
HAL Id: hal-00812995
https://hal.science/hal-00812995v1

Submitted on 11 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate Evaluation of Arithmetic Expressions (Invited
Talk)

Matthieu Martel

To cite this version:
Matthieu Martel. Accurate Evaluation of Arithmetic Expressions (Invited Talk). NSAD: Numerical
and Symbolic Abstract Domains, Sep 2012, Deauville, France. pp.3-16. �hal-00812995�

https://hal.science/hal-00812995v1
https://hal.archives-ouvertes.fr

NSAD 2012

Accurate Evaluation

of Arithmetic Expressions

(Invited Talk)

Matthieu Martela,b,c,1

a Université de Perpignan Via Domitia, Digits, Architectures et Logiciels Informatiques
52 avenue Paul Alduy, F-66860, Perpignan, France

b Université Montpellier II
Laboratoire d’Informatique Robotique et de Microélectronique de Montpellier

UMR 5506, 161 rue Ada, F-34095, Montpellier, France
c CNRS, Laboratoire d’Informatique Robotique et de Microélectronique de Montpellier

UMR 5506, 161 rue Ada, F-34095, Montpellier, France

Abstract

In this article, we focus on the synthesis of arithmetic expressions that can be evaluated efficiently
on computers in the sense that they do not create overflows, are accurate and do not use unnecessary
ressources. We consider several computer arithmetics for integers, floating-point and fixed-point
numbers and intervals and we show how to synthetize new expressions, mathematically equivalent to
the original ones and more efficient. Our approach is based on abstract interpretation. We introduce
two abstractions to represent in polynomial size sets of mathematically equivalent expressions.
Then, we extract optimized expressions by searching the most accurate expression among the
expressions contained in the abstract structures. We focus on the correctness of the synthesis which
consists of showing that the new expressions cannot be distinguished from the source expressions
when an observational abstraction is used.

Keywords: Abstract Interpretation, Code Synthesis, Computer Arithmetic.

1 Introduction

During the last decade, static analysis techniques based on abstract interpre-
tation [2] have reached an industrial level of maturity. Tools like Astrée [8],
Clousot [9] or Fluctuat [4] have been successfully used on real case studies.
These tools are able to compute subtle properties on codes such as accurate

1 Email:matthieu.martel@univ-perp.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:matthieu.martel@univ-perp.fr

Matthieu Martel

ranges for floating-point variables. However, when a run-time error or an un-
expected behavior of the program is detected, these tools do not indicate how
to fix the code. Then, a natural extension of this work is to propose bug cor-
rections to the programmer. Such techniques have recently been proposed to
repair integer expressions and relations between integer expressions [10] and
to improve the accuracy of floating-point expressions [11].

In this article, we focus on the synthesis of expressions well-suited for
the computer arithmetic in the sense that their evaluation by the machine
is efficient, accurate and does not rise run-time errors. We consider that
the expressions written in source codes by programmers are mathematical
formulas which would return the expected results if the computers used exact
arithmetics (with mathematical integer or real numbers). Then we synthesize
new expressions which are mathematically equivalent to the original ones and
whose evaluation in the computer arithmetic raises less errors. We consider
four computer arithmetics: the integer arithmetic is subject to overflows which
can be avoided in certain cases is the expressions are transformed [10]. In
addition to overflows, the floating-point arithmetic [1,14] is subject to accuracy
problems due to the rounding of the operations. The accuracy of expressions
can be improved if the expressions are replaced by mathematically equivalent
ones [11,6]. In the fixed-point arithmetic [5], the evaluation of equivalent
versions of an expression may require more or less ressources depending on the
size of the intermediary results. Finally, the interval arithmetic [12] introduces
over-approximations because of the lack of relations between variables. In
many cases, these over-approximations can be limited by transformation of
the source expression.

Our work is based on P. and R. Cousot’s framework for program transfor-
mation [3]. We introduce non-standard semantics and an observational ab-
straction for the integer, floating-point, fixed-point and interval arithmetics.
The synthesis is correct if it generates a new expression which cannot be dis-
tinguished from the source expression when the observational abstraction is
used. Because in general there exists too many expressions mathematically
equivalent to a source expression, we present two abstractions of the sets of
equivalent expressions [11,6]. Finally, the synthesis consists of selecting a ex-
pression among the abstract sets of equivalent expressions. This selection is
based on an abstract interpretation of the non-standard semantics introduced
for the four arithmetics.

This article is organized as follows. In Section 2, we introduce the com-
puter arithmetic and, for each of them, we discuss how the synthesis of a new
equivalent expression may improve the evaluation. Section 3 is dedicated to
the correctness of the synthesis. It introduces the non-stndard semantics and
obsevational abstractions. In Section 4, we describe the abstraction of sets of
equivalent expressions. Finally, the synthesis itself is described in Section 5

2

Matthieu Martel

and Section 6 concludes.

2 Computer Arithmetics and Expression Synthesis

In this section, we review several computer arithmetics and, for each of them,
we present how to synthesize expressions that can be evaluated efficiently. We
start with our simpliest arithmetic which is the integer arithmetic. Then we
discuss the cases of the floating-point and fixed-point arithmetics and, finally,
we end this section by examining the case of interval arithmetic.

