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ON THE PENALISED HUM APPROACH AND ITS APPLICATIONS TO THE

NUMERICAL APPROXIMATION OF NULL-CONTROLS FOR PARABOLIC

PROBLEMS

Franck Boyer1

Abstract. This article deals with the problem of computing numerical approximations of null-controls
for parabolic equations or systems by using the Hilbert Uniqueness Method (HUM). We mainly review
recent results on this subject but we also provide new elements to emphasize the main ideas underlying
the penalised HUM approach which is at the heart of the methods used in practice. We give many
numerical illustrations.

Résumé. Cet article est consacré à l’étude du problème du calcul approché de contrôles à zéro pour
des équations ou des systèmes paraboliques par le biais de la méthode HUM (Hilbert Uniqueness
Method). On donne un aperçu des résultats récents sur le sujet tout en mettant en lumière certains
aspects fondamentaux de la méthode HUM pénalisée, qui se trouve au coeur des algorithmes proposés.
De nombreuses illustrations numériques sont également données.

Introduction

The main goal of this article is to present methods and results concerning the numerical computation of
null-controls for parabolic problems. Basically one can think of the following general strategy: first build a
semi- or fully-discrete approximation of the PDE under study; then compute a null-control for this discrete
system (which is an ODE or a finite-dimensional discrete-time dynamical system); finally try to prove that this
discrete control is actually an approximation of a null-control for the initial continuous problem. More precisely,
the strategy that we follow is the one initially introduced in the pioneering works [GL94,GLH08] and is based
on a formulation of the control problem under the form of a suitable convex quadratic optimisation problem.
This approach, which consists in characterizing and building the minimal L2-norm control if it exists, is often
referred to as the Hilbert Uniqueness Method (HUM in what follows).

Unfortunately, this natural and naive approach may lead to some theoretical and/or numerical issues:

(1) Due to the fact that parabolic equations enjoy smoothing properties along time, the original HUM dual
functional (see formula (1.5) with ε = 0) is known to be coercive only on a very large abstract space.
This leads to severe issues when the method is applied for numerical purposes (see for instance the
discussion in [MZ10]).

(2) Additionally, it may happen that a fully- or semi-discrete system associated with a null-controllable
continuous problem is not itself controllable for some values of the discretisation parameters. The
above strategy will thus fail.
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(3) Finally, even if the discrete system is known to be controllable, the actual computation of a corresponding
null-control can be very expensive on fine meshes, mainly because one tries to approximate a problem
which is ill-posed in the natural energy space (see the first point above).

For all these reasons, in view of numerical computations, the HUM approach for parabolic problems is almost
never used in its original version. Many authors, including [GL94, GLH08], make use of a suitable penalised
version of HUM which aims to relax the problem. The discrete problem which is obtained thus depend not only
on the discretisation parameters but also on the penalisation parameter ε.

We would like in this paper to contribute to the clarification of the relations between these parameters
by reviewing the theoretical results known up to now on this problem. To this end, we start this article by
giving a careful analysis of the penalised HUM approach at the continuous level for the approximate- and null-
controllability problems (Section 1). In particular, this analysis allows us to recover some well-known results
in PDE controllability theory, using constructive proofs based on HUM, instead of more standard functional
analysis arguments. In addition, our approach allows us to analyse how the controllability properties of the
system depend on the initial data. This is important in view of applications to numerical analysis since the
initial data of discrete problems are, by definition, approximations of the initial data of the continuous problem
(see for instance the discussion in Section 1.7). The main result of this first section is Theorem 1.7 which states
that the controllability of the system can be completely characterised by means of the behavior of the penalised
HUM functional when the penalisation parameter ε goes to 0. This result is then sharpened in Theorem 1.11
which shows, in some sense, that the controlled solution at final time always converges as ε → 0. It is then
sufficient to check whether or not this limit is 0 to determine if the system is approximately controllable or not.

In Section 2, we apply the ideas developed in the first section to a family of semi-discrete (in space) approx-
imations of the original problem. We explain why uniform null-controllability (with respect to discretisation
parameter) of these problems is not necessarily a satisfactory notion and we rather consider the notion of
φ(h)-null-controllability in which the penalisation idea is used in conjunction with the discretisation process by
choosing a penalisation parameter ε = φ(h) depending on the discretisation parameter. We then review some
recent theoretical results on this problem in various situations.

In Section 3, we discuss the case of fully-discrete approximations of the parabolic problem under study. Most
of the results of the semi-discrete case can be adapted, yet two additional issues appear: it is first needed to
compute the correct adjoint problem in each case and then, suitable conditions between the time step and the
mesh size are identified that ensure a good behavior of the overall algorithm.

We conclude this article by giving in Section 4 various numerical results aiming to illustrate the available
theoretical results but we also investigate some more complex problems, in particular, for parabolic systems.

Before starting our analysis, we wish to mention that alternative approaches have been recently proposed for
computing approximate controls for parabolic problems.

The first one, introduced and developed in [FCM12a,FCM12b,FCM12c], is to formulate the control problem
as an optimisation problem for a functional different from HUM which involves weighted L2 norms of the
control and of the solution of the parabolic equation itself. The (singular) weights are chosen similar to those
that naturally appear in Carleman estimates for the corresponding problem if available (see [FI96]). The schemes
derived from this strategy are shown to give satisfactory results. However, the price to pay is that the PDE
problem that one has to solve at the end is much more complex than the initial one: typically a fourth order
2D elliptic problem has to be solved to address a 1D heat equation. This method therefore seems to be quite
intricate to extend to more general problems (multi-D or systems), in particular because suitable Carleman
weights are not necessarily easy to determine in some cases (in fact Carleman estimates are not always available
for complex systems).

The second alternative strategy that we want to mention, the so-called “variational approach”, was introduced
in [Ped10, MP11]. In short, it consists in viewing the partial differential equation itself as a constraint for an
energy functional defined on the space of all the functions satisfying the boundary conditions and the initial/final
conditions. From a numerical point of view, in the case of the heat equation for instance, each iteration of the
conjugate gradient type algorithm requires the resolution of a corrector equation that is a space/time 2D elliptic
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problem. Here also the dimension of the system is thus in some sense increased, and the development of the
algorithm strongly depends on the problem under study.

Compared to those methods, the simple HUM approach that we study in the present work has the very
important advantage that, at the end, the numerical scheme for solving the forward and the backward problem
(see Section 4.1) can be almost chosen at the user’s convenience. In particular, the two solvers can actually
be used as black-boxes. Moreover, the strategy is almost problem independent (at least for linear parabolic
problems) that is is to say that the same overall algorithm can be used without modifications for N-dimensional
problems and parabolic systems rather than scalar equations even with variable coefficients, as we shall see in
the final section.

1. The Hilbert Uniqueness Method and its penalised version

1.1. Introduction

Let (E, 〈·, ·〉) be an Hilbert space whose norm is denoted by ‖·‖. Let (A, D(A)) be an unbounded operator in
E such that −A generates an analytic semi-group in E that we denote by t 7→ e−tA. We denote by (A?, D(A?))
the adjoint of this operator and by t 7→ e−tA

?

the corresponding semi-group.
Let (U, [·, ·]) be another Hilbert space whose norm is denoted by J·K and B be a bounded operator from U

into D(A?)′ and B? : D(A?)→ U its adjoint. We assume that B? satisfies the following regularity property(
t 7→ B?e−tA

?

ψ
)
∈ L2(0, T ;U), ∀ψ ∈ E,

and for some C > 0 r
B?e−·A

?

ψ
z

L2(0,T ;U)
≤ C ‖ψ‖ , ∀ψ ∈ E. (1.1)

Let T > 0 be given. For any y0 ∈ E and v ∈ L2(0, T ;U) we consider the non-homogeneous evolution problem{
∂ty +Ay = Bv,

y(0) = y0.
(P)

Since B is not necessarily bounded from U into E, solutions have to be understood in the following weak sense
(see e.g. [Cor07]).

Theorem 1.1. For any y0 ∈ E, there exists a unique y ∈ C0([0, T ], E) such that for any t ∈ [0, T ] and any
ψ ∈ E, we have

〈y(t), ψ〉 −
〈
y0, e

−tA?ψ
〉

=

∫ t

0

[
v(s),B?e−(t−s)A?ψ

]
ds. (1.2)

This solution is now referred to as t 7→ yv,y0(t) ∈ E.
Moreover, the map

(y0, v) ∈ E × L2(0, T ;U) 7→ yv,y0 ∈ C0([0, T ], E),

is continuous.

Notice that we have
y0,y0(t) = e−tAy0.

For simplicity, the solution at time T , which is of particular interest in what follows, will be denoted by

LT
(
v
∣∣y0

)
= yv,y0(T ).

The linear operator LT
(
.
∣∣.) is then continuous from L2(0, T ;U)× E into E.

Assumptions on B are satisfied by bounded operators B : U → E but more general operators are allowed. For
instance, for the usual heat equation E = U = L2(Ω), A = −∆ with D(A) = H2(Ω)∩H1

0 (Ω), the operator B is
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allowed to contain first order differential operators, or to be the operator associated with the Neumann boundary
control. However, (1.1) does not hold for the Dirichlet boundary control problem for the same equation. Indeed,

in that case (1.1) is only valid for ψ ∈ H
3
2 +ε(Ω) ⊂ D(A) and it is necessary to adapt all the framework to

solutions defined in a weaker sense, namely in C0([0, T ], D(A)′). The HUM presented below can be adapted to
this context but we shall not present the details here, see e.g. [BDPDM93,GL94,CT06,GLH08].

For any δ ≥ 0 we define the (possibly empty) closed convex set

Adm(y0, δ) = {v ∈ L2(0, T ;U), s.t.
∥∥LT(v∣∣y0

)∥∥ ≤ δ}.
Definition 1.2. • We say that Problem (P) is approximately null-controllable at time T , from the initial

data y0, if

Adm(y0, δ) 6= ∅, ∀δ > 0.

If this holds for any y0 ∈ E, we simply say that Problem (P) is approximately null-controllable at time
T .

• We say that Problem (P) is null-controllable at time T from the initial data y0, if

Adm(y0, 0) 6= ∅.

If this holds for any y0 ∈ E, we simply say that the problem is null-controllable at time T .

Remark 1.3. (1) Since the control time T is fixed all along this paper, we shall not systematically recall
that these definitions depend on T .

(2) Since we assumed that the semi-group is analytic, it can be observed that the range of e−TA is dense
in E. As a consequence, the approximate null-controllability as defined above is equivalent to the more
general property

∀y0, yT ∈ E,∀δ > 0, ∃v ∈ L2(0, T ;U), such that
∥∥LT(v∣∣y0

)
− yT

∥∥ ≤ δ.
We shall thus use “approximate controllability” in place of “approximate null-controllability”.

(3) The problem being linear, the null-controllability property is well-known to be equivalent to the con-
trollability to trajectories that is

∀ỹ0, y0 ∈ E, ∃v ∈ L2(0, T ;U), such that LT
(
v
∣∣y0

)
= LT

(
0
∣∣ỹ0

)
= e−TAỹ0.

1.2. The HUM approach

In the framework of both controllability notions, if one control exists it is certainly not unique. This is the
reason why for proving controllability results (but also for the actual computation of such controls, see Section
2), it is useful to specify one such control. For instance, the HUM approach consists in finding the control with
the minimal L2(0, T ;U)-norm. More precisely, for any δ ≥ 0 such that Adm(y0, δ) is not empty we shall define
vδ ∈ Adm(y0, δ) to be the unique control satisfying

F (vδ) = inf
v∈Adm(y0,δ)

F (v), (1.3)

where

F (v)
def
=

1

2

∫ T

0

Jv(t)K2
dt =

1

2
JvK2

L2(0,T ;U) , ∀v ∈ L
2(0, T ;U).

Definition 1.4. In the case where Adm(y0, 0) 6= ∅, the control v0 is called the HUM (null-)control associated
with the initial data y0 for the problem under study.
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Even though (1.3) has a unique solution, it can be a difficult task to solve it directly because of the nature
of the constraints that are involved. As usual, the duality theory can help in dealing with the constraints
but will lead to functionals that are either non coercive on the usual dual state space E (for δ = 0; in this
case considering a much larger space is required) or that are non smooth (for δ > 0). Both issues can lead to
important difficulties when using this approach for numerical purposes.

1.3. The penalised HUM approach

Because of the issues described above, it is convenient to deal with a penalised version of the above mentioned
optimisation problems. To this end, for any ε > 0, we define the following quadratic functional

Fε(v)
def
=

1

2

∫ T

0

Jv(t)K2
dt+

1

2ε

∥∥LT(v∣∣y0

)∥∥2
, ∀v ∈ L2(0, T ;U),

that we wish to minimise onto the whole space L2(0, T ;U).
We shall show in this first part of the article that the careful study of the behavior of the solution of this

penalised optimisation problem as a function of ε makes it possible to recover the most usual theoretical results
in the controllability theory for abstract evolution problems.

Moreover, following [GL94,GLH08], this penalised method (applied to a family of finite-dimensional discre-
tised problems) will be at the heart of the numerical methods that we shall analyze in Section 2 and 3.

Let us make some preliminary remarks.

• For any ε > 0, the functional Fε has a unique minimiser on L2(0, T ;U) that we denote by vε. This is
due to the fact that Fε is strictly convex, continuous and coercive.

• For a given ε > 0, it is very likely that vε 6∈ {vδ, δ > 0}, where the notation vδ is introduced in section
1.2.

