35¢)
zeX
= B [pl(X)]. (35d)

When myx is consonant, plx can be interpreted as a possibility distribution
or, equivalently, as the membership function of the fuzzy set F' of values
that may be taken by x. L(6;mx) is then the probability of that fuzzy set,
according to Zadeh’s definition for the probability of a fuzzy event [48, 17].

As a natural extension of (3), we propose to represent the information
on 6 provided by the uncertain data by the consonant plausibility function
with the following contour function:

L(Q;mx)
supgeo L(0;mx)’

pl(0;mx) = (36)
It is obvious that (36) is a proper generalization of (8), which is recovered
when myx is a logical mass function with focal set {z}.

An iterative procedure for finding a value 0 of 6 that maximizes pl(0; mx)
has been introduced in [9] and generalized in [16, 18]. This procedure, called
the Evidential Expectation Maximization (E>M) algorithm, is an extension
of the EM algorithm [15].

Independence assumptions. Let us assume that the observable data are a
random vector X = (X7,..., X, ), where each X is a random variable taking
values in X;. Similarly, its realization can be written as x = (z1,...,2,) €
X =X; x...xX,. Two different independence assumptions can then be
made:

1. Under the stochastic independence of the random variables X, ..., X,
the probability mass function f(x;6) can be decomposed as:

n

F60) =] f(ai0), (37)

i=1

for all x = (x1,...,2,) € X;
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2. Under the cognitive independence of x1, ..., x, with respect to m (see
[37, page 149]), we can write:

pl(x) = [ [ pli(=:), (38)
=1

for all x = (z1,...,2,) € X, where pl; is the contour function corre-
sponding to the mass function myx, obtained by marginalizing mx on
X;.

We can remark here that the two assumptions above are totally unrelated
as they are of different natures: stochastic independence of the random
variables X; is an objective property of the random data generating process,
whereas cognitive independence pertains to our state of knowledge about
the unknown realization x of X.

If both assumptions hold, the likelihood criterion (35¢) can be written
as a product of n terms:

n

L(6; mx) = [ [ Bo [pli (X)) (39)
=1

and pl(f;mx) can be obtained as the normalized product of the contour
functions pl(6; mx,):

H?:l pl(@; mXi)

pl(0;mx) = , 40
( ) supgeo [ [i=y PL(O; mx,) (40)
which generalizes (17).

Example 3. Assume that X = (X1,...,X,) is an iid random vector and

each X; has a Bernoulli distribution with parameter 6. Let pl;(1) and pl;(0)
denote, respectively, the plausibilities that x; =1 and z; = 0. We have

Eg [pli(X:)] = 0pli(1) + (1 = 0)pli(0) (41)
and, assuming that (38) holds:

[ [6pli(1) + (1 — 6)pli(0)]
supgee [ iy [0pli(1) + (1 — 0)pli(0)]
Figure 6 shows the contour functions for n = 20, pl;(1) =1, pl;(0) = r for
i=1,...,10, and pl;(1) = r, pl;(0) =1 fori=11,...,20. Clearly, there is
no data uncertainty when r = 0, in which case we recover the usual contour

function with 6 =0.5. The uncertainty increases as r — 1. In the limit case
where r =1, the belief function Belg(-;mx) becomes vacuous.

pl(6;mx) = (42)
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Figure 6: Contour functions for the Bernoulli distribution with uncertain data.

4.2. Comparison with Bayesian analysis

It is interesting to study how the problem considered in this section can
be treated in the Bayesian framework. The posterior probability distribution
given myx can be written as

FOlmx) =Y f(Olz.mx)p(a|mx). (43)

zeX

We have
f(x|0)m(0)

p(z)

where 7 is the prior probability distribution on 6 and p(z) = [ f(x|0)m(6)d6.
Now,

[0z, mx) = f(0lz) = : (44)

plalmx) = Y p(z|A)mx(A). (45)
ACX

From the indifference principle:

La(z)
p(z[A) = ; (46)
|A]
where |A| denotes the cardinality of A. Hence, we can see that
mx (A
padme) = 3 " et (a7)

{ACX|zc A}
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where betpx is the pignistic probability distribution [42, 41] associated to
mx.
Consequently, the following equalities hold:

FOlmz) = 3 F@lebetpe(a) = 7(0) 3 Flalg) EE) - (gg)

zeX zeX p($)

By comparing Equations (48) and (35c), and it is clear that f(6|mx) and
pl(0)mx) are not proportional, in general, even when the prior distribution
7 is uniform. Hence, the belief function and Bayesian frameworks will lead
to different inferences about 6, in general. An argument in favor of the belief
function approach can be found by considering the impact of a refinement
of the sample space.