The signed integer arithmetic enables one to represent exactly any integer
number between a minimal value m and a maximal value M. For example, in
many languages, the int format corresponds to the integer numbers between
m = −231 and M = 231 − 1. When the result of some operation is out of the
interval [m,M] then it wraps around this interval. This is a source of error
in programs, as noted by F. Logozzo and T. Ball who propose code repairs
for integer expressions and relations [10]. Formally, the elementary operations
are defined by:

a⊕ b =

m⊕ (a+ b− (M + 1)) if a+ b >M

M⊕ (a+ b− (m− 1)) if a+ b <m

a+ b otherwise

a⊗ b =

{
a⊕ (a⊗ (b− 1)) if b ≥ 1

−a⊕ (a⊗ (−b− 1)) if b < 1
(1)

For example, with 32 bits signed integers, if x = 230 and y = −215 then

2× x
3

+ y = −715860650 and 2× x

3
+ y = 715795114.

Both expressions are mathematically equivalent while the closest integer to the
exact result is 715795115. Because, in the signed integer arithmetic, errors may
arise when intermediary results are out of the range [m,M], the synthesis of
expressions has to generate expressions which are mathematically equivalent
to the original ones and whose evaluation introduces the smallest intermediary
results, in absolute value.

The floating-point arithmetic is defined by the IEEE754 Standard [1].
Floating-point numbers are used to encode real numbers. However, because
they are finite representations of they mathematical cousins, roundoff errors
arise during computations and these approximations may, in some cases, sig-
nificantly falsify the result of the evaluation. A floating-point number x is
defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (2)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa with digits
0 ≤ di < β, 0 ≤ i ≤ p− 1, p is the precision and e is the exponent, emin ≤ e ≤
emax. The IEEE754 Standard specifies several formats for the floating-point
numbers by providing specific values for p, β, emin and emax. It also defines

3

Matthieu Martel

some rounding modes, towads +∞, −∞, 0 and to the nearest. Let us write
◦+∞, ◦−∞, ◦0 and ◦∼ the rounding functions, the IEEE754 Standard defines
the semantics of the elementary operations by:

x~r y = ◦r(x ∗ y) (3)

where ~r denotes a floating-point operation +, −, × or ÷ computed using the
rounding mode r and ∗ denotes an exact operation. Because of the roundoff
errors, the results of the computations are not exact. For example, the value
e = 2.7182818 . . . can be computed using Bernouilli’s formula:

e = lim
n→+∞

un with un =

(
1 +

1

n

)n
, n ≥ 0.

In double precision, u8 = 2.718282 but then the accuracy decreases as n
grows: u14 = 2.716110, u16 = 3.0.35035 and u17 = 1.0. For the floating-point
arithmetic, the synthesis of expressions consists in generating an expression
which is mathematically equal to the original one and which minimizes the
roundoff error on the result, i.e. the distance |r − r̂| between the exact result
r and the floating-point result r̂.

There exists no standard for the fixed-point arithmetic comparable to the
IEEE754 Standard. A fixed-point format 〈w, i〉 depends on the total number
of bits w used to encode the value and on the location of the fixed-point
relative to the most significant bit [5]. In general, the numbers are encoded
using two’s complement and the sequence of bits bw−1 . . . b0 reprensents the
value −bw−1 ·2i−1 +

∑j=w
j=2 bw−j ·2i−j and the distance between two consecutive

numbers is 2i−w. The format 〈wr, ir〉 of the result of an elementary operation
depends on the formats 〈w1, i1〉 and 〈w2, i2〉 of its operands:

Addition:

{
wr = ir +max(w1 − i1, w2 − i2)

ir = max(i1 + ¬s1 ∧ s2, i2 + ¬s2 ∧ s1) + 1
Product:

{
wr = w1 + w2

ir = i1 + i2
(4)

In Equation (4), s1 and s2 denote the signs of the operands. Using the formats
of Equation (4), the operations are exact and no rounding is needed.

Synthesizing an efficient expression for the fixed-point arithmetic consists
of generating an expression equivalent to the original one and which minimizes
the size of the implementation, or, in other words, which minimizes the sum of
the sizes w of the formats of the intermediary results (the outputs of the oper-
ators.) For example, Figure 1 displays two implementations of the polynomial
x2 − x + 9, with x in the format 〈5, 3〉. The first scheme corresponds to the
direct implementation and requires 68 bits to store the intermediary results
while the second scheme implements the equivalent formula (x− 3)× (x− 3)
and necessitates 40 bits only.

Our last computer arithmetic is the interval arithmetic [12]. Intervals are
commonly used to bound the exact result of computations carried out with

4

Matthieu Martel

x x x 6

9

〈5,3〉 〈5,3〉 〈5,3〉 〈4,4〉

〈10,6〉 〈9,7〉

〈12,8〉 〈5,5〉

〈13,9〉

x 3 x 3

〈5,3〉 〈3,3〉 〈5,3〉 〈3,3〉

〈6,4〉 〈6,4〉

〈12,6〉

Fig. 1. Two fixed-point implementations of x2 − 6x+ 9 where x format is 〈5, 3〉.

floating-point numbers. Given two intervals [x, x] and [y, y] whose bounds are
floating-point numbers, the elementary operations are defined by:

[x, x]�[y, y] = [x⊕−∞y, x⊕+∞y] [x, x]�[y, y] =

min

x⊗−∞ y

x⊗−∞ y

x⊗−∞ y

x⊗−∞ y

 ,max

x⊗+∞ y

x⊗+∞ y

x⊗+∞ y

x⊗+∞ y

 (5)

Interval arithmetic suffers from the decorellation of the variables (the absence
of relations) and from the wrapping effect. For example, because of the decor-
relations, the value of the function f(x) = x

x−2
is [1.5, 4] when x = [3, 4].