• This minimiser is characterised by the following Euler-Lagrange equation∫ T

0

[vε(t), ṽ(t)] dt+
1

ε

〈
LT
(
vε
∣∣y0

)
,LT

(
ṽ
∣∣0)〉 = 0, ∀ṽ ∈ L2(0, T ;U). (1.4)

Applying general results of the Fenchel-Rockafellar theory (see e.g. [ET99]) we can build an associated dual
problem as follows. For any ε > 0, we define the functional

Jε(q
F )

def
=

1

2

∫ T

0

r
B?e−(T−t)A?qF

z2

dt+
ε

2

∥∥qF∥∥2
+
〈
y0, e

−TA?qF
〉
, ∀qF ∈ E. (1.5)

• For any ε > 0, the functional Jε has a unique minimiser denoted by qFε ∈ E. Here also, this is due to
standard arguments of convex optimisation. Note that the coercivity of the functional in E comes from

the term ε
2

∥∥qF∥∥2
which corresponds, in the dual framework, to the penalisation term introduced in Fε.

Observe also that infE Jε ≤ Jε(0) = 0.
• This minimiser is characterised by the Euler-Lagrange equation∫ T

0

[
B?e−(T−t)A?qFε ,B?e−(T−t)A? q̃F

]
dt+ ε

〈
qFε , q̃

F
〉

+
〈
y0, e

−TA? q̃F
〉

= 0, ∀q̃F ∈ E. (1.6)

The duality properties between these two functional are consequence of the general results mentioned above.
It is however instructive to write an explicit argument here.

Proposition 1.5. For any ε > 0, the minimisers vε and qFε of the functionals Fε and Jε respectively, are
related through the formulas

vε(t) = B?e−(T−t)A?qFε , for a.e. t ∈]0, T [,
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and

LT
(
vε
∣∣y0

)
= yvε,y0(T ) = −εqFε . (1.7)

As a consequence, we have

inf
L2(0,T ;U)

Fε = Fε(vε) = −Jε(qFε ) = − inf
E
Jε.

Finally, we have ∥∥LT(vε∣∣y0

)∥∥ ≤ ∥∥LT(0∣∣y0

)∥∥ =
∥∥e−TAy0

∥∥ . (1.8)

Proof. We set wε(t) = B?e−(T−t)A?qFε and we want to show that wε = vε. Notice that wε ∈ L2(0, T ;U), thanks
to (1.1).

• We start from the Euler-Lagrange equation for Jε that reads, for any q̃F ∈ E,∫ T

0

[
wε(t),B?e−(T−t)A? q̃F

]
dt+ ε

〈
qF , q̃F

〉
+
〈
y0, e

−TA? q̃F
〉

= 0.

By definition of ywε,y0 , see (1.2), we have

〈
ywε,y0(T ), q̃F

〉
−
〈
y0, e

−TA? q̃F
〉

=

∫ T

0

[
wε(t),B?e−(T−t)A? q̃F

]
dt.

Comparing the last two formulas, we obtain〈
ywε,y0(T ) + εqFε , q̃

F
〉

= 0. (1.9)

As this equality holds for any q̃F ∈ E, we find

LT
(
wε
∣∣y0

)
= ywε,y0(T ) = −εqFε . (1.10)

• We consider now any ṽ ∈ L2(0, T ;U) and write the equation (1.2) satisfied by yṽ,0 using ψ = qFε as a
test function. Since yṽ,0(0) = 0, we get

〈
yṽ,0(T ), qFε

〉
=

∫ T

0

[
ṽ,B?e−(T−t)A?qFε

]
︸ ︷︷ ︸

[ṽ,wε]

dt

Using (1.10), we have ∫ T

0

[ṽ, wε] dt+
1

ε
〈yṽ,0(T ), ywε,y0(T )〉 = 0.

This formula holds for any ṽ ∈ L2(0, T ;U); we have thus shown that wε solves the Euler-Lagrange
equation (1.4) implying that we have wε = vε.

• We can now compute, using (1.9),

Fε(vε) = Fε(B?e−(T−.)A?qFε )

=
1

2

∫ T

0

r
B?e−(T−t)A?qFε

z2

dt+
1

2ε

∥∥LT(vε∣∣y0

)∥∥2

=
1

2

∫ T

0

r
B?e−(T−t)A?qFε

z2

dt+
ε

2

∥∥qFε ∥∥2
.

(1.11)
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Moreover, taking q̃F = qFε in (1.6) gives∫ T

0

r
B?e−(T−t)A?qFε

z2

dt+ ε
∥∥qFε ∥∥2

= −
〈
y0, e

−TA?qFε

〉
, (1.12)

so that we have

Jε(q
F
ε ) = −1

2

∫ T

0

r
B?e−(T−t)A?qFε

z2

dt− ε

2

∥∥qFε ∥∥2
.

Comparing the values of Fε(vε) and Jε(q
F
ε ) precisely gives the relation Fε(vε) = −Jε(qFε ).

• By definition of vε, we have Fε(vε) ≤ Fε(0) = 1
2ε

∥∥LT(0∣∣y0

)∥∥2
. We deduce, in particular, that∥∥LT(vε∣∣y0

)∥∥ ≤ ∥∥LT(0∣∣y0

)∥∥.

�

From (1.6), (1.7) and (1.8) we deduce the following result.

Corollary 1.6. For any ε > 0, the map y0 ∈ E 7→ qFε ∈ E is linear, continuous and we have

∥∥qFε ∥∥ ≤ 1

ε

∥∥e−TAy0

∥∥ .
As a consequence of the previous proposition, we observe that the penalised HUM approach always leads

to a final state whose norm is lower than that of the free solution of the system (the one associated with the
control v = 0). Note that this holds without any additional assumption on the system than the general ones
given in the introduction.

We can now express the approximate- and null-controllability properties of the system, for a given initial
data y0, in terms of the behavior of the penalised HUM approach described above.

Theorem 1.7. (1) Problem (P) is approximately controllable from the initial data y0 if and only if we have

LT
(
vε
∣∣y0

)
= yvε,y0(T ) −−−→

ε→0
0. (1.13)

(2) Problem (P) is null-controllable from the initial data y0 if and only if we have

M2
y0

def
= 2 sup

ε>0

(
inf

L2(0,T ;U)
Fε

)
< +∞. (1.14)

In this case, we have

JvεKL2(0,T ;U) ≤My0 , (1.15)∥∥LT(vε∣∣y0

)∥∥ ≤My0

√
ε. (1.16)

Moreover we have
q
v0

y2

L2(0,T ;U)
= M2

y0 and

vε −−−→
ε→0

v0, strongly in L2(0, T ;U), (1.17)

where v0 is the HUM control defined in Section 1.2.

Remark 1.8. Observe that for ε1 > ε2 > 0, and v ∈ L2(0, T ;U) we have Fε2(v) ≥ Fε1(v). It follows that the
supremum with respect to ε > 0 in (1.14) is actually equal to the limit when ε→ 0 of infL2(0,T ;U) Fε.
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Proof. (1) It is clear that (1.13) implies the approximate controllability since it proves that for any δ > 0,
there exists ε > 0 such that vε ∈ Adm(y0, δ).

Assume now that approximate controllability holds and that (1.13) does not hold. It then exists

α > 0 and a sequence (εk)k such that εk → 0 as k → ∞ and
∥∥LT(vεk ∣∣y0

)∥∥2 ≥ α. By assumption,

Adm(y0,
√
α/2) is not empty; let us choose

v̂ ∈ Adm(y0,
√
α/2). (1.18)

By construction, we have

α

2εk
≤ 1

2εk

∥∥LT(vεk ∣∣y0

)∥∥2

≤ Fεk(vεk) ≤ Fεk(v̂)

=
1

2
Jv̂K2

L2(0,T ;U) +
1

2εk

∥∥LT(v̂∣∣y0

)∥∥2︸ ︷︷ ︸
≤α/2, by (1.18)

,

so that
α

4εk
≤ 1

2
Jv̂K2

L2(0,T ;U) ,

and we get a contradiction when k →∞.
(2) If the problem is null-controllable, then Adm(y0, 0) is a non-empty closed and convex set and we have

already seen that the HUM control v0 is nothing but the orthogonal projection of 0 onto Adm(y0, 0) in
L2(0, T ;U).

By construction, we have Fε(v
0) = 1

2

q
v0

y2

L2(0,T ;U)
. This does not depend on ε so that we get

sup
ε>0

(
inf

L2(0,T ;U)
Fε

)
≤ 1

2

q
v0

y2

L2(0,T ;U)
.

This proves a first implication as well as the inequality

M2
y0 ≤

q
v0

y2

L2(0,T ;U)
. (1.19)

Assume now that (1.14) holds. We immediately deduce (1.15) and (1.16). We can then find a subse-
quence (vεk)k which weakly converges towards some v ∈ L2(0, T ;U) and such that LT

(
vεk
∣∣y0

)
−−−−→
k→∞

0.

The parabolic problem we consider being linear (and so is the operator LT
(
.
∣∣.)), we can easily pass to the

limit and find that LT
(
vεk
∣∣y0

)
weakly converges towards LT

(
v
∣∣y0

)
and in particular that LT

(
v
∣∣y0

)
= 0.

As a consequence, the weak limit we obtained is a null-control for our problem : v ∈ Adm(y0, 0).
By definition of the minimal-norm control we have

q
v0

y
L2(0,T ;U)

≤ JvKL2(0,T ;U), so that with (1.19),

we deduce M2
y0 ≤ JvK2

L2(0,T ;U) .

Moreover, taking the limit in (1.15) we have

lim sup
k→∞

JvεkK
2
L2(0,T ;U) ≤M

2
y0 ≤ JvK2

L2(0,T ;U) .

This proves that the convergence of vεk towards v is actually strong and that JvK2
L2(0,T ;U) = M2

y0 . By

(1.19), and since v0 is the unique minimal-norm control, we deduce that v = v0, that
q
v0

y2

L2(0,T ;U)
=

M2
y0 , and finally that the complete family (vε)ε strongly converges to v0.

�
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Remark 1.9. We can slightly improve (1.16) by observing that

M2
y0/2 ≥ Fε(vε) ≥

1

2
JvεK

2
L2(0,T ;U) −−−→ε→0

M2
y0/2,

which implies that
√
ε
∥∥qFε ∥∥ =

1√
ε

∥∥LT(vε∣∣y0

)∥∥ −−−→
ε→0

0.

1.4. General behavior of the penalised HUM

We define the space

QF = {qF ∈ E, s.t. B?e−tA
?

qF = 0,∀t ≥ 0}, (1.20)

made of the non observable adjoint states and the space

YT = e−TA
?

QF . (1.21)

Notice that QF is closed and that

QF and YT are stable through e−sA
?

for any s ≥ 0. (1.22)

Remark 1.10. The semi-group generated by −A? being analytic, we observe that we also have for any T > 0,

QF = {qF ∈ E, s.t. B?e−tA
?

qF = 0,∀t ∈ [0, T ]}.

The following result, which also holds without any additional assumption on the system, gives a general
convergence result for the value of the controlled solution at the final time T given by the penalised HUM
method.

Theorem 1.11. For any y0 ∈ E, the penalised-HUM sequence (vε)ε satisfies

LT
(
vε
∣∣y0

)
−−−→
ε→0

PQF
(
e−TAy0

)
,

where PQF is the orthogonal projection onto QF in E.

Remark 1.12. In the finite dimensional case, it is easily seen that QF is the kernel of the adjoint of the Kalman
matrix

K = [B|AB| · · · |An−1B], n = dim(E).

Therefore, QF = {0} if and only ifK is full rank, and we recover the Kalman rank condition for the controllability
of finite dimensional linear systems.

Proof of Theorem 1.11. Using assumption (1.1), we can define a bounded non-negative symmetric operator
Λ : E → E, usually referred to as the Gramiam operator, as follows

〈Λψ, φ〉 =

∫ T

0

[
B?e−tA

∗
ψ,B?e−tA

?

φ
]
dt, ∀φ, ψ ∈ E.

Observe, using Remark 1.10, that QF = Ker Λ. With these notations, the Euler-Lagrange equation (1.6) can
be written as

(Λ + εId)qFε = −e−TAy0. (1.23)

We set z = −e−TAy0 and rε = εqFε − PQF z. From (1.7), the claim is equivalent to ‖rε‖ −−−→
ε→0

0.
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To this end, we write the equation satisfied by rε

(Λ + εId)rε = ε(z − PQF z).

Since z − PQF z is orthogonal to QF = Ker Λ, we know that it belongs to Ran Λ. Thus, there exists a sequence
(ψn)n ⊂ E such that

Λψn −−−−→
n→∞

z − PQF z.

We have

(Λ + εId)(rε − εψn) = ε(z − PQF z − Λψn − εψn).

Testing this equation against rε − εψn we obtain

〈(Λ + εId)(rε − εψn), rε − εψn〉 = ε 〈z − PQF z − Λψn − εψn, rε − εψn〉 . (1.24)

Using the non-negativity of Λ and the Cauchy-Schwarz inequality, we find

ε ‖rε − εψn‖2 ≤ ε ‖z − PQF z − Λψn − εψn‖ ‖rε − εψn‖ ,

so that

‖rε‖ ≤ 2ε ‖ψn‖+ ‖z − PQF z − Λψn‖ .
Taking the superior limit with respect to ε leads to

lim sup
ε→0

‖rε‖ ≤ ‖z − PQF z − Λψn‖ .

Since Λψn converges to z − PQF z, we finally get that ‖rε‖ −−−→
ε→0

0 and the claim is proved. �

Remark 1.13. Observe that the previous theorem is a particular case of a general result saying that for any

symmetric non-negative continuous operator in a Hilbert space, the family of operators
(

1
εΛ + Id

)−1
converges

strongly towards the orthogonal projection onto the kernel of Λ as ε goes to 0.

In the case where A is a symmetric operator we can obtain additional results.

