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Abstract. Let k, d, λ ≥ 1 be integers with d ≥ λ. What is the maximum positive
integer n such that every set of n points in R

d has the property that the convex
hulls of all k-sets have a transversal (d−λ)-plane? What is the minimum positive
integer n such that every set of n points in general position in R

d has the property
that the convex hulls of all k-sets do not have a transversal (d− λ)-plane? In this
paper, we investigate these two questions. We define a special Kneser hypergraph

and, by using some topological results and the well-known λ-Helly property, we re-
late our second question to the chromatic number of such hypergraphs. Moreover,
we establish a connection (when λ = 1) with Kneser’s conjecture, first proved by
Lovász. Finally, we prove a discrete flat center theorem.

1. Introduction

Let A be a set of eight points in general position in R
3. We claim that there is

no transversal line to the convex hulls of all the 4-sets of A. Otherwise, if we let
L be such a transversal line and x0 ∈ A a point not lying on L, then the plane