However, the function f is mathematically equal to g(x) = 1 + 2
x−2

and
g([3, 4]) = [2, 3]. While both results are correct, g([3, 4]) is clearly more ac-
curate than f([3, 4]). Synthesizing efficient expressions for the interval arith-
metic then consists of generating expressions whose evaluation yields intervals
of small width, in order to optimize the accuracy of the results.

3 Correctness of the Synthesis

The synthesized expressions being possibly very different from the original
ones, the correctness of the process is based on semantics and not on syntax.
We use the framework for program transformation introduced by P. and R.
Cousot [3]. In Figure 2, we introduce four non-standard small-step operational
semantics for the evaluation of expressions, where ∗ stands for any elementary
operation. These semantics are denoted→int,→float,→fixed and→[] and they
are related to the integer, floating-point, fixed-point and interval arithmetics,
respectively.

For the integer arithmetic →int, a non standard value is a pair (v̂, v) ∈
int × Z where int denotes the set of computer signed integers (for example
the 32 bits or 64 bit integers) and Z denotes the set of signed mathemti-
cal integers. Intuitively, a value (v̂, v) gives both the exact value v and its

5

Matthieu Martel

ρ(x) = (v̂, v) m′ = max (|v|,m)

〈x,m, ρ〉 →int 〈(v̂, v),m′, ρ〉
v̂ = v̂1 ~ v̂2 v = v1 ∗ v2 m′ = max(|v1|, |v2|, |v|,m)

〈(v̂1, v1) ∗ (v̂2, v2),m, ρ〉 →int 〈(v̂, v),m′, ρ〉
〈e1,m, ρ〉 →int 〈e′1,m′, ρ〉 m′′ = max(m,m′)

〈e1 ∗ e2,m, ρ〉 →int 〈e′1 ∗ e2,m′′, ρ〉
〈e2,m, ρ〉 →int 〈e′2,m′, ρ〉 m′′ = max(m,m′)

〈(v̂1, v1) ∗ e2,m, ρ〉 →int 〈(v̂1, v1) ∗ e′2,m′′, ρ〉
ρ(x) = (v̂, v)

〈x, ρ〉 →float 〈(v̂, v), ρ〉
v̂ = v̂1 ~∼ v̂2 v = v1 ∗ v2

〈(v̂1, v1) ∗ (v̂2, v2), ρ〉 →float 〈(v̂, v), ρ〉
〈e1, ρ〉 →float 〈e′1, ρ〉

〈e1 ∗ e2, ρ〉 →float 〈e′1 ∗ e2, ρ〉
〈e2, ρ〉 →float 〈e′2, ρ〉

〈(v̂1, v1) ∗ e2, ρ〉 →float 〈(v̂1, v1) ∗ e′2, ρ〉

ρ(x) = (v〈w,i〉, v)

〈x,W, ρ〉 →fixed 〈(v〈w,i〉, v),W, ρ〉

v〈w,i〉 = v
〈w1,i1〉
1 ~ v〈w2,i2〉

2 v = v1 ∗ v2 W ′ = W + w1 + w2 + w

〈(v〈w1,i1〉
1 〉, v1) ∗ (v

〈w2,i2〉
2 , v2),W, ρ〉 →fixed 〈(v〈w,i〉, v),W ′, ρ〉
〈e1,W, ρ〉 →fixed 〈e′1,W ′, ρ〉

〈e1 ∗ e2,W, ρ〉 →fixed 〈e′1 ∗ e2,W ′, ρ〉
〈e2,W, ρ〉 →fixed 〈e′2,W ′, ρ〉

〈(v〈w1,i1〉
1 , v1) ∗ e2,W, ρ〉 →fixed 〈(v〈w1,i1〉

1 , v1) ∗ e′2,W ′, ρ〉
ρ(x) = (v̂, v)

〈x, ρ〉 →[] 〈(v̂, v), ρ〉
v̂ = v1 � v̂2 v = {x ∗ y : x ∈ v1, y ∈ v2}
〈(v̂1, v1) ∗ (v̂2, v2), ρ〉 →[] 〈(v̂, v), ρ〉

〈e1, ρ〉 →[] 〈e′1, ρ〉
〈e1 ∗ e2, ρ〉 →[] 〈e′1 ∗ e2, ρ〉

〈e2, ρ〉 →[] 〈e′2, ρ〉
〈(v̂1, v1) ∗ e2, ρ〉 →[] 〈(v̂1, v1) ∗ e′2, ρ〉

Fig. 2. Non standard semantics for the integer, floating-point, fixed-point and interval arithmetics.

computer approximation v̂. A state 〈e,m, ρ〉 ∈ Expr × N × Envint of the in-
teger non-standard semantics is made of an expression e, of an environment
ρ : Var→ (int×Z) of Envint mapping variables to non-standard values and
of a non-negative integer m ∈ N indicating the maximal value encountered
during the evaluation of the expression, in absolute value. The integer m has
to be minimized during the synthesis of a new expression in order to keep the
intermediary results inside the range [m,M] introduced in Section 2.