Proposition 1.14. Assume that A is symmetric then we have

e−sAYT ⊂ QF , ∀s ≥ 0, (1.25)

and

PQF
(
e−TAy0

)
= e−TA

(
PYT y0

)
, ∀y0 ∈ E. (1.26)

Therefore, for any initial data y0 ∈ YT , the following properties hold

(1) For any ε > 0, we have vε = 0.
(2) The set Adm(y0, δ) is not empty if and only if δ ≥

∥∥LT(0∣∣y0

)∥∥ and in that case we have vδ = 0.

This means that, for such initial data, the value of the free solution y0,y0 at time T is the closest to zero that
one can achieve with any other control.

Proof. • Since A? = A and using (1.22) we conclude that, for any s ≥ 0, we have

e−sAYT = e−(s+T )AQF ⊂ QF .

Property (1.25) immediately follows since QF is closed.
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• Let us now prove (1.26). By definition of YT = e−TAQF we get

e−TAPQF = PYT e
−TAPQF .

Taking the adjoint, we obtain

PQF e−TA = PQF e−TAPYT ,

but the property (1.25) gives that

PQF e−TAPYT = e−TAPYT ,

and the claim is proved.
• Let y0 ∈ YT .

(1) Since e−TAy0 ∈ e−TAYT ⊂ QF = Ker Λ, it is clear that the unique solution to (1.23) is given by

qFε = −1

ε
e−TAy0 = −1

ε
LT
(
0
∣∣y0

)
.

The control is then given by vε(t) = B?e−(T−t)AqFε , that is vε = 0 by definition of QF .
(2) Assume that there exists a ṽ ∈ L2(0, T ;U) such that

∥∥LT(ṽ∣∣y0

)∥∥ < ∥∥LT(0∣∣y0

)∥∥ then, for any ε > 0,
we have

1

2
JṽK2

L2(0,T ;U) +
1

2ε

∥∥LT(ṽ∣∣y0

)∥∥2
= Fε(ṽ) ≥ inf

L2(0,T ;U)
Fε = Fε(0) =

1

2ε

∥∥LT(0∣∣y0

)∥∥2
,

and it follows that

JṽK2
L2(0,T ;U) ≥

1

ε

(∥∥LT(0∣∣y0

)∥∥2 −
∥∥LT(ṽ∣∣y0

)∥∥2
)
−−−→
ε→0

+∞,

which is a contradiction.
�

Remark 1.15. The previous proposition shows, in particular, that proving a uniform bound on the approximate
HUM controls (vε)ε is not sufficient in general to ensure that the problem is approximately controllable from
y0 (see for instance figure 13).

Remark 1.16. In the case where the operator Λ has a closed range (for instance in the finite dimensional
setting), it can be proved that the sequence (vε)ε is bounded, that ‖rε‖ ≤ Cε and that, for any initial data,
approximate controllability is equivalent to null-controllability.

Indeed with this additional assumption, and coming back to the proof of Theorem 1.11, we observe that
there is a ψ ∈ E such that Λψ = z − PQF z so that, from (1.24), we have

〈(Λ + εId)(rε − εψ), (rε − εψ)〉 = −ε2 〈ψ, rε − εψ〉 ,

yielding ε ‖rε − εψ‖2 ≤ ε2 ‖ψ‖ ‖rε − εψ‖ , and finally ‖rε − εψ‖ ≤ ε ‖ψ‖, so that

‖rε‖ ≤ 2ε ‖ψ‖ .

The optimal control is then given by

vε(t) = B?e−(T−t)A?qFε =
1

ε
B?e−(T−t)A? (rε + PQF z) =

1

ε
B?e−(T−t)A?rε, 0 ≤ t ≤ T,
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recalling the definition of rε and that of QF . We conclude that

JvεKL2(0,T ;U) ≤
C

ε
‖rε‖ ≤ 2C ‖ψ‖ = C1,

which is independent of ε.
Assume now that Problem (P) is approximately controllable from y0. From Theorems 1.7 and 1.11, this

means that PQF z = 0 so that ∥∥LT(vε∣∣y0

)∥∥ =
∥∥εqFε ∥∥ = ‖rε‖ ≤ C2ε,

and finally

inf
L2(0,T ;U)

Fε = Fε(vε) =
1

2
JvεK

2
L2(0,T ;U) +

1

2ε

∥∥LT(vε∣∣y0

)∥∥2 ≤ 1

2
C2

1 +
ε

2
C2

2 ,

so that

sup
ε>0

(
inf

L2(0,T ;U)
Fε

)
< +∞.

We conclude from Theorem 1.7 that the problem is indeed null-controllable from y0.

1.5. Approximate controllability and unique continuation

It is well known that the approximate controllability property of a linear system is related to the unique
continuation property for the adjoint problem. Let us give a precise statement of this equivalence for a given
fixed initial data y0 as well as a proof based on the arguments developed in the previous section.

Proposition 1.17. Let y0 ∈ E be given. The following properties are equivalent.

(1) Problem (P) is approximately controllable from y0.
(2) The following weak unique continuation property holds[

B?e−(T−t)A?qF = 0, ∀t ∈ [0, T ]

]
=⇒

〈
y0, e

−TA?qF
〉

= 0.

(3) For any ε > 0 there exists a Cε,y0 > 0 such that the following weak observability estimate holds∣∣∣〈y0, e
−TA?qF

〉∣∣∣2 ≤ C2
ε,y0

r
B?e−(T−.)A?qF

z2

L2(0,T ;U)
+ ε

∥∥qF∥∥2
, ∀qF ∈ E.

Proof.

• (1)⇔ (2):
Following Remark 1.10, the property (2) can be rewritten as y0 ∈ Y ⊥T or also e−TAy0 ∈ Q⊥F , that is

finally
(2)⇐⇒ PQF

(
e−TAy0

)
= 0.

Therefore, the equivalence between (1) and (2) is just a consequence of Theorem 1.7 and Theorem 1.11.
• (3)⇒ (2):

This is obvious by letting ε→ 0.
• (2)⇒ (3):

We assume that, for some ε > 0, such a Cε,y0 does not exist. Therefore, there exists a sequence
(qF,n)n such as

1 =
∣∣∣〈y0, e

−TA?qF,n
〉∣∣∣ ≥ nr

B?e−(T−.)A?qF,n
z

L2(0,T ;U)
+
√
ε
∥∥qF,n∥∥ .

We deduce that the sequence (qF,n)n is bounded (here ε is fixed) and therefore there exists a subsequence
(still referred to as qF,n) that weakly converges towards some qF in E. In particular

〈
y0, e

−TA?qF,n
〉

= 1

converges towards
〈
y0, e

−TA?qF
〉

= 1 and thus qF 6= 0.
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Moreover, we have by construction

r
B?e−(T−.)A?qF,n

z

L2(0,T ;U)
−−−−→
n→∞

0,

so that B?e−(T−.)A?qF = 0. This is a contradiction.

�

In particular, we recover here the usual statement saying that if QF = {0} (that is the adjoint system satisfies
the unique continuation property for any final data) then Problem (P) is approximately controllable for any
initial data.

1.6. Null-controllability and observability

We can now prove an observability-type inequality to characterise the null-controllability property of the
system starting from a given initial data y0. We will see in the sequel that it is of some importance to be
able to specify the influence of the initial data on the controllability of the system (see Sections 1.7 and 2).
As a consequence of the following result we will of course recover the more usual statement of the equivalence
between observability and controllability in Proposition 1.19.

Note that the following proof is based on the analysis of the penalised HUM approach and not on general
functional analysis results.

Proposition 1.18. Problem (P) is null-controllable from the initial data y0 if and only if, there exists M̃y0 ≥ 0
such that ∣∣∣〈y0, e

−TA?qF
〉∣∣∣2 ≤ M̃2

y0

r
B?e−(T−.)A?qF

z2

L2(0,T ;U)
, ∀qF ∈ E. (1.27)

Moreover, in such case, the smallest value of M̃y0 satisfying (1.27) is equal to My0 as defined in (1.14).

Proof. • Assume that (1.27) holds. We get from (1.12)

r
B?e−(T−.)A?qFε

z2

L2(0,T ;U)
+ ε

∥∥qFε ∥∥2 ≤ M̃y0

r
B?e−(T−.)A?qFε

z

L2(0,T ;U)
.

It follows that we have ε
∥∥qFε ∥∥2 ≤ M̃2

y0 and

JvεKL2(0,T ;U) =
r
B?e−(T−.)A?qFε

z

L2(0,T ;U)
≤ M̃y0 . (1.28)

Therefore, by (1.11), supε>0 infL2(0,T ;U) Fε is finite and the null-controllability follows by Theorem 1.7.
Moreover, with (1.28) we have

Fε(vε) ≤
1

2
M̃2
y0 +

1

2ε

∥∥LT(vε∣∣y0

)∥∥2 −−−→
ε→0

1

2
M̃2
y0 ,

by using Remark 1.9. It follows that My0 ≤ M̃y0 .
• Assume now that the null-controllability property holds. From (1.6) we get

〈
y0, e

−TA? q̃F
〉

=
〈
LT
(
vε
∣∣y0

)
, q̃F

〉
−
∫ T

0

[
vε,B?e−(T−t)A? q̃F

]
dt, ∀q̃F ∈ E.
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By assumption and Theorem 1.7 we have LT
(
vε
∣∣y0

)
−−−→
ε→0

0, therefore the first term in the right-hand

side goes to 0 and we can use (1.17) to pass to the limit and get〈
y0, e

−TA? q̃F
〉

= −
∫ T

0

[
v0,B?e−(T−t)A? q̃F

]
dt.

By the Cauchy-Schwarz inequality, we finally get∣∣∣〈y0, e
−TA? q̃F

〉∣∣∣ ≤ q
v0

y
L2(0,T ;U)

r
B?e−(T−.)A? q̃F

z

L2(0,T ;U)
,

so that (1.27) holds with M̃y0 =
q
v0

y
L2(0,T ;U)

. By Theorem 1.7, we have My0 =
q
v0

y
L2(0,T ;U)

. The

proof is complete.
�

Proposition 1.19. Problem (P) is null-controllable for any initial data if and only if there exists Cobs > 0
such that ∥∥∥e−TA?qF∥∥∥2

≤ C2
obs

r
B?e−(T−.)A?qF

z2

L2(0,T ;U)
, ∀qF ∈ E. (1.29)

Moreover, if Cobs is the smallest constant for which (1.29) holds, then it is also the smallest constant satisfying

My0 ≤ Cobs ‖y0‖ , ∀y0 ∈ E, (1.30)

where My0 is the minimal cost of the control as defined in Theorem 1.7.

Proof. • It is clear that (1.29) implies (1.27) for any y0 ∈ E, with M̃y0 = Cobs ‖y0‖, so that the null-
controllability for any initial data follows by Proposition 1.18 as well as inequality (1.30).

• Assume now that the problem is null-controllable for any initial data. Then the maps Φε : y0 7→ vε are
linear continuous and for any y0 ∈ E, the family (Φεy0)ε converges when ε goes to 0.

The Banach-Steinhaus theorem shows that there exists K > 0 such that

JΦεy0KL2(0,T ;U) ≤ K ‖y0‖ , ∀y0 ∈ E, ∀ε > 0.

In particular, the HUM-null-control v0 = limε→0 vε = limε→0 Φεy0 associated with a given initial data
satisfies

My0 =
q
v0

y
L2(0,T ;U)

≤ K ‖y0‖ .
From (1.27) and the fact that My0 is the optimal cost of the control, we get∣∣∣〈y0, e

−TA?qF
〉∣∣∣ ≤ K ‖y0‖

r
B?e−(T−.)A?qF

z

L2(0,T ;U)
.

Since this is true for any y0, we deduce that (1.29) holds with Cobs = K.
�

1.7. The case of approximate initial data

In order to prepare the discussion of Section 2 concerning semi-discrete approximations of Problem (P), we
introduce the following slightly modified problem.

For each value of ε > 0 we consider an initial data y0,ε ∈ E that we use in the definition of the functionals

Fε and Jε instead of y0, the corresponding functionals are denoted by F̃ε and J̃ε

F̃ε(v)
def
=

1

2

∫ T

0

Jv(t)K2
dt+

1

2ε

∥∥LT(v∣∣y0,ε

)∥∥2
, ∀v ∈ L2(0, T ;U),
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J̃ε(q
F )

def
=

1

2

∫ T

0

r
B?e−(T−t)A?qF

z2

dt+
ε

2

∥∥qF∥∥2
+
〈
y0,ε, e

−TA?qF
〉
, ∀qF ∈ E.

We assume that (y0,ε)ε is a bounded sequence that satisfies, for some y0 ∈ E,

e−TAy0,ε −−−→
ε→0

e−TAy0, that is LT
(
0
∣∣y0,ε − y0

)
−−−→
ε→0

0. (1.31)

Notice that, this property implies the weak convergence of y0,ε towards y0 as ε → 0. We denote by ṽε the

unique minimiser of F̃ε.
The problem we want to deal with is that, even if Problem (P) is approximately- or null-controllable from

y0, it may not be approximately- or null-controllable from the approximate initial data y0,ε. Therefore, the
behavior of the corresponding penalised HUM approach as ε goes to 0 has to be made precise. We can obtain
the following facts by slightly adapting the previous proofs.

• Problem (P) is approximately controllable from y0 if and only if

LT
(
ṽε
∣∣y0,ε

)
−−−→
ε→0

0. (1.32)

• Assume that supε>0 infL2(0,T ;U) F̃ε is finite, then Problem (P) is null-controllable from y0.
• Conversely, assume that Problem (P) is null-controllable from y0 and that

sup
ε>0

1

ε

∥∥LT(0∣∣y0 − y0,ε

)∥∥2
< +∞, (1.33)

then we have

sup
ε>0

inf
L2(0,T ;U)

F̃ε < +∞.