As an example, let us consider the simple Bernoulli model already studied
in Example 3. Assume that X = 1 means that a patient taken at random
from a given population has some disease D, and X = 0 means that the
patient does not have the disease. After examining a patient, a physician
gives a mass function mx quantifying his/her beliefs about the state of that
particular patient. Now, after some time, we discover that disease D exists in
two equiprobable forms D, and Djy. Should this piece of information change
our beliefs on 7 We can argue that it should not, as evidence collected
about the patient does not point specifically to D, or Dy anyway. Let us
see this problem can be formally treated in the two models.

Let X = {0,1} be the initial sample space, and let X' = {0, 1a, 1b}
be the refined sample space, with obvious notations. Let us introduce the
following notations: mx({0}) = u, mx({1}) = v and mx(X) = w. The same
piece of evidence can expressed in the refined space X' as mx/({0}) = wu,
mx ({la,1b}) = v and mx (X') = w.

Let us first consider the belief function analysis. We have

pl(0; mx) o< Oplx (1) + (1 — O)plx(0) = O(v +w) + (1 — O)(u+w)  (49)
and
p(B;me) ox plie(10) + £ plo(16) + (1 B)ple (0
= g(v+w)+ g(v+w)+(1 —0)(u+ w)
=0(v+w)+ (1—0)(u+w) (50)

Consequently, pl(0; mx) = pl(0; mx/), as expected: refining the sample space
after the observation has been made does not change the inference about 6.
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Let us now conduct the Bayesian analysis of the same problem. We have

f(0lmx) = f(0]1)betpx (1) + f(0]0)betpx (0). (51)

Assuming a uniform prior on ©, we have

o)
f(ml)_ff(lw)w(ﬁ)de 20 (52)
and
__foe)x@) .
$00) = o = 200 (53)
hence:
F(Olmsx) = 20(v + %) 21— ) (u+ %). (54)

Considering the refined sample space, we have
f(Olmx) = f(0|1la)betpx: (1a) + f(0]1b)betpxs (1b) + f(0|0)betpx/(0). (55)

We can easily check that f(0|1a) = f(0]1b) = 26, hence

2w w
f(Olmx) :29(v+?)+2(1 —0)(u+ g) (56)
Comparing (54) and (56), we can see that refining the sample space a pos-
teriori has changed the posterior probability distribution of 8, a result that
can seriously be questioned.

5. Conclusions

In the classical view of likelihood-based inference, the likelihood function
is defined up to a multiplicative constant, and the likelihood of a hypoth-
esis is meaningless: only the likelihood ratios have meaning. Furthermore,
the likelihood of a compound hypothesis, defined as the disjunction of sev-
eral simple hypotheses, is generally considered to be undefined, because a
compound hypothesis does not specify numerically the probability of the
observations. As noted by Sprott [43, page 13], “The fact that a likelihood
of a disjunction of exclusive alternatives cannot be determined from the like-
lihoods of the individual values gives rise to the principal difficulty in using
likelihoods for inference”.

The method for transforming the likelihood function into a consonant
belief function, introduced by Shafer [37] and revisited in this paper, resolves
this difficulty. In this paper, we have provided some new arguments in
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support of this approach, by showing that it can be derived from three basic
principles: the likelihood principle, compatibility with Bayesian inference,
and the least commitment principle. We have also shown that this method
can be easily generalized to handle data that are only partially relevant to
the population of interest, or that have been acquired through an imperfect
observation process. Although the method has been demonstrated here
using the simplest binomial model, it has been successfully applied to more
complex models such as Gaussian mixture models [9, 18], independent factor
analysis [8] and hidden Markov models [35].

One of the main advantages of expressing statistical evidence in the
belief function framework is the possibility to combine it with expert opin-
ions expressed in the same language. An example of such combination for
quantifying the uncertainty of sea level rise due to climate change has been
presented in [4, 5], and further work along this line is under way.
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