For the floating-point arithmetic →float, a non-standard value is a pair
(v̂, v) ∈ float × R where float is the set of floating-point numbers (one of
the IEEE754 formats) and R the set of real numbers. In Figure 2, we assume

6

Matthieu Martel

that the floating-point operations are carried out using the rounding mode
to the nearest. A state 〈e, ρ〉 of the non-standard floating-point semantics
is made of an expression e and of an environment ρ ∈ Var → (float ×
R) mapping variables to non-standard values. Intuitively, the synthesis of
an efficient expression for the floating-point arithmetic has to minimize the
quantity |v̂ − v|, i.e. the difference between the computer and exact results.

For the fixed-point arithmetic →fixed, a non standard value is a pair
(v〈w,i〉, v) ∈ fixed × R where fixed denotes the set of fixed-point num-
bers. We consider that in fixed, each fixed-point number has its own format
〈w, i〉, as introduced in Section 2. A state 〈e,W, ρ〉 ∈ Expr × N × Envfixed

is made of an expression e, a non-negative integer W and an environment
ρ ∈ Var→ (fixed×R) mapping variables to non-standard values. Intuitively,
W records the total number of bits required to represent all the intermedi-
ary results during the evaluation of the expression. The synthesis of a new
expression for the fixed-point arithmetic has to minimize W .

Finally, a non standard value (v̂, v) ∈ (float × float) × ℘(R) for the
interval arithmetic is made of an inteval v̂ with floating-point bounds and
a subset v of R (℘(R) denotes the powerset of R.) Intuitively, v is used to
compute the exact image of the points belonging to the input intervals. In
other words, if e(x, y) is an expression depending on two variables x ∈ [a, b]
and y ∈ [c, d], we aim at computing in the non-standard semantics the exact
image I = {e(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} of e. For the interval arithmetic,
the synthesis of new expressions has to minimize the width of the interval
corresponding to the result of the computation.

Given a set Θ of environments, the collecting semantics [[e]]int Θ, [[e]]float Θ,
[[e]]fixed Θ and [[e]][] Θ correspond to the sets of maximal traces starting by the
states {〈e, 0, ρ〉 : ρ ∈ Θ} for the integer arithmetic, {〈e, ρ〉 : ρ ∈ Θ} for the
floating-point arithmetic, {〈e, 0, ρ〉 : ρ ∈ Θ} for the fixed-point arithmetic
and {〈e, ρ〉 : ρ ∈ Θ} for the interval arithmetic.

In order to define the correctness of the synthesis, we also introduce ob-
servational abstractions αO of the states [3]. It is correct to replace an ex-
pression e by another expression e′ if for any Θ, [[e]] Θ = S, [[e′]] Θ = S ′

and {αO(s) : s ∈ S} = {αO(s′) : s′ ∈ S ′} where [[e]] Θ is one of our
four collecting semantics. For the synthesis of expressions, the observational
abstraction discards the computer results of the states and conserve only the
mathematical results. Then, the synthesis is correct if the new expression
always returns the same mathematical result than the source expression. In
all our semantics, values are pairs (v̂, v) where v̂ is a value representable in
machine and v is a mathematical value. We define αO as the second projec-
tion, i.e. αO

(
(v̂, v)

)
= v for any non-standard semantics. The abstraction αO

is then extended to states by projecting the values inside the expressions and
environments.

7

Matthieu Martel

4 Abstraction of Equivalent Expressions

In general, the number of expressions equivalent to an original expression e by
associativity, commutativity, distributivity and factorization is exponential in
the size of e. For example, the number of ways to evaluate the polynomial
(x− 1)× . . .× (x− 1)︸ ︷︷ ︸

n times

is 2.3 · 106 for n = 5 and 1.3 · 109 for n = 6 [13]. In

this section, we introduce two abstractions, polynomial in size, of the set of
mathematically equivalent expressions.

The first abstraction consists of identifying the expressions whose syntactic
trees are equal up to depth k. This abstraction is a simplified version of the
abstraction introduced in [11]. In the present article, we introduce an under-
approximation of the set of equivalent expressions while the more complicated
abstraction introduced in [11] was a complete covering of the mathematically
equivalent expressions. Because we limit ourselves to the expressions whose
syntactic trees are equal up to depth k, the application of algebraic laws
like associativity, commutativity, etc. yields a limited number of expressions
related to the user defined parameter k. We start by introducing a special
expression > ∈ Expr and the function p.qk : Expr → Expr which discards
the deepest level of the syntactic tree of an expression [11]:

pvqk = v if k ≥ 0

pxqk = x if k ≥ 0

pe1 ∗ e2q0 = > if k = 0

pe1 ∗ e2qk = pe1qk−1 ∗ pe2qk−1 if k ≥ 1
(6)

Let R ⊆ Expr× Expr be a binary relation on the set of expressions. We use
R to identify mathematically equivalent expressions. For example, R may
contain associativity or distributivity:{(

e1 + (e2 + e3), (e1 + e2) + e3

)
: e1, e2, e3 ∈ Expr

}
⊆ R (7)