If moreover we assume that
1

ε

∥∥LT(0∣∣y0 − y0,ε

)∥∥2 −−−→
ε→0

0, (1.34)

then (ṽε)ε strongly converges towards the HUM control v0 associated with the initial data y0.
• Notice that conditions (1.33),(1.34) are very important for the result above to be true. Let us consider

a simple example.
Assume that A is symmetric and that the space YT defined in (1.21) is not trivial (one can think for

instance of a finite dimensional system such that the Kalman rank condition is not satisfied). We choose
any z ∈ YT \ {0} and set y0 = 0 and y0,ε = εαz with α < 1/2. It is clear that (P) is null-controllable
from y0 = 0, that it is not approximately controllable from y0,ε for any ε > 0, and that (1.31) holds.

However, we can simply compute

F̃ε(v) = ε2α

(
1

2
Jv/εαK2

L2(0,T ;U) +
1

2ε

∥∥LT(v/εα∣∣z)∥∥2
)
, ∀v ∈ L2(0, T ;U),

so that, using Proposition 1.14, we know that the parenthesis is minimal for v = 0. We deduce that

inf
L2(0,T ;U)

F̃ε =
ε2α−1

2

∥∥LT(0∣∣z)∥∥2 −−−→
ε→0

+∞, since α < 1/2.

We can summarize this discussion as follows:

• As far as the approximate control property is concerned, the penalised HUM approach associated with
a family of approximate initial data still provides a satisfactory criterion through (1.32), without any
additional assumption.
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• In order to be able to characterise null-controllability from the single observation of the behavior of
the penalised HUM in the limit ε → 0, it is necessary to assume that condition (1.33) is fulfilled. If
moreover condition (1.34) is satisfied then we deduce the strong convergence of the family of controls
ṽε towards the unique HUM control v0 associated with the initial data y0.

In other words, it is necessary that (y0,ε)ε converges towards y0 sufficiently rapidly.
• Moreover, considering a sequence of approximate initial data satisfying (1.33), we can state a relaxed

observability inequality which says that Problem (P) is null-controllable from y0 if and only if there
exists a M > 0 such that, for any ε > 0, we have

∣∣∣〈y0,ε, e
−TA?qF

〉∣∣∣2 ≤M (r
B?e−(T−.)A?qF

z2

L2(0,T ;U)
+ ε

∥∥qF∥∥2
)
, ∀qF ∈ E. (1.35)

This can be proved by adapting the proof of Proposition 1.18. Observe that this inequality aims to
generalize (1.27) but is different from that given in Proposition 1.17, since the constant M here does
not depend on ε.

Relaxed observability inequalities of the form (1.35) will be central in the analysis of semi-discrete and fully-
discrete problems in the next sections. Indeed, we shall see that the space approximation of a null-controllable
problem may lead to a non-controllable semi-discrete system, which typically corresponds to the situation above
where (P) is null-controllable from y0 but is not null-controllable from the approximate data y0,ε.

2. Semi-discrete approximations

2.1. General framework

We consider now a semi-discrete approximation of our problem (P), that we write for the moment in the
following abstract form. For any h > 0 (which is supposed to represent the space discretisation parameter), we
are given

• A Euclidean space Eh, whose inner product and its associated norm are denoted by 〈·, ·〉h and ‖·‖h
respectively.

• A linear operator Ah on Eh.
• A second Euclidean space Uh, whose inner product and its associated norm are denoted by [·, ·]h and

J·Kh.
• A linear operator Bh : Uh → Eh. We denote by B?h its adjoint, that is,

∀u ∈ Uh,∀x ∈ Eh, 〈Bhu, x〉h = [B?hx, u]h .

We are now interested in the following semi-discrete control problem{
∂tyh +Ahyh = Bhvh,

yh(0) = y0,h.
(Ph)

The solution of this problem is referred to as t 7→ yvh,y0,h(t) ∈ Eh and the value of this solution at time T is
denoted by

LhT
(
vh
∣∣y0,h

)
= yvh,y0,h(T ).

For each value of h, and each initial data y0,h ∈ Eh, one can ask if this finite-dimensional problem is
approximately- or null-controllable (notice that for a finite dimensional system, the two notions coincide, see
for instance Remark 1.16). Moreover, if such a null-control vh exists, can we prove uniform bounds for vh ?
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2.2. The main issues related to discretisation

Two main issues arise when applying the penalised HUM strategy to the family of semi-discrete problems
(Ph).

(1) It appears that, even if the initial problem (P) is null-controllable (let say for any initial data for
the moment), then the semi-discrete problem for a given h > 0 may not be null-controllable. This
actually holds even for a very classical finite-difference approximation of the heat equation for instance,
as observed by O. Kavian (see [Zua06]). More precisely, there may exist an eigenfunction ψh of A?h (we
denote by µh the associated eigenvalue) such that B?hψh = 0. In that case, we see that ψh belongs to
the set

QF,h = {qFh ∈ Eh, s.t. B?he−tA
?
hqFh = 0, ∀t ≥ 0}, (2.1)

and therefore, from Theorem 1.11, we know that there exists an initial data y0,h which is not null-
controllable for the semi-discrete system. This can also be checked easily here by taking the scalar
product of (Ph) with ψh. Since B?hψh = 0 and A?hψh = µhψh we obtain

d

dt
〈yh(t), ψh〉h + µh 〈yh(t), ψh〉 = 0,

so that, for any choice of the control vh, we have〈
LhT
(
vh
∣∣y0,h

)
, ψh

〉
h

= 〈yh(T ), ψh〉h = e−µhT 〈y0,h, ψh〉h , (2.2)

and this quantity (which does not depend on the control vh) can not be zero as soon as the initial data
y0,h satisfies 〈y0,h, ψh〉h 6= 0.

In the case of a Cartesian uniform mesh of the unit square in 2D, Ah being the usual 5-point discrete
Laplace operator in the finite-difference framework, we show in Figure 1 an example of a non-controllable
eigenmode ψh. As we can see, the difficulty comes from the fact that ψh is supported exclusively on the
diagonal cells of the mesh, that is to say that Ah possesses eigenfunctions that are compactly supported.
Observe that this pathology does not occur in the continuous setting and this is one of the reason why
the analysis of semi-discrete problems contains new difficulties.

1

−1

1

−1

1

ω

Figure 1. A non-controllable mode ψh for the five-point discrete Laplace operator on a 2D
uniform mesh; the value of ψh is set to zero in the white cells

Actually, one can observe that, at least in this example, the eigenvalue associated with ψh is asymp-
totically very large (µh ∼ C/h2). Therefore, even if this mode generates non-controllable initial data,
the quantity

〈
LhT
(
vh
∣∣y0,h

)
, ψh

〉
h

is exponentially small (see (2.2)) and thus should not lead to numerical
difficulties.

We shall see in Section 2.5 that this is, in some sense, the generic behavior. To the author’s knowledge,
the only case for which uniform null-controllability of a semi-discrete approximation of a parabolic
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equation is known is the one given in [LZ98] where the authors study the 1D, constant coefficient,
heat equation on a uniform mesh and with a boundary Dirichlet control. In this particular case, they
managed to prove the result by an explicit computation of the control in Fourier variables. The same
result, even in 1D, for variable coefficient operator and/or non uniform meshes is still an open problem.
We should also mention the 2D result given in [Zua06] which essentially consists, in a very particular
geometry, to reduce the problem to the above 1D case.

(2) Even if we assume that the semi-discrete problem (Ph) is null-controllable for any h > 0, we can wonder
whether or not it is desirable to compute such a null-control since the dynamical system (Ph) is itself
an approximation of the original system (P). We shall see that, h being fixed, the computational cost
of the penalised HUM control vε,h may increase dramatically as ε→ 0.

Therefore we shall see that is reasonable to choose a penalization parameter ε which depends on h in
such a way that the overall accuracy of the computation is of the same order as that of the numerical
scheme under study while maintaining an acceptable computational cost (see Section 4.2).

2.3. Penalised HUM in Eh, φ(h)-null-controllability and relaxed observability

2.3.1. Notation and preliminary remarks

We are now led to the following problem. Given, for each h > 0, an initial data y0,h ∈ Eh, we try to minimise
the following two functionals for any value of the penalisation parameter ε > 0

Fε,h(vh)
def
=

1

2

∫ T

0

Jvh(t)K2
h dt+

1

2ε

∥∥LhT(vh∣∣y0,h

)∥∥2

h
, ∀vh ∈ L2(0, T ;Uh),

and

Jε,h(qFh )
def
=

1

2

∫ T

0

r
B?he−(T−t)A?hqFh

z2

h
dt+

ε

2

∥∥qFh ∥∥2

h
+
〈
y0,h, e

−TA?hqFh

〉
h
, ∀qFh ∈ Eh.

For a fixed value of h, all the results of Section 1 directly apply.
Denoting by vε,h the unique minimiser of Fε,h, we have seen that, if QF,h defined in (2.1) is not trivial, we

may have

lim
ε→0

∥∥LhT(vε,h∣∣y0,h

)∥∥
h
6= 0, ∀h > 0,

but, however, since Eh is finite dimensional (and according to Remark 1.16) we have

sup
ε>0

Jvε,hKL2(0,T ;Uh) < +∞, ∀h > 0.

Of course, this bound on (vε,h)ε may depend on h.
Still using that Eh is finite dimensional, we know from Remark 1.16 that there is a Ch > 0 such that∥∥LhT(vε,h∣∣y0,h

)
− PQT,h

(
e−TAhy0,h

)∥∥
h
≤ Chε, ∀ε > 0.

Since Ch depends on h in a non explicit way, this estimate is not very useful from the practical point of view,
when one wants to analyse the limit (ε, h)→ (0, 0).

2.3.2. Coupling penalisation and discretisation

To circumvent the issues described in Section 2.2 and yet to achieve a satisfactory approximation of a null-
control of the original problem, we propose to consider the penalised HUM method for the family of semi-discrete
problems in the case where the penalisation parameter ε is chosen as a function of the discretisation parameter h.
To this end, we suppose given a non-decreasing function h ∈]0,+∞[7→ φ(h) ∈]0,+∞[ such that limh→0 φ(h) = 0.
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Moreover, since we are interested in a family of problems indexed by the parameter h, we naturally need to
introduce the space of families of initial data

Einit =
∏
h>0

Eh.

An element Y0 ∈ Einit is a family Y0 = (y0,h)h with y0,h ∈ Eh. We say that Y0 is bounded if suph>0 ‖y0,h‖h <
+∞.

As we observed in Section 1.7, in a slightly different framework, the penalisation parameter ε should also be
related in some sense to the approximation properties of the initial data (see in particular (1.33) and (1.34)) if
one wants to produce sequences of approximate controls that converge towards a control of the initial problem.
This is an additional motivation for introducing the following definition.

Definition 2.1. Let Y0 ∈ Einit. We say that the semi-discrete problems (Ph) are φ(h)-null-controllable from
Y0 if there exists a h0 > 0 such that we have

M2
Y0

def
= 2 sup

0<h<h0

(
inf

L2(0,T ;Uh)
Fφ(h),h

)
< +∞,

where the functional Fφ(h),h is built with the corresponding initial data given in the family Y0.

Observe that, in this semi-discrete setting, the map h 7→ infL2(0,T ;Uh) Fφ(h),h is not necessarily monotone.
Adapting the proofs given in Section 1, we can easily obtain the following result.

Proposition 2.2. For a given Y0 ∈ Einit, the problems (Ph) are φ(h)-null-controllable from Y0 if and only if

there exists h0 > 0 and M̃Y0 > 0, independent of h, such that the following relaxed observability inequality holds∣∣∣〈y0,h, e
−TA?hqFh

〉
h

∣∣∣2 ≤ M̃2
Y0

(r
B?he−(T−.)A?hqFh

z2

L2(0,T ;Uh)
+ φ(h)

∥∥qFh ∥∥2

h

)
, ∀qFh ∈ Eh,∀0 < h < h0. (2.3)

In such case, the smallest constant M̃Y0 satisfying (2.3) is equal to MY0 and we have

q
vφ(h),h

y
L2(0,T ;Uh)

≤MY0 , ∀0 < h < h0,∥∥LhT(vφ(h),h

∣∣y0,h

)∥∥
h
≤MY0

√
φ(h) ∀0 < h < h0.

Remark 2.3. Note that (2.3) is automatically satisfied in the case where Y0 is such that ‖y0,h‖h tends to zero
sufficiently rapidly (using that all norms in the finite dimensional space Eh are equivalent).

Of course, in practice, this case is not interesting. The family Y0 is rather meant to approximate a non trivial
continuous initial data y0 ∈ E, with for example the convergence of (‖y0,h‖h)h to ‖y0‖ 6= 0 as h → 0 (see for
instance Theorem 2.5).

Proposition 2.4. Assume that, for some Cobs > 0, the following relaxed observability inequality holds∥∥∥e−TA?hqFh ∥∥∥2

h
≤ C2

obs

(r
B?he−(T−.)A?hqFh

z2

L2(0,T ;Uh)
+ φ(h)

∥∥qFh ∥∥2

h

)
, ∀qFh ∈ Eh,∀0 < h < h0, (2.4)

then for any bounded family of initial data Y0 ∈ Einit, the problems (Ph) are φ(h)-null-controllable from Y0 and
we have

MY0
≤ Cobs

(
sup

0<h<h0

‖y0,h‖h

)
.

Notice that the value of Cobs depends in general on the function φ that we have chosen at the beginning.
In the sequel of the section, we review some recent results concerning the proof of (uniform with respect to

h) relaxed observability inequalities similar to (2.4) for two slightly different discrete frameworks.
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2.4. First example : an abstract Galerkin framework

In [LT06], following the framework introduced in [LT00], the authors study the above-mentioned problem in
a quite general abstract setting that we summarize here.

Even though these authors are able to cope with some unbounded control operators (namely those for which
there exists γ ∈ [0, 1/2[ such that B : U 7→ (D(A?)γ)′) we only state here the result for a bounded control
operator (i.e. for γ = 0).