{(
e1 × (e2 + e3), e1 × e2 + e1 × e3

)
: e1, e2, e3 ∈ Expr

}
⊆ R (8)

Note that we do not require R to be transitive. To generate a subset of the
expressions equivalent to a source expression e, we use the transition ⇒k of
Equation (9) which relates states 〈E,K〉 ∈ ℘(Expr)× ℘(Expr):

e ∈ E e R e′ pe′qk 6∈ K
〈E,K〉 →k 〈{e′} ∪ E, {pe′qk} ∪K〉

. (9)

Using Equation (9) and the initial state 〈{e}, {peqk}〉, we may generate a
maximal set E of expressions all equivalent to e and such that for any pair
e1, e2 ∈ E, pe1qk 6= pe2qk. The set E is an under-approximation of the set of
expressions mathematically equivalent to e.

The second abstraction is based on the notion of Abstract Program Equiv-
alence Graph (APEG for short) [6]. The APEGs are an extension of the

8

Matthieu Martel

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Fig. 3. APEG for the expression e =
(
(a+ a) + c

)
× c.

Equivalence Program Expression Graphs (EPEGs) introduced by R. Tate et
al. [15,16]. An APEG is defined inductively as follows:

(i) A value v or a variable x is an APEG,

(ii) An expression p1 ∗ p2 is an APEG, where p1 and p2 are APEGs and ∗ is
a binary operator,

(iii) A box ∗(p1, . . . , pn) is an APEG, where ∗ is a commutative and asso-

ciative operator and the pi, 1 ≤ i ≤ n, are APEGs,

(iv) A non-empty set {p1, . . . , pn} of APEGs is an APEG where pi, 1 ≤ i ≤ n,
is not a set of APEGs itself. The set {p1, . . . , pn} is called equivalence
class.

An example of APEG is given in Figure 3. When an equivalence class (denoted
by a dotted ellipse in Figure 3) contains many APEGs p1, . . . , pn then one
of the pi 1 ≤ i ≤ n may be selected in order to build an expression. A

box ∗(p1, . . . , pn) represents any parsing of the expression p1 ∗ . . . ∗ pn.

From an implementation point of view, when several equivalent expressions
share a common sub-expression, the latter is represented only once in the
APEG. Then APEGs provide a compact representation of a set of equivalent
expressions and make it possible to represent in an unique structure many
equivalent expressions of very different shapes. For readability reasons, in
Figure 3, the leafs corresponding to the variables a, b and c are duplicated
while, it practice, they are defined only once in the structure.

The set A(p) of expressions contained inside an APEG p is defined induc-
tively as follows:

(i) If p is a value v or a variable x then A(p) = {v} or A(p) = {x},
(ii) If p is an expression p1 ∗ p2 then A(p) =

⋃
e1∈A(p1), e2∈A(p2) e1 ∗ e2,

(iii) If p is a box ∗(p1, . . . , pn) then A(p) contains all the parsings of e1 ∗

9

Matthieu Martel

p1 p2

+ p3

×

p1 p2

+ p3

×

p1 p3

×

+

p2 p3

×

p1 p2

✳ p3

✳

✳ (p1,p2,p3)

✳ (p1,…,pn,p'1,…,p'm)

✳ (p'1,…,p'm)✳ (p1,…, ,…,pn)

Fig. 4. Some rules for APEG construction by pattern matching.

. . . ∗ en for all e1 ∈ A(p1), . . . , en ∈ A(pn),

(iv) If p is an equivalence class {p1, . . . , pn} then A(p) =
⋃

1≤i≤nA(pi).

For instance, the APEG p of Figure 3 represents all the following expressions:

A(p) =

(
(a+ a) + b

)
× c,

(
(a+ b) + a

)
× c,

(
(b+ a) + a

)
× c,(

(2× a) + b
)
× c, c×

(
(a+ a) + b

)
, c×

(
(a+ b) + a

)
,

c×
(
(b+ a) + a

)
, c×

(
(2× a) + b

)
, (a+ a)× c+ b× c,

(2× a)× c+ b× c, b× c+ (a+ a)× c, b× c+ (2× a)× c

 (10)

In comparison, with the first abstraction introduced at the beginning of this
section, one may under-approximate the set of expressions equivalent to e =
c×

(
(a+ a) + b

)
by the set

S1 =
{
c×
(

(a+ a) + b
)
, c× (a+ a) + c× b

}
if k = 1, (11)

and by the set

S2 =

{ (
(a+ a) + b

)
× c,

(
a+ (a+ b)

)
× c,

(a+ a)× c+ b× c, a× c+ (a+ b)× c

}
if k = 2. (12)

In their article on EPEGs, R. Tate et al. use rewritting rules to extend the
structure up to saturation [15,16]. In our context, such rules would consist of
performing some pattern matching in an existing APEG p and then adding
new nodes in p, once a pattern has been recognized. For example, the rules
corresponding to distributivity and box construction are given in Figure 4. An
alternative technique for APEG construction is to use dedicated algorithms.
Such algorithms, working in polynomial time, have been proposed in [6].

The abstractions defined previously in this section do not introduce expres-
sions that are not mathematically equivalent to the source expression. Then,
for synthesis, it is correct to select any expression belonging to the abstraction

10

Matthieu Martel

of a set of equivalent expressions. The selection criteria used at synthesis time
are discussed in Section 5. We end this section by formalizing the correctness
of the abstractions.

Let R ⊆ Expr×Expr be the binary relation on the set of expressions intro-
duced ealier in this section to identify mathematically equivalent expressions
(see equations (7) and (8).) The set of expressions equivalent to an original
expression e can be generated by the following rule ⇒∈ ℘(Expr)× ℘(Expr):

e ∈ E e R e′

E → {e′} ∪ E (13)

The set E(e) of expressions equivalent to e using the relations contained inR is
such that the sequence {e} →∗ E(e) of transitions is maximal (i.e. E(e)→ E ′

implies E ′ = E(e).)

Let 〈E], K〉 be the state resulting from a maximal transition path based on
Equation (9): 〈{e}, {peqk}〉 →k 〈E], K〉 and let A(p) be the set of expressions
contained inside an APEG p built from e, for example using the rules of Figure
4. Then E] and A(p) are under-approximations of E(e) and there exists the
following Galois connexions between the set of equivalent expression and its
abstractions:

〈℘(Expr),⊆〉 −−−→←−−−
α1

γ1 〈℘(Expr)× ℘(Expr),⊆×〉 (14)

〈℘(Expr),⊆〉 −−−→←−−−
α2

γ2 〈Π,⊆Π〉 (15)

In equations (14) and (15), ⊆× denotes the component-wise inclusion, Π de-
notes the set of APEGs and ⊆Π is the partial order on APEGs. Intuitively,
p1 ⊆Π p2 if A(p1) ⊆ A(p2). An inductive definition of ⊆Π is given in [6]. The
concretizations of abstract states 〈E], K〉 or p are defined by the following
functions:

γ1(〈E,K〉) =
⋃

e∈E, {e}→E′

E′ and γ2(p) =
⋃

e∈A(p), {e}→E′

E′. (16)

Hence, the abstract sets 〈E], K〉 and p do not contain expressions which are
not mathematically equivalent to the others and any expression e′ in E] or
A(p) may be selected in order to synthesize a new expression as it will not
be distinguishible from e by the observational abstraction αO introduced in
Section 3.

5 Generation of New Expressions

This section concerns the last step of the synthesis which consists of selecting
an expression inside the abstract representations of equivalent expressions.
First of all, we introduce abstract semantics, in Figure 5, in order to com-
pare the quality of mathematically equivalent expressions. These semantics
abstract the non-standard semantics of Figure 2 in which the mathemati-
cal values have been discarded. The abstract state contain intervals instead

11

Matthieu Martel

ρ(x) = [v, v] m′ = max (|v|, |v|,m)

〈x,m, ρ〉 →]
int 〈[v, v],m′, ρ〉

[v, v] = [v1, v1] �int [v2, v2] m′ = max(|v1|, |v1|, |v2|, |v2|, |v|, |v|,m)

〈[v1, v1] ∗ [v2, v2],m, ρ〉 →]
int 〈[v, v],m′, ρ〉

〈e1,m, ρ〉 →]
int 〈e′1,m′, ρ〉 m′′ = max(m,m′)

〈e1 ∗ e2,m, ρ〉 →]
int 〈e′1 ∗ e2,m′′, ρ〉

〈e2,m, ρ〉 →]
int 〈e′2,m′, ρ〉 m′′ = max(m,m′)

〈[v1, v1] ∗ e2,m, ρ〉 →]
int 〈[v1, v1] ∗ e′2,m′′, ρ〉

ρ(x) = ([v̂, v̂], [v, v])

〈x, ρ〉 →]
float 〈([v̂, v̂], [v, v]), ρ〉

〈e1, ρ〉 →]
float 〈e′1, ρ〉

〈e1 ∗ e2, ρ〉 →]
float 〈e′1 ∗ e2, ρ〉

[v̂, v̂] = [v̂1, v̂1] �∼ [v̂2, v̂2] [v, v] = [v1, v1] �↓ [v2, v2]

〈([v̂1, v̂1], [v1, v1]) ∗ ([v̂2, v̂2], [v2, v2]), ρ〉 →]
float 〈([v̂, v̂], [v, v]), ρ〉

〈e2, ρ〉 →]
float 〈e′2, ρ〉

〈([v̂1, v̂1], [v1, v1]) ∗ e2, ρ〉 →]
float 〈([v̂1, v̂1], [v1, v1]) ∗ e′2, ρ〉

ρ(x) = [v, v]〈w,i〉

〈x,W, ρ〉 →]
fixed 〈[v, v]〈w,i〉,W, ρ〉

〈e1,W, ρ〉 →]
fixed 〈e′1,W ′, ρ〉

〈e1 ∗ e2,W, ρ〉 →]
fixed 〈e′1 ∗ e2,W ′, ρ〉

[v, v]〈w,i〉 = [v1, v1]〈w1,i1〉 �fixed [v2, v2]〈w2,i2〉 W ′ = W + w1 + w2 + w

〈[v1, v1]〈w1,i1〉 ∗ [v2, v2]〈w2,i2〉,W, ρ〉 →]
fixed 〈[v, v]〈w,i〉,W ′, ρ〉

〈e2,W, ρ〉 →]
fixed 〈e′2,W ′, ρ〉

〈[v1, v1]〈w1,i1〉 ∗ e2,W, ρ〉 →]
fixed 〈[v1, v1]〈w1,i1〉 ∗ e′2,W ′, ρ〉

ρ(x) = [v, v]