• We suppose given linear mappings P̃h : Eh → D((A?) 1
2 ) and Q̃h : Uh → U such that

‖yh‖h =
∥∥∥P̃hyh∥∥∥ ,∀yh ∈ Eh, and JuhKh =

r
Q̃huh

z
.

• We set Ph = (P̃h)∗ : D((A?) 1
2 )′ → Eh and Qh = (Q̃h)∗ : U → Uh and we assume that

PhP̃h = IdEh , and QhQ̃h = IdUh ,

where we have implicitly identified E to its dual space and therefore we have the continuous embeddings
D((A?) 1

2 ) ⊂ E ⊂ D((A?) 1
2 )′.

• We define now Ah and Bh through their adjoints by the formulas

A?h = PhA?P̃h, B?h = QhB?P̃h.

We further assume standard approximation properties (see the details in [LT06]) which require that, for some
s > 0

• the following consistency estimates hold∥∥∥ψ − P̃hPhψ∥∥∥+
r
B?ψ − Q̃hQhB?ψ

z
≤ Chs ‖A?ψ‖ , ∀ψ ∈ D(A?),

Q̃hQhu −−−→
h→0

u, ∀u ∈ U.

• An error estimate for the underlying elliptic problem holds that is∥∥Ph(A?)−1f − (A∗h)−1Phf
∥∥
h
≤ Chs ‖f‖ , ∀f ∈ E.

• the semi-discrete semi-groups t 7→ e−tAh are analytic in a uniform way with respect to h, that is to say
that some uniform resolvent estimates hold.

• Finally, we assume that the numerical scheme is convergent in the following sense: for any y0 ∈ E and
any v ∈ L2(0, T ;U) we have∥∥LhT(Qhv∣∣Phy0

)
− PhLT

(
v
∣∣y0

)∥∥
h

=
∥∥∥P̃hLhT(Qhv∣∣Phy0

)
− P̃hPhLT

(
v
∣∣y0

)∥∥∥ −−−→
h→0

0. (2.5)

As an example, it can be shown that the standard piecewise-affine finite element approximation for the heat
equation on a quasi-uniform mesh of a polygonal domain enters this general framework.

Theorem 2.5 (see [LT06, Theorem 3.1]). Assume that (P) is null-controllable at time T . Under the previous
assumptions on the semi-discrete systems, there exists a β > 0, such that the relaxed-observability inequality
(2.4) holds as soon the function φ is chosen in such a way that

lim inf
h→0

φ(h)

hβ
> 0. (2.6)
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In that case, for any y0 ∈ E, we define y0,h = Phy0 and we consider the associated penalised HUM discrete
controls vφ(h),h. For simplicity the corresponding solution of (Ph) is denoted by yh. Then, there exists a
null-control v ∈ Adm(y0, 0) such that, up to a subsequence, we have

Q̃hvφ(h),h −−−⇀
h→0

v, in L2(0, T ;U),

P̃hyh −−−→
h→0

yv,y0 , in L2(0, T ;E),

P̃hLhT
(
vφ(h),h

∣∣y0,h

)
= P̃hyh(T ) −−−→

h→0
0 = LT

(
v
∣∣y0

)
, in E.

Remark 2.6. (1) The main line followed during the proof of this result consists in deducing a relaxed-
observability inequality for the semi-discrete adjoint system by using the corresponding observability in-
equality of the continuous problem. In particular, it is mandatory here to assume the null-controllability
of (P).

Notice that this strategy is very different from the one described in Section 2.5.
(2) In this approach, due to the strategy of proof we just described above, the number β > 0 actually

depends explicitly on the various convergence rates that are assumed above. When the value of β is
computed for specific situations, it appears that it can be quite small. The example of the piecewise-affine
finite element approximation of the 1D heat equation with a Neumann boundary control is described
in [LT06], and it is shown that β = 0.45 in that case.

Choosing for instance φ(h) = hβ (this is the best we can do according to the theorem above) leads to

a convergence rate of P̃hyh(T ) towards 0 in E = L2(Ω) which is given by
√
φ(h) = h

β
2 = h0.225. This

convergence rate is very small with respect to the expected accuracy of the numerical method, which is
second order in the L2-norm, in that case.

We want to emphasize here that this theorem does not claim, in general, that the limit control v is indeed
the unique HUM control v0 of the continuous problem. This is the reason why we only have a weak convergence
result up to a subsequence.

In general, even if we assume that the limit v is the HUM control v0, we are not able to show that the
convergence of the approximate control is strong. Indeed, if we would like to mimick the proof of the strong
convergence of penalised HUM controls given in Theorem 1.7, we see that we would need to take (in some sense)
the limit control v as a test function in the minimisation problem associated with Fφ(h),h. Since v does not

belong to the semi-discrete space L2(0, T ;Uh), it is clear that additional arguments are needed1. Let us give an
example.

Proposition 2.7. Consider the same assumptions as in Theorem 2.5. Given an initial data y0 ∈ E and the
associated HUM control v0, we set

Ψ(h)
def
=
∥∥LhT(Qhv0

∣∣Phy0

)∥∥
h

=
∥∥∥P̃hLhT(Qhv0

∣∣Phy0

)∥∥∥ , ∀h > 0.

By the convergence assumption (2.5), and using that LT
(
v0
∣∣y0

)
= 0, we know that limh→0 Ψ(h) = 0.

We suppose that the penalisation function φ is chosen in such a way that

lim
h→0

Ψ(h)2

φ(h)
= 0. (2.7)

Then, the limit v in Theorem 2.5 is equal to the HUM control v0 and the whole family (vφ(h),h, yh)h satisfy the

convergences given in that theorem. Moreover, the convergence of Q̃hvφ(h),h towards v0 is strong in L2(0, T ;U).

1In the very particular case of the Dirichlet boundary control for a 1D equation, we have U = Uh = R, so that strong convergence
can be proved this way, as noticed in [LZ98].
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Remark 2.8. Condition (2.7) says, in addition to (2.6), that h → φ(h) should not converge to 0 too fast if
one wants to ensure the strong convergence of the approximate controls. However, in practice, the function Ψ
is unknown except if one postulates sufficient a priori regularity properties for the HUM control and the initial
data so that Ψ(h) can be estimated by some power of h, depending on the accuracy of the numerical method.
Unfortunately the HUM control is not expected to be smooth enough in general.

Actually, in all the numerical experiments presented here, we never observed a behavior of the approximate
controls that can indicate a possible defect of strong convergence even though it is very likely that condition
(2.7) is not satisfied.

Proof. We need to compute an upper bound of the L2(0, T ;U)-norm of the interpolation of the approximate
control. To this end we use that this approximate control is the minimiser of Fφ(h),h and the definitions of the
norms in Eh and Uh as follows

1

2

r
Q̃hvφ(h),h

z2

L2(0,T ;U)
=

1

2

q
vφ(h),h

y2

L2(0,T ;Uh)

≤ Fφ(h),h(vφ(h),h) = inf
L2(0,T ;Uh)

Fφ(h),h

≤ Fφ(h),h(Qhv
0)

=
1

2

q
Qhv

0
y2

L2(0,T ;Uh)
+

1

2φ(h)

∥∥LhT(Qhv0
∣∣Phy0

)∥∥2

h

=
1

2

r
Q̃hQhv

0
z2

L2(0,T ;U)
+

1

2φ(h)

∥∥∥P̃hLhT(Qhv0
∣∣Phy0

)∥∥∥2

.

Using (2.7), and the approximation properties of Qh, we deduce that

lim sup
h→0

r
Q̃hvφ(h),h

z

L2(0,T ;U)
≤

q
v0

y
L2(0,T ;U)

.

Since v0 is, by definition, the null-control with minimal L2(0, T ;U)-norm, we have
q
v0

y
L2(0,T ;U)

≤ JvKL2(0,T ;U)

and thus we deduce that the convergence of the subsequence of (Q̃hvφ(h),h)h towards v is strong and that

JvKL2(0,T ;U) =
q
v0

y
L2(0,T ;U)

. Therefore, we have v = v0 and the whole sequence strongly converges towards

v0. �

Remark 2.9. Another sufficient condition for the strong convergence of the approximate control towards the
HUM control is also given in [LT06, Proposition 3.2]. This condition is different from the one given in the
previous Proposition since it consists in assuming that the sequence

∥∥qFh ∥∥h of the norms of the optimal adjoint
states is bounded. We will see in the numerical results given in Section 4 that this boundedness property
has almost no chance to be satisfied in general. We rather expect that

∥∥qFh ∥∥h ∼0 Cφ(h)−1/2 or equivalently∥∥LhT(vφ(h),h

∣∣y0,h

)∥∥
h
∼0 Cφ(h)

1
2 , excepted possibly in the case of a non-localised control as discussed in Section

4.2 and illustrated in Figure 6.

2.5. Second example : finite-difference schemes for the heat equation

In a series of articles [BHL10a,BHL10b,BHL11,BL13], a different strategy was developed consisting in directly
mimicking at the discrete level various techniques coming from the analysis of PDE control problems. This led
to more precise results (in some sense almost optimal) as we shall see below. The price to pay is that, for the
moment, those results do not exist in a general setting but only in the framework of finite-difference schemes
for scalar equations and distributed controls. However, numerical results seem to prove that the same results
should hold in more general settings (see Section 4).
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2.5.1. The discrete Lebeau-Robbiano strategy

In this spirit, it was first proposed to deal with a discrete Lebeau-Robbiano strategy following the original
proof of null-controllability of the heat equation given in [LR95].

The starting point is to assume that a suitable spectral inequality for the underlying discrete elliptic operator
holds uniformly with respect to h. Proving such a property will be discussed just after.

We assume that Ah is symmetric positive definite in (Eh, 〈., .〉h) and we denote by (ψj,h)j an orthonormal
basis of Eh made of eigenfunctions of Ah. The corresponding eigenvalues will be denoted by µj,h.

We also assume that B?h is a family of uniformly bounded operators, that is, for some C > 0,

JB?hxhKh ≤ C ‖xh‖h , ∀x ∈ Eh,∀h > 0. (2.8)

This assumption prevent us in particular to deal with boundary control problems with this strategy.
Our main assumption is the following discrete Lebeau-Robbiano spectral inequality: there exists h0 > 0,

α ∈ [0, 1), β > 0, and κ, ` > 0 such that, for any h < h0 and for any (aj)j ∈ RN, we have∥∥∥ ∑
µj,h≤µ

ajψj,h

∥∥∥2

h
=

∑
µj,h≤µ

|aj |2 ≤ κeκµ
α

s
B?h
( ∑
µj,h≤µ

ajψj,h

){2

h

, ∀µ < `

hβ
. (Hα,β)

Remark 2.10. In general, the dimension of Uh is less than that of Eh (typically for a distributed control acting
on some strict subdomain of the computational domain). Therefore we cannot expect (Hα,β) to be true for all
values of µ. Actually, we easily see that (Hα,β) cannot hold for the values of µ such that #{j, µj,h ≤ µ} is
greater than the dimension of Uh.

Moreover, the existence of a particular eigenmode ψh satisfying B?hψh = 0 as described at the beginning of
Section 2.2 (see Figure 1), also proves that (Hα,β) can not hold for any value of µ. Notice that the eigenvalue

µh associated with ψh is asymptotically of order C/h2. Thus, assuming a critical value of µ of the form `
hβ

in
(Hα,β) seems to be quite reasonable and actually essentially optimal.

With this assumption at hand, the following result can be proved. Notice that this theorem does not require
any assumption on the underlying continuous problem (P). Actually it is an abstract result and the existence
of an underlying continuous problem needs not be considered even.

Theorem 2.11. Assume that assumption (Hα,β) holds, then there exists h0 > 0, C > 0 such that, the relaxed
observability inequality (2.4) holds as soon as the function φ is chosen in such a way that

lim inf
h→0

φ(h)

e−C/hβ
> 0. (2.9)

In such a case, for any family of initial data Y0 ∈ Einit, the associated approximate controls and solutions
satisfy q

vφ(h),h

y
L2(0,T ;Uh)

≤ Cobs ‖y0,h‖h , ∀h > 0,∥∥LhT(vφ(h),h

∣∣y0,h

)∥∥
h
≤ Cobs ‖y0,h‖h

√
φ(h), ∀h > 0.

We emphasize the fact that condition (2.9) only requires that φ does not tend to 0 faster than some exponential
term, which is far less restrictive than condition (2.6). In practice, we may thus choose for instance φ(h) = h2p

where p is the expected order of accuracy of the numerical scheme (compare with the discussion in Remark 2.6).

2.5.2. Proving discrete Lebeau-Robbiano inequalities

The original proof of the Lebeau-Robbiano spectral inequality in the continuous case was based on local
Carleman elliptic estimates [LR95]. An alternative proof is available by using global Carleman estimates for an
augmented elliptic operator [Le 07]. This last strategy was adapted to the semi-discrete augmented operator
−∂2

s +Ah by establishing uniform discrete global Carleman estimates in [BHL10a,BHL10b].
More precisely, it is proved that (Hα,β) holds with α = 1/2 and β = 2 in the following framework:
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• We suppose given a quasi-uniform Cartesian mesh of the unit cube Ω =]0, 1[d (any domain for which a
Cartesian mesh is available also works). The various norms are defined in the usual sense.

• The discrete operator Ah is the usual 2d + 1-point finite difference approximation of the operator
−div(γ∇.), where γ : Ω→ R is Lipschitz continuous and coercive.

• The discrete (distributed) control operator Bh is simply 1ω for some given ω ⊂ Ω. More precisely it
means that Bh only acts on the nodes of the discretisation which belongs to ω.