〈x, ρ〉 →]
[] 〈[v, v], ρ〉

[v, v] = [v1, v1] �↔ [v2, v2]

〈[v1, v1] ∗ [v2, v2], ρ〉 →]
[] 〈(v̂, v), ρ〉

〈e1, ρ〉 →]
[] 〈e′1, ρ〉

〈e1 ∗ e2, ρ〉 →]
[] 〈e′1 ∗ e2, ρ〉

〈e2, ρ〉 →]
[] 〈e′2, ρ〉

〈[v1, v1] ∗ e2, ρ〉 →]
[] 〈[v1, v1] ∗ e′2, ρ〉

Fig. 5. Abstract semantics for the integer, floating-point, fixed-point and interval arithmetics.

of scalar values since we aim at synthesizing expressions optimized for large
ranges of inputs.

A value of the abstract integer semantics →]
int is an interval [v, v] ∈

int × int and an abstract state is a triple 〈e,m, ρ〉 ∈ Expr × int × Env]int
where Env]int is the set of environments mapping variables to abstract in-
teger values. The operator �int denotes the operation ∗ between intervals

12

Matthieu Martel

of integers, no rounding is require in this case. An expression e1 is better

than an expression e2 for an abstract environment ρ], denoted e1 ≺ρ
]

int e2, if
〈e1, 0, ρ

]〉 →]∗
int 〈[v1, v1],m1, ρ

]
1〉, 〈e2, 0, ρ

]〉 →]∗
int 〈[v2, v2],m2, ρ

]
2〉 and m1 ≤ m2.

Recall from Section 3 that m gives the maximal value, in absolute value of
the intermediary results encountered during the evaluation of the expression.

A value of the abstract floating-point semantics→]
float is a pair of intervals

([v̂, v̂], [v, v]) ∈ (float×float)×(float×float). Intuitively, the first interval
is the abstraction of the set of concrete values and the second interval is an
under-approximation of the exact results of the computation. Hence, in the
abstract semantics of Figure 5, the operations between the first intervals are
carried out using the standard rounding mode ∼ of the machine (to the nearest
in general) while for the second intervals, we use the rounding mode towards
inside, denoted ↓. For instance

[v1, v1]�∼ [v2, v2] = [v1 ⊕∼ v2, v1 ⊕∼ v2] (17)

and

[v1, v1]�↓ [v2, v2] =
[
min(v1 ⊕−∞ v2, v1 ⊕−∞ v2),max(v1 ⊕+∞ v2, v1 ⊕+∞ v2)

]
. (18)

An abstract state is a pair 〈e, ρ〉 ∈ Expr × Env]float where Env]float denotes
the environments mapping variables to abstract floating-point values. An
expression e1 is better than an expression e2 for an abstract environment ρ],

denoted e1 ≺ρ
]

float e2, if 〈e1, ρ
]〉 →]∗

float 〈([v̂1, v̂1], [v1, v1]), ρ]1〉, 〈e2, ρ
]〉 →]∗

float

〈([v̂2, v̂2], [v2, v2]), ρ]2〉 and max(|v̂1 − v1|, |v̂1 − v1|) ≤ max(|v̂2 − v2|, |v̂2 − v2|).
In other words, e1 ≺ρ

]

float e2 if the error in the work case between the computer
and mathematical results is less for e1 than for e2.

Concerning the fixed-point semantics→]
fixed, an abstract value is an inter-

val of fixed-point numbers which all have the same format. Such an interval
is denoted [v, v]〈w,i〉. We have:

[v, v]〈w,i〉 =
{
v〈w,i〉 : v ≤ v ≤ v

}
(19)

An abstract state is a triple 〈e,W, ρ〉 ∈ Expr× int×Env]fixed where Env]fixed
is the set of environments mapping variables to abstract fixed-point val-
ues. The operator �fixed denotes the operation ∗ between intevals whose
bounds are fixed-point numbers. The operations are exact and no rounding
mode is needed for �fixed. An expression e1 is better than an expression

e2 for an abstract environment ρ], denoted e1 ≺ρ
]

fixed e2, if 〈e1, 0, ρ
]〉 →]∗

fixed

〈[v1, v1]〈w1,i1〉,W1, ρ
]
1〉, 〈e2, 0, ρ

]〉 →]∗
fixed 〈[v2, v2]〈w2,i2〉,W2, ρ

]
2〉 and W1 ≤ W2.

In other words, e1 is better than e2 if the number of bits require to store the
intermediary results is less for e1 than for e2.

A value of the abstract interval semantics→]
[] is an interval [v, v] ∈ float×

float. As in Section 2, the operator � denotes the operation ∗ between

13

Matthieu Martel

intevals of floating-point numbers with the rounding mode towards outside
(see Equation (5).) An abstract state is a pair 〈e, ρ〉 ∈ Expr × Env][] where

Env][] denotes the environments mapping variables to intervals of floating-
point values. An expression e1 is better than an expression e2 for an abstract

environment ρ], denoted e1 ≺ρ
]

[] e2, if 〈e1, r
]〉 →]∗

[] 〈([v1, v1]), ρ]1〉, 〈e2, r
]〉 →]∗

[]

〈([v2, v2]), ρ]2〉 and v1 − v1 ≤ v2 − v2 i.e, e1 ≺ρ
]

float e2 if the width of interval
resulting from the evaluation of e1 is smaller than the width of the interval
resulting from the evaluation of e2.

To synthesize a new expression equivalent to a source expression e using the
first abstraction of Section 4, we use the rule of Equation (9) to compute the
set E] such that 〈{e}, {peqk}〉 →∗k 〈E], K〉} and we evaluate all the expressions
of E] with the abstract semantics of Figure 5, for the desired arithmetic. Then
we select the expression which yields the smallest result in the sense of ≺int,
≺float, ≺fixed or ≺[].

Concerning APEGs, the synthesis of a new expression requires special
techniques to handle the abstract boxes and to search inside the structure.
For boxes, a greedy algorithm has been proposed [6]. It consists of select-

ing in ∗(p1, . . . , pn) the best operation pi ∗ pj, 1 ≤ i, j ≤ n, i 6= j in

the sense of ≺int, ≺float, ≺fixed or ≺[] and then repeating the process with

the box ∗
(
p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pn, (pi ∗ pj)

)
. For generic

APEGs containing equivalence classes, a limited depth search algorithm with
memoization has also been proposed [6]. In its simplest setting, it consists
of only considering the best expression of the child equivalence classes when
synthesizing an expression for a parent equivalent class.

6 Conclusion

In this article, we have presented a general framework for the synthesis of
arithmetic expressions which can be evaluated by computers accurately, with-
out overflow and with limited ressources. We have considered the integer,
floating-point, fixed-point and interval arithmetics and two abstractions of
the set of mathematically equivalent expressions have been described. A large
part of this article has been dedicated to the correctness of the synthesis.

Most of this work has been implemented in a tool, called Sardana [7], which
accepts the floating-point and fixed-point arithmetics and which implements
APEGs. Many experimentations have been carried out with Sardana and the
results are convincing [6].

In the future, we would like to generalize our approach to pieces of code
more complicated than simple arithmetic expressions. For example, F. Lo-

14

Matthieu Martel

gozzo and T. Ball have worked on binary relations between integer expres-
sions [10]. More generally, we also aim at modifying control structures like
conditionals and loops.

References

[1] ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, std 754-2008 edition, 2008.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixed points. In Conference Record
of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252. ACM Press, New York, NY, 1977.

[3] Patrick Cousot and Radhia Cousot. Systematic design of program transformation frameworks
by abstract interpretation. In Conference Record of the Twentyninth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 178–190. ACM Press,
New York, NY, 2002.

[4] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and Franck Vedrine.
Towards an industrial use of fluctuat on safety-critical avionics software. In Formal Methods
for Industrial Critical Systems (FMICS’12), pages 53–69, 2009.

[5] Mentor Graphics. Algorithmic C Datatypes, software version 2.6 edition, 2011. http://www.
mentor.com/esl/catapult/algorithmic.

[6] Arnault Ioualalen and Matthieu Martel. A new abstract domain for the representation of
mathematically equivalent expressions. In Static Analysis Symposium (SAS’12), volume 7460
of Lecture Notes in computer Science, pages 75–93. Springer Verlag, 2012.

[7] Arnault Ioualalen and Matthieu Martel. Sardana: an automatic tool for numerical accuracy
optimization. In 15th GAMM-IMACS International Symposium on Scientific Computing,
Computer Arithmetic and Verified Numerical Computations (SCAN’12), 2012.

[8] Daniel Kästner, Stephan Wilhelm, Stefana Nenova, Patrick Cousot, Radhia Cousot, Jérôme
Feret, Antoine Miné, Laurent Mauborgne, and Xavier Rival. Astrée: Proving the absence of
runtime errors. In Embedded Real Time Software and Systems (ERTSS 2011), 2010.

[9] Francesco Logozzo. Practical verification for the working programmer with code contracts and
abstract interpretation. In Proceedings of the 12th Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI’11), volume 6538 of Lecture Notes in computer Science,
pages 19–22. Springer Verlag, 2011.

[10] Francesco Logozzo and Tom Ball. Modular and verified automatic program repair. In
Proceedings of the 27th ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA’12). ACM Press, New York, NY, 2012.

[11] Matthieu Martel. Semantics-based transformation of arithmetic expressions. In Static Analysis
Symposium (SAS’07), number 4634 in Lecture Notes in computer Science. Springer Verlag,
2007.

[12] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to Interval Analysis.
SIAM, 2009.

[13] Christophe Mouilleron. Efficient computation with structured matrices and arithmetic
expressions. PhD thesis, Université de Lyon–ENS de Lyon, November 2011.

[14] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent
Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres. Handbook
of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[15] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: A new
approach to optimization. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, (POPL’09), pages 264–276. ACM Press, 2009.

[16] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: A new
approach to optimization. Logical Methods in Computer Science, 7(1), 2011.

15

http://www.mentor.com/esl/catapult/algorithmic
http://www.mentor.com/esl/catapult/algorithmic

	Introduction
	Computer Arithmetics and Expression Synthesis
	Correctness of the Synthesis
	Abstraction of Equivalent Expressions
	Generation of New Expressions
	Conclusion
	References