2.5.3. The discrete Fursikov-Imanuvilov strategy

A second strategy was proposed in [FI96] to prove controllability in the continuous case. It is based on the
derivation of (global) Carleman estimates for the parabolic operator. This approach has been efficient to cope
with more general parabolic problems (time dependent coefficients, non-linear, and so on).

It has been adapted to the semidiscrete setting in [BL13]. The general finite-difference framework that we
use here is the same as in the previous section, excepted that the operator we consider is now time dependent
and has the following form

Ah = A0
h + ah,

where A0
h is the 2d+ 1-point discrete approximation of −div(γ∇.) introduced above and ah is any function in

L∞(0, T ;Eh). Note that we use here the usual abuse of notation which consists in denoting also by ah(t) the
operator from Eh into itself which is the point by point multiplication by the discrete function ah(t, .).

Theorem 2.12 ( [BL13]). There exist C > 0 and h0 > 0 such that for any φ satisfying

lim inf
h→0

φ(h)

e−C/h
> 0, (2.10)

any A > 0, and any h ≤ min(h0, A
−2/3), the following φ(h)-relaxed observability inequality holds

‖qh(0)‖2h ≤ C
2
A

(
JB?hqhK

2
L2(0,T ;Uh) + φ(h)

∥∥qFh ∥∥2

h

)
, (2.11)

for any solution of the adjoint problem{
−∂tqh +A0

hqh + ahqh = 0,

qh(T ) = qFh ∈ Eh,

where ah ∈ L∞(0, T ;Eh) is any function satisfying ‖ah‖L∞ ≤ A.

Notice that the form (2.11) of the inequality is slightly different from that in (2.4) since the adjoint operator
we consider here has time-dependent coefficient so that the exponential notation is not suitable here.

Note that the dependency of CA with respect to the L∞ bound of ah (that is to say with respect to A)
can be precisely stated (see [BL13]). With this result at hand we deduced controllability results concerning
semi-discrete semilinear problems can be deduced by adapting the strategy developed in [FCZ00].

Theorem 2.13 ( [BL13]). Let g : R→ R be a Lipschitz continuous function and φ satisfying (2.10).

• If g is bounded, then there exists C > 0 such that for any 0 < h < h0, any y0,h ∈ Eh there exists a
semi-discrete control vh ∈ L2(0, T ;Uh) for the problem{

∂tyh +A0
hyh + g(yh)yh = Bhvh,

yh(0) = y0,h,
(Pgh)
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which satisfies

JvhKL2(0,T ;Uh) ≤ C ‖y0,h‖h ,

‖yh(T )‖h ≤ C
√
φ(h) ‖y0,h‖h .

• In dimension d = 1, the same result holds as soon as g satisfies, for some M > 0 and 0 < r < 3/2

|g(s)| ≤M log(1 + |s|)r, ∀s ∈ R.

• In dimension d > 1, we can prove the existence of a semi-discrete control such that

JvhKL2(0,T ;Uh) ≤ Ch
−α ‖y0,h‖h ,

‖yh(T )‖h ≤ C
√
φ(h) ‖y0,h‖h ,

for some α > 0. In that case, proving an uniform bound on vh is still an open problem. Therefore, our
result can be seen as a φ(h)-approximate controllability result for the nonlinear problem.

3. Fully-discrete approximations

In the space discretisation framework introduced in Section 2.5.1, some fully-discrete numerical methods for
(linear) parabolic problems have been studied in [BHL11].

For M > 0, we set δt = T/M and we consider a θ-scheme, θ ∈ [1/2, 1], with respect to the time variable
defined by 

yn+1
h − ynh
δt

+Ah(θyn+1
h + (1− θ)ynh) = Bhvn+1

h , ∀n ∈ J0,M−1K,

y0
h = y0,h ∈ Eh,

(Ph,δt)

where, vh,δt = (vnh)1≤n≤M ∈ (Uh)M is a fully-discrete control function whose cost, that is the discrete L2
δt(0, T ;Uh)-

norm, is defined by

Jvh,δtKL2
δt(0,T ;Uh)

def
=

( M∑
n=1

δt JvnhK2
h

) 1
2

.

The final value of the controlled solution of (Ph,δt) is denoted by Lh,δtT

(
vh,δt

∣∣y0,h

) def
= yMh .

With the above notation, the primal fully-discrete penalised HUM functional reads as follows

vh,δt ∈ UMh 7→ Fε,h,δt(vh,δt) =
1

2
Jvh,δtK

2
L2
δt(0,T ;Uh) +

1

2ε

∥∥Lh,δtT

(
vh,δt

∣∣y0,h

)∥∥2

h
.

The first step in the analysis is to identify the correct dual functional.

Proposition 3.1. We define the functional

Jε,h,δt(q
F
h )

def
=

1

2

q
B?hL∗,h,δtT

(
qFh
)y2

L2
δt(0,T ;Uh)

+
ε

2

∥∥qFh ∥∥2

h
−
〈
y0,h, q

1
h − δt(1− θ)Ahq1

h

〉
h
, ∀qFh ∈ Eh, (3.1)

where L∗,h,δtT

(
qFh
)

= (qnh)1≤n≤M is the solution of the following adjoint problem

qM+1
h = qFh ,

qMh − q
M+1
h

δt
+ θAhqMh = 0,

qnh − q
n+1
h

δt
+Ah(θqnh + (1− θ)qn+1

h ) = 0, ∀n ∈ J1,M − 1K.

(P∗h,δt)
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Notice that qM+1
h is not taken into account in the definition of L∗,h,δtT

(
qFh
)
.

The functionals Fε,h,δt and Jε,h,δt are in duality, in the sense that their respective minimisers vε,h,δt ∈
L2(0, T ;Uh) and qFε,h,δt ∈ Eh satisfy

inf
L2
δt(0,T ;Uh)

Fε,h,δt = Fε,h,δt(vε,h,δt) = −Jε,h,δt(qFε,h,δt) = − inf
Eh
Jε,h,δt,

and moreover

vε,h = B?hL∗,h,δtT

(
qFε,h,δt

)
.

Notice that, for θ ∈ [1/2, 1[, the first step of the adjoint problem (P∗h,δt) has a particular form which is not
exactly that of the usual backward θ-scheme. The important point is that we cannot choose independently the
time discretisation for the forward and the backward problem.

With this fully-discrete problem, we can follow the same lines as in the semi-discrete case and observe that
for fixed h and δt, the computed target converges (as ε→ 0) to the projection of the free solution onto the set

QF,h,δt = {qFh ∈ Eh, s.t. B?hL∗,h,δtT

(
qFh
)

= 0}.

Here also, it make sense to choose ε depending on the discretisation parameters. More precisely, the following
fully-discrete relaxed observability inequality is proved in [BHL11]. Observe that it is not necessary here to
consider a time-step-dependent penalisation parameter.

Theorem 3.2 (Case θ ∈]1/2, 1]). Assume that the uniform discrete Lebeau-Robbiano inequality (Hα,β) holds
and let φ be such that

lim inf
h→0

φ(h)

e−C/hβ
> 0.

Then, there exists h0 > 0, CT > 0, Cobs > 0 such that for any 0 < h < h0 and any δt ≤ CT | log φ(h)|−1, the
following relaxed observability inequality holds∥∥q1

h − δt(1− θ)Ahq1
h

∥∥2

h
≤ C2

obs

(
JB?hqnhK2

L2
δt(0,T ;Uh) + φ(h)

∥∥qFh ∥∥2

h

)
.

Thus, for any such δt and h and any initial data y0,h ∈ Eh, the full-discrete control vφ(h),h,δt, obtained by
minimising Fφ(h),h,δt (or equivalently Jφ(h),h,δt) is such that

q
vφ(h),h,δt

y
L2
δt(0,T ;Uh)

≤ Cobs ‖y0,h‖h , and
∥∥Lh,δtT

(
vφ(h),h,δt

∣∣y0,h

)∥∥
h
≤ Cobs

√
φ(h) ‖y0,h‖h .

Notice that the proof in [BHL11] is only given in the case φ(h) = e−C/h
γ

with γ ≤ β but it can be easily
adapted to the more general case stated here. Moreover, the following result for the Crank-Nicolson scheme is
also obtained in [BHL11].

Theorem 3.3 (Case θ = 1/2). Theorem 3.2 holds for θ = 1/2 with the additional assumption δtρ(Ah) ≤ CT ,
where ρ(Ah) is the spectral radius of Ah.

Remark 3.4. Notice that the additional technical condition on the time step δt that is needed here is very
strong (we typically expect ρ(Ah) ∼ C/h2 for instance) and related to the bad dissipation properties for high
frequencies of the Crank-Nicolson scheme.

We do not know whether this condition is really necessary or not, however some numerical tests seem to
show that the Crank-Nicolson scheme may actually behave incorrectly if such a condition is not met.

An error estimate in time between semi-discrete and fully discrete controls obtained by the penalised HUM
approach (as presented here) is also obtained in [BHL11]. More precisely, for θ ∈]1/2, 1], the following estimate
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holds t

vφ(h),h −
M∑
n=1

1](n−1)δt,nδt[v
n
φ(h),h

|

L2(0,T ;Uh)

≤ Chδt ‖y0,h‖h ,

where the constant Ch “badly” depends on h. A second-order estimate in time is also obtained for θ = 1/2.

4. Numerical illustrations

4.1. Computational method

We want to address here some questions related to the actual computation of the approximate (semi-or
fully- discrete) controls for a given problem. Above, we saw that such controls are the minimisers of Fφ(h),h

(resp. Fφ(h),h,δt) but can also be computed by minimising the dual functionals Jφ(h),h (resp. Jφ(h),h,δt). Since
these dual functionals are defined on the finite dimensional space Eh (as opposed to the much larger spaces
L2(0, T ;Uh) or L2

δt(0, T ;Uh) for the primal functionals), we decided (following [GL94, GLH08]) to apply an
optimisation algorithm to the dual functionals.

Since these functionals are quadratic and coercive, the conjugate gradient algorithm is a natural and quite
simple choice here even though finding an efficient preconditioner for such problems is still an important and
mostly open problem. To apply this method we only need to compute, at each iteration, the gradient of Jφ(h),h

(or of Jφ(h),h,δt in the fully discrete case). Gradients are understood here with respect to the inner product in
Eh.

Corollary 4.1. For any h > 0, δt > 0, ε > 0 and any qFh ∈ Eh, we have

∇Jε,h(qFh ) = LhT
(
B?he−(T−.)A?hqFh

∣∣0)︸ ︷︷ ︸
def
= ΛhqFh

+εqFh + LhT
(
0
∣∣y0,h

)
, (4.1)

∇Jε,h,δt(qFh ) = Lh,δtT

(
B?hL∗,h,δtT

(
qFh
) ∣∣0)︸ ︷︷ ︸

def
= Λh,δtqFh

+εqFh + Lh,δtT

(
0
∣∣y0,h

)
, (4.2)

where L∗,h,δtT

(
qFh
)

is the solution of the adjoint fully-discrete system (P∗h,δt) associated with the final data qFh ,
as defined in Proposition 3.1.

Remark 4.2. The discrete Gramiam operators Λh and Λh,δt have to be understood as the suitable discrete
version of the continuous Gramiam Λ as defined at the beginning of the proof of Theorem 1.11.

Solving the optimisation problem for these functionals is thus equivalent to solve, in Eh, the equation

(Λh + εId)qFh = −LhT
(
0
∣∣y0,h

)
, in the semi-discrete case,

(Λh,δt + εId)qFh = −Lh,δtT

(
0
∣∣y0,h

)
, in the fully-discrete case.

Let us comment on the actual computation of these gradients. The last term in (4.1) or (4.2) (which does not
depend on qFh ) is simply the solution at final time of the semi- or fully-discrete problem without any control and
for the initial data y0,h ∈ Eh. The second term is easy to compute. However the computation of the Gramiam
term for a given qFh requires some comments:

• We first need to solve the backward system associated with the final data qFh . In the semi-discrete case,

this is t 7→ e−(T−t)A?hqFh ; in the fully-discrete case this is the term L∗,h,δtT

(
qFh
)
.

• Then, we apply the operator B?h to these adjoint states. This gives us a control in L2(0, T ;Uh) or
L2
δt(0, T ;Uh).

• Finally, we solve for the forward semi- or fully-discrete problem with this control in the right-hand side
and the zero initial data.
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In short, computing the gradient of these functionals requires first to solve an homogeneous backward parabolic
problem, and second to solve a non-homogeneous forward parabolic problem. In the semi-discrete case, these
computations can be made in an exact way provided that we are able to compute the eigenelements of Ah and
A?h.

We can easily check that, since Λh is symmetric non-negative, the following estimates hold for ε > 0 small
enough

ε
∥∥qFh ∥∥h ≤ ∥∥(Λh + ε Id)qFh

∥∥
h
≤ (C + ε)

∥∥qFh ∥∥h .
We deduce that the condition number of the operator Λh + εId behaves likes ε−1 for ε small enough. Notice
that Λh may not be invertible: for instance, in the setting introduced in Section 2.2 its kernel QF,h contains
the mode ψh. Similar properties hold in the fully-discrete case, independently of δt.

It follows from this analysis that the number of iterations expected to achieve a given accuracy with the
conjugate gradient method, which is estimated by the square root of the condition number, should be of the
order of ε−1/2. Recall that our method consists in choosing ε = φ(h), which gives a number of iterations of the
solver that should behave like φ(h)−1/2. We therefore see here that choosing a function φ which converges too

rapidly towards 0 will lead to a much more complex linear problem to solve. Moreover we saw that
√
φ(h) is

the expected size of the controlled target given by the computed controls, it seems that a reasonable practical
rule is to systematically choose φ(h) ∼ h2p where p is the order of accuracy in space of the numerical method
under study. This will be further discussed below.

Remark 4.3. (1) It is important to notice that, in the fully-discrete case, the size of the time-step has
almost no influence on the condition number. Of course, choosing a small time step will increase the
overall accuracy of the method but will also increase the global computational cost of the algorithm
since we recall that two parabolic problems have to be solved (on the whole time interval [0, T ]) at each
iteration of the conjugate gradient solver (see Section 4.3.1).

(2) The behavior of the conjugate gradient solver is not directly related to the lack of uniform null-
controllability of the systems under study. More precisely, even if we assume that the semi-discrete
problems satisfy uniform discrete non-relaxed observability inequalities (that is (2.4) with φ(h) = 0),
then one may try to minimise J0,h and thus to compute an exact null-control from the semi-discrete
problem. Nevertheless, we still have the following estimate

e−Tρ(A
?
h)
∥∥qFh ∥∥2

h
≤
∥∥∥e−TA?hqFh ∥∥∥2

h
≤ C2

obs

〈
ΛhqFh , q

F
h

〉
h
,

which proves that the condition number of Λh in that case can be estimated by CeTρ(A
?
h). In general,

ρ(A?h) behaves like a negative power of h which gives a huge condition number for small values of h.
Actually, the system is almost ill-posed and it appears that the penalisation term is absolutely necessary
even in that case in order to regularise the problem.

This is somewhat related to the fact that, in the continuous setting, the Gramiam operator Λ is in
general not coercive in E but only in a suitably defined larger space (which the completion of E with
respect to the norm defined through Λ, see [GLH08]).

4.2. Comments on the choice of the penalisation function

We want, in this section, to go further in the discussion on the choice of ε as a function of h.
Let us consider the following very simple example. We set E = Eh = R, A = λ > 0, Ah = (λ+ δh) ∈ R with

δh −−−→
h→0

0, B = Bh = 1 and y0 = y0,h = 1. The exact and semi-discrete problems read respectively

(P̃)

{
y′ + λy = v,

y(0) = 1,
and (P̃h)

{
y′h + (λ+ δh)yh = vh,

yh(0) = 1.
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The corresponding Gramiam operators defined from R into itself can be explicitly computed

Λhq
F =

1− e−2(λ+δh)T

2(λ+ δh)
qF , and ΛqF =

1− e−2λT

2λ
qF , ∀qF ∈ R,

and we have
e−TAhy0,h = e−(λ+δh)T .

It follows that the optimal adjoint state which minimises Jε,h is given by

qFε,h = − 2(λ+ δh)e−(λ+δh)T

1− e−2(λ+δh)T + 2ε(λ+ δh)
.

The corresponding semi-discrete penalised HUM control is then given by

vε,h(t) = −e−(T−t)(λ+δh) 2(λ+ δh)e−(λ+δh)T

1− e−2(λ+δh)T + 2ε(λ+ δh)
,

while the exact HUM control is

v(t) = −e−(T−t)λ 2λe−λT

1− e−2λT
.

It follows that the following (sharp) estimate holds

Jv − vhKL2(0,T ;U) ≤ C(λ, T )(|δh|+ ε), for δh and ε small.

Moreover, since U = Uh in this example, we can simply take the control vε,h in the original problem (P̃) to
evaluate the accuracy of the method. A simple computation shows

LT
(
vε,h

∣∣1) = C1(λ, T )δh + C2(λ, T )ε+O(ε2 + δ2
h), (4.3)

with

C1(λ, T ) =
(−1 + 2λT + e−2λT )e−λT

2λ(1− e−2λT )
, C2(λ, T ) =

2λe−λT

1− e−2λT
.

Observe that the coefficients C1(λ, T ) and C2(λ, t) are both positive. Thus, if δh is itself positive (recall that
ε > 0), the two leading terms in (4.3) can not compensate each other and we deduce that taking ε of the same
order as δh guarantees an optimal convergence rate.

Notice that, taking ε much smaller than |δh| (even ε = 0) is possible here but does not improve the accuracy
of the approximation.

We want to emphasize that this very particular example is in fact quite relevant for understanding the case of
general parabolic PDEs. Indeed, let us consider the finite difference approximation of a 1D heat equation on a
uniform mesh (the mesh points are denoted by (xi)1≤i≤N ) with a control distributed on the whole domain (that
is ω = Ω =]0, 1[). We can then reduce the system to the one of controlling each Fourier mode of the solution.
The eigenfunctions of the 1D Laplace operator are φk(x) = sin(kπx), λk = k2π2 but it is well known that the

discrete Laplace operator in this case has the following eigenelements φk,h = (φk(xi))i, λk,h =
4 sin2( kπh2 )

h2 .
Therefore, for each value of k, we are exactly in the situation described above with

δk,h = λk,h − λk ∼
h→0
−k

4π4

12
h2.

The conclusion of this discussion is that the optimal choice should be ε = φ(h) ∼ h2. This seems to be a
contradiction with our general results (see Section 4.1) that rather lead to choose ε = φ(h) = h4 since the
scheme is second order in space.
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Actually, this very particular behavior is related to the choice of a non localised control domain ω = Ω.
Indeed, in such a case, the controllability properties of the heat equation are much easier to prove and the
following stronger observability inequality holds for the adjoint problem

‖qF ‖2H−1(Ω) ≤ C
2
obs

∫ T

0

‖e(T−t)∆qF ‖2L2(Ω) dt, ∀q
F ∈ L2(Ω).

This can be proved by using a Fourier decomposition of the solution. We conclude that, in such case, the HUM
optimal adjoint state qFε is bounded in H−1(Ω) and by (1.7) we obtain the estimate

‖LT
(
vε
∣∣y0

)
‖H−1(Ω) ≤ Cε.

It thus appears that the convergence rate towards zero of the target given by the HUM penalised approach,
at least in the H−1 norm, is ε and not

√
ε as in the general case. Such a behavior will be illustrated from a

numerical point of view in Figure 6.

4.3. 1D scalar problems

We now present some results obtained in various situations with the methods described above. We use the
standard finite-difference scheme on a uniform mesh of the domain Ω =]0, 1[. We denote by N the number
of points in the mesh. We either use the fully-discrete setting in the case θ = 1 (that is the implicit Euler
discretisation) and we denote by M the number or time intervals, or we use the semi-implicit discretisation, in
which case we set M = +∞. Note that results using the Crank-Nicolson scheme are given in [BHL11].

4.3.1. The heat equation

We consider here the following problem with a control time T = 1,
∂ty − 0.1∂2

xy = 1ωv,

y(t, 0) = y(t, 1) = 0,

y0(x) = sin(πx)10.

(4.4)

We start with the case of a localised control domain ω =]0.3, 0.8[. In Figure 2, we show the time evolution of
the uncontrolled solution as well as the one of the controlled solution. The control domain is represented as a
darker zone on the plane (t, x). Of course, we observe that the uncontrolled solution is damped with time but
does not reach zero at time T , as opposed to the controlled solution.

(a) Case φ(h) = h2

N
M

20 80 320 1280 +∞
20 14 16 16 16 16
50 22 26 29 29 31
100 30 38 44 49 48
200 45 58 69 77 82

(b) Case φ(h) = h4

N
M

20 80 320 1280 +∞
20 24 30 28 27 32
50 83 87 87 93 106
100 235 240 233 262 265
200 778 850 1098 1230 1374

Table 1. Conjugate gradient behavior for System (4.4); ω =]0.3, 0.8[

In Table 1, we show the number of conjugate gradient iterations needed to achieve a (fixed) stopping criterion.
Two cases are presented depending on the choice of the function h 7→ φ(h) which serves as the penalisation
term in the HUM functional. The results confirm the discussion of Section 4.1 that is:
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T = 1

0.5

1

0

(a) Controlled solution ( =control domain)

T = 1

0.5

1

0

(b) Uncontrolled solution

Figure 2. Time evolution of solutions of system (4.4); ω =]0.3, 0.8[

• The converge speed of the conjugate gradient does not depend too much on the time step. Actually,
the number of iterations required in the semi-discrete case seems to be an upper bound for the number
of iterations of the fully-discrete case.

• For a given M , the number of iterations varies like φ(h)−1/2, with h = 1/N .

We observed the same kind of behavior in all the test cases below (except in Figure 6 which is very specific to
the case ω = Ω).

In Table 2, we show the value (mutliplied by 102) of the so-called optimal energy, that is the infimum of
the penalised HUM functional Fφ(h),h,δt. As predicted by theoretical results, we observe that this infimum is

bounded as (δt, h) → (0, 0) which implies in particular that the L2
δt(0, T ;Uh)-norm of the approximate control

is bounded when refining the mesh.
More precisely, we can observe that for a given number of points N in the mesh, the value of the infimum

decreases when M increases. This intuitively corresponds to the fact that, increasing M leads to a higher
number of degrees of freedom for the approximate control, making the system easier to control.

(a) Case φ(h) = h2

N
M

20 80 320 1280 +∞
20 7.17 6.54 6.38 6.34 6.33
50 7.98 7.08 6.85 6.79 6.78
100 8.5 7.44 7.15 7.07 7.05
200 9.1 7.75 7.39 7.3 7.27

(b) Case φ(h) = h4

N
M

20 80 320 1280 +∞
20 10.8 8.92 8.43 8.3 8.26
50 11.5 8.94 8.29 8.12 8.07
100 12.1 9.1 8.33 8.13 8.06
200 12.9 9.33 8.41 8.17 8.09

Table 2. Optimal energy (multiplied by 102) for System (4.4); ω =]0.3, 0.8[

We begin now a discussion on the accuracy of the method. For a given mesh size h and time step δt, we are
interested in

• The size of the computed target
∥∥∥Lh,δtT

(
vφ(h),h,δt

∣∣y0,h

)∥∥∥
h
,

• The size of the “exact solution” associated with the same computed control vφ(h),h,δt. To compute this
quantity, we use a high order spectral method or a finite difference method with a much finer mesh to
solve Problem (4.4) with v = vφ(h),h,δt with a much higher accuracy.
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In Figure 3 (resp. Figure 4) we plot those quantities as a function of h for various time steps in the case
φ(h) = h2 (resp. φ(h) = h4).

10−3 10−2 10−1
10−5

10−4

10−3

10−2

slope 1

h

Size of the target M = 20
M = 80
M = 320
M = 1280
————

Exact solution M = 20
M = 80
M = 320
M = 1280

Figure 3. System (4.4) with φ(h) = h2; ω =]0.3, 0.8[

10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

slope 2

h

Size of the target M = 320
M = 1280
M = 5120
M = 20480

————
Exact solution M = 320

M = 1280
M = 5120
M = 20480

Figure 4. System (4.4) with φ(h) = h4; ω =]0.3, 0.8[

We observe that, as predicted by Theorem 3.2, the size of the computed target behaves like φ(h)−1/2 for any
choice of the time step (the condition in Theorem 3.2 is satisfied here). Actually, all the plots with non-filled
symbols are almost superimposed.

However, one has to be cautious with such a result. Indeed, for a large time step (M = 20), we can not
hope to obtain a very precise approximation of the control since we are limited by the intrinsic accuracy of the
finite-difference scheme itself. This is confirmed by the fact that, the size of the “exact solution” at time T (the
plots with filled symbols), presents a plateau whose position corresponds to the first order accuracy in time of
the approximation.

More importantly, we want to emphasize that choosing the penalisation parameter too small with respect
to h and δt does not lead to more accurate results whereas it increases a lot the computational cost of the
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overall method. Indeed, in Figure 5 we show the results obtained by choosing φ(h) = 1000h6 and changing
the control domain to ω =]0.1, 0.9[. As predicted by the theory, the size of the target which is computed by
the numerical scheme behaves like φ(h)1/2 ∼ Ch3. However, the size of the exact solution computed with the
same approximate control does not tend to zero faster than h2 which is the expected convergence rate of the
scheme. We also observe the same plateau phenomenon as in the other cases, still due to the time accuracy of
the scheme.

10−2 10−1
10−9

10−8

10−7

10−6

10−5

10−4

10−3

slopes 2 and 3

h

Size of the target M = 1280
M = 5120
M = 20480
M = 81920
M = +∞
————

Exact solution M = 1280
M = 5120
M = 20480
M = 81920
M = +∞

Figure 5. System (4.4) with φ(h) = 1000h6; ω =]0.3, 0.8[

To conclude this section, we consider here the simpler case where ω = Ω in order to illustrate the discussion
of Section 4.2. We observe the predicted super-convergence phenomenon of the computed target whose size
behaves like φ(h) instead of

√
φ(h). Observe that this appears to hold for the L2-norm even if the argument

given in Section 4.2 only provides such an estimate for the H−1-norm of the solution. However, we observe
again that in any case the size of the exact solution at time T associated with the computed approximate control
behaves like h2, which is the expected accuracy of the numerical scheme.

4.3.2. A semi-linear case

In this section, we are interested in the computation of an approximate null-control at time T = 0.5 for the
following semi-linear problem (taken from [FCM12a])

∂ty − 0.1∂2
xy − 5y log1.4(1 + |y|) = 1]0.2,0.8[v,

y(t, 0) = y(t, 1) = 0,

y0(x) = 20 sin(πx).

(4.5)

Note that the initial data is chosen sufficiently large so as to observe a significant influence of the non-linear
effects. Actually, with such a choice of y0, the uncontrolled solution blows up before the time T = 0.5. The
controlled solution is shown on Figure 7a.

This solution is computed by a very simple fixed-point type algorithm with relaxation which consists in
computing, at each iteration k, an approximate control for the linear problem

∂ty
? − 0.1∂2

xy
? − 5y? log1.4(1 + |yk|) = 1]0.2,0.8[v,

y?(t, 0) = y?(t, 1) = 0,

y?(0, x) = y0(x) = 20 sin(πx),

(4.6)
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Cost of the control Size of the target
Optimal energy Exact solution

10−3 10−2
10−12

10−9

10−6

10−3

100

slope 2

h

(a) φ(h) = h2

10−3 10−2
10−12

10−9

10−6

10−3

100

slope 4

slope 2

h

(b) φ(h) = h4

Figure 6. System (4.4) with a non-localised control ω = Ω; Semi-discrete scheme

and then, to set yk+1 = αy? + (1 − α)yk, for some relaxation parameter α ∈]0, 1[. The initial guess y0 is for
instance taken to be 0.

Note that we are not ensured that this fixed-point algorithm actually converges. Indeed, the theoretical
argument for showing the existence of a null-control for this problem relies on a Schauder-type fixed-point
argument (see [FCZ00]) and not on a contraction fixed-point argument. It appears that, in the test we performed
below, we did not experienced any particular difficulty on this aspect, provided that a suitable relaxation
parameter was choosed, namely α = 0.3 here. Nevertheless, for other values of the parameters (for instance if
one takes φ(h) = h4) we can experience convergence problems and then more subtle algorithms are needed (see
for instance the algorithms discussed in [FCM12a]).

In Table 3, we observe that the L2
δt(0, T ;Uh)-norm of the approximate control appears to be bounded when

one refines the time step and the mesh size, as in the linear situation. We also observe in Figure 7b that the

size of the computed target
∥∥∥Lh,δtT

(
vφ(h),h,δt

∣∣y0,h

)∥∥∥
h

behaves like φ(h)1/2.

N
M

50 100 150 200

50 97.5 95.2 94.4 94.1
100 96.7 94.3 93.5 93.2
150 96.4 94.1 93.3 92.9
200 96.3 93.9 93.2 92.8

Table 3. Cost of the control
q
vφ(h),h,δt

y
L2
δt(0,T ;Uh)

for System (4.5) with φ(h) = h2



ESAIM: PROCEEDINGS 35

T = 0.5

10

20

0

(a) Time evolution of the con-

trolled solution ( =control do-
main)

10−2.6 10−2.4 10−2.2 10−2 10−1.8 10−1.6
10−2

10−1

slope 1

h

M = 50
M = 100
M = 150
M = 200

(b) Size of the computed target for

various time steps

Figure 7. Computation of a null-control for Problem (4.5) with φ(h) = h2

4.4. 1D systems with one control force

In this section we illustrate the possibilities of the numerical methods discussed here in the case of more
complex problems, in particular controlled parabolic systems characterized by a number of controls less than
the number of equations in the system. This is a very important issue since the theoretical results available in
this framework are far from being complete; we refer to the recent survey article [AKBGBdT11] and references
therein. Numerical simulations may help to highlight expected or unexpected behaviors and then to go further
in the understanding of controllability properties for such systems.

In this section, we systematically use the implicit Euler scheme with M = 400 time steps and the penalisation
function is chosen to be φ(h) = h4.

4.4.1. A two equation cascade system

Let us consider the case of a two equation/one control cascade system

∂ty − 0.1∂2
xy +

(
0 0

a21(x) 0

)
︸ ︷︷ ︸

=A(x)

y =

(
1
0

)
︸︷︷︸
=B

1ωv. (4.7)

In such a system, the control v directly acts on the first component y1, whereas the second component y2 is
only controlled by the action of y1 through the coupling matrix A(x). In the case where A(x) does not depend
on x, it is shown in [AKBDGB09] that the null-controllability of this system is equivalent to the (algebraic)
Kalman rank condition between A and B (in any dimension).

In the case of a variable coupling matrix, the situation is more intricate. Roughly speaking, if the support
of the coupling term a21 intersects the control domain, then null-controllability can be proved (here also in any
dimension) by means of Carleman estimates. However, if it is not the case but if the sign of a21 is constant,
then the same result can be achieved (in 1D) by means of the transmutation method (see [RdT11] and [ABL13]
for some related results in any dimension). We recently gave in [BO13] a complete characterisation of the
approximate controllability properties for (4.7) in the 1D case. As we will see below, some unexpected behavior
may occur when the sign of a21 is not constant. Let us describe the different simulations that we performed.
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• Case 1 : a21(x) = 1O(x) ≥ 0 and O ∩ ω 6= ∅ (see Figure 8)

O =]0.2, 0.9[, ω =]0.1, 0.5[, y0(x) =
(
sin(3πx), sin(πx)10

)t
, T = 3.

T = 3

0.5

1

0

(a) First component ( =control domain)

T = 3

0.5

1

0

(b) Second component ( =coupling domain)

10−3 10−2

10−7

10−5

10−3

10−1

slope 2

h

(c) Same legend as in Figure 6

Figure 8. System (4.7). Case 1 : O ∩ ω 6= ∅

• Case 2 : a21(x) = 1O(x) ≥ 0 and O ∩ ω = ∅ (see Figure 9)

O =]0.7, 0.9[, ω =]0.1, 0.5[, y0(x) =
(
sin(3πx), sin(πx)10

)t
, T = 3.

• Case 3 : a21(x) = (x− α)1O(x), with α ∈ O and O ∩ ω = ∅ (see Figure 10)

O =]0, 0.5[, α ∈ {1/4, 1/8}, ω =]0.5, 1[, y0(x) = (sin(2πx), 3 sin(2πx))
t
, T = 2.
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T = 3

0.5

1

0

(a) First component ( =control domain)

T = 3

0.5

1

0

(b) Second component ( =coupling domain)

10−3 10−2

10−6

10−4

10−2

100

102

slope 2

h

(c) Same legend as in Figure 6

Figure 9. System (4.7). Case 2 : O ∩ ω = ∅

In cases 1 and 2, for which we have theoretical results proving that null-controllability holds, we observe that
h4-null controllability of the discrete system seems to hold in both cases. Indeed, the cost of the control and
the optimal energy are bounded as h → 0 whereas the computed target goes to 0 as h2. In the case 1, the
solution is damped quite rapidly since the coupling is strong (because it is supported on the control domain).
By comparison, we observe that the evolution of y1 is much more complex in case 2 since the coupling between
the two components is much weaker.

In case 3, we illustrate the fact that the system is approximately controllable for α = 1/8 but is not approx-
imately controllable for α = 1/4 (see [BO13]). Observe in Figure 10b that, when α = 1/8, the size of the target
actually goes to 0 but its convergence rate is only h and not h2. Similarly, the optimal energy and the control
cost seems to behave like h−1. We do not have any explanation yet for such a behavior, but two conjectures can
possibly be made: either the continuous problem is approximately- but not null-controllable (this could even
depend on the control time T ) or the discrete problem is only φ(h)-null controllable for functions φ going to
zero sufficiently slowly.
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10−3 10−2

10−3

10−1

101

103

105

slope −4

h

(a) α = 1/4. Same legend as in Figure 6

10−3 10−2

10−5

10−3

10−1

101

103

slope −1

slope 1

h

(b) α = 1/8. Same legend as in Figure 6

Figure 10. System (4.7). Case 3 : O ∩ ω = ∅ and a21 changes its sign

4.4.2. A three-equation cascade system

In this section, we consider the following cascade system

∂ty − 0.1∂2
xy +

 0 0 0
a21(x) 0 0

0 a32(x) 0


︸ ︷︷ ︸

def
=A(x)

y =

1
0
0


︸ ︷︷ ︸
def
=B

1ω(x)v. (4.8)

As in the previous system, null-controllability is known to hold as soon as the support of a21 and a32 do intersect
the control domain ω with some additional sign conditions. We illustrate in Figure 11 the various behaviors

described in [BO13]. More precisely, we choose T = 1, y0(x) =
(
−1, 0,1]0,0.5[(x)

)t
and we consider the following

two cases

• Case 1 :

a21 = 1O2
, O2 =]0, 0.5[, a32 = 1, ω =]0.5, 1[.

Here the system is known to be approximately controllable and what we observe in Figure 11a is similar
to the situation that we already encountered in Figure 10b: the target tends to zero like h0.5 instead of
h2 = φ(h)1/2 that one could have expected. Here also the problem may not be null-controllable or the
numerical approximation may require stronger conditions on the penalisation function φ.

• Case 2 :

a21 = 1O2 , O2 =]0, 0.5[, a32(x) = (x− 0.5), ω =]0.5, 1[.

Here, it can be proved that the system is not approximately controllable and we actually observe that
the size of the computed target does not tend to 0 when h → 0. Observe that the support of a32

intersects the control domain and that its sign is constant in ω. The non-controllability is related here
to the change of sign of this coefficient outside ω.
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(a) Case 1

10−3 10−2
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109

slope −4

slope −1

h

(b) Case 2

Figure 11. System (4.8). Same legend as in Figure 6

4.4.3. A three equation system with one single control

In this section, we consider the following system of three equations controlled by one single control

∂ty − 0.1∂2
xy +

 0 0 0
a21(x) 0 0
a31(x) 0 0


︸ ︷︷ ︸

def
=A(x)

y =

1
0
0


︸ ︷︷ ︸
def
=B

1ω(x)v.

Observe that this is not a cascade system; in particular for any x ∈ Ω, the Kalman rank condition between
A(x) and B is not satisfied. As a consequence, the results obtained for instance in [Mau13] do not apply to this
system.

• In this system, the distributed control v only acts on the first component y1 and this component serves
as a simultaneous control for the second and third one through the coupling terms a21 and a31.

• If one simply consider the first two equations (resp. equations 1 and 3), one faces a two-equation cascade
system as in the previous section and theoretical results are known as discussed before. It follows that,
in many cases, a control can be proved to exists that drive y1 and y2 (resp. y1 and y3) to zero at time
T .

The more difficult problem that we want to deal with here is to find a single control v that drives
simultaneously the three components to 0 at the same time T .

There is at least one case where the controllability for this system clearly fails. Indeed, assume that
a21 and a31 are proportional, it is then clear that the difference α2y2 − α3y3 for a suitable choice of
the constant coefficients α2, α3 simply satisfies a heat equation without any influence of v and y1 and
therefore we can not hope to drive this quantity to zero at time T .

We shall see below, in our numerical experiments, that the situation can be very different if a21 and
a31 are linearly independent.

In all the following tests, we choose T = 3 and y0(x) = (0, sin(πx)10, 0)t.
Let us first consider the case where a21 and a31 are piecewise constant functions. More precisely, we choose

a21 = 1O2 and a31 = 1O3 and we will investigate various geometric configurations for O2, O3 and ω.
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For a first series of cases as shown in Figure 12, we proved in [BO13] that the system is approximately
controllable. This is exactly what we observe in numerical results since the optimal energy and the control
cost remain bounded and that the size of the target goes to zero as h2. Those results let us hope that null-
controllability should also hold for such system but, to the author’s knowledge, this is still an open problem.

10−3 10−2

10−6

10−4

10−2

100

slope 2

h

O2

O3 ω

(a) O2 =]0.4, 0.9[,O3 =]0, 0.3[, ω =]0.5, 1[

10−3 10−2

10−5

10−3

10−1

101

slope 2

h

O2

O3 ω

(b) O2 =]0.7, 1[,O3 =]0, 0.3[, ω =]0.4, 0.6[

10−3 10−2

10−5

10−3

10−1

101

slope 2

h

O2

O3 ωω

(c) O2 =]0.55, 0.7[,O3 =]0.3, 0.45[, ω =]0, 0.2[

Figure 12. Controllable cases (same legend as in Figure 6)

Conversely, in the cases shown in Figure 13, we are able to prove that the system is not approximately
controllable in general. Actually, we observe in numerical results that the optimal energy blows up like h−4 =
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φ(h)−1, that the control cost remains bounded and that the size of the target does not tend to zero. We conclude
that the controllability fails for this system in such cases. Note that, we observed that the computed target
converges when h→ 0 towards some function, that we plot in the right-hand side of each figure. This function
can be actually shown to be an element of the the space QF that we introduced in (1.20), see [BO13].
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(a) O2 =]0.4, 0.6[,O3 =]0, 0.3[, ω =]0.7, 1[
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−5

·10−3
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(b) O2 =]0.2, 0.6[,O3 =]0, 0.4[, ω =]0.7, 1[

Figure 13. Non-controllable cases (same legend as in Figure 6)
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We conclude this study by considering the case where a21 and a31 are not characteristic functions but,
for instance, supported in the same coupling domain O. More precisely, we choose a21(x) = x1O(x) and
a31(x) = (x + 1)1O(x). These examples are inspired from [BCGdT13] where the null-controllability of such
systems is proved under some specific assumptions on the coefficients, and on the control domain.

In figure 14, we show the results obtained in the case where O has a non empty intersection with the control
domain. The behavior of the system seems to indicate that the system is controllable.

10−3 10−2

10−5

10−3

10−1

101

slope 2

h

O
ω

Figure 14. Variable coupling coefficients a21(x) = x1O(x), a31(x) = (x + 1)1O(x), O =
]0, 0.8[, ω =]0.2, 0.9[.

In Figure 15, we choose now a coupling domain O which does not intersect the control domain. In this
case, we observe that the system is not controllable and we show the computed target that we obtained on the
right-hand side of the figure.
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Figure 15. Variable coupling coefficients a21(x) = x1O(x), a31(x) = (x + 1)1O(x), O =
]0, 0.2[, ω =]0.5, 1[.
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equations, Ann. Inst. H. Poincaré, Analyse non lin. 17 (2000), 583–616.

[FI96] A. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, vol. 34, Seoul National University, Korea,

1996, Lecture notes.
[GL94] R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems, Acta Numer.

(1994), 269–378.
[GLH08] R. Glowinski, J.-L. Lions, and J. He, Exact and approximate controllability for distributed parameter systems,

Encyclopedia of Mathematics and its Applications, vol. 117, Cambridge University Press, Cambridge, 2008, A

numerical approach. MR 2404764 (2009b:93002)
[Le 07] J. Le Rousseau, Représentation Microlocale de Solutions de Systèmes Hyperboliques, Application à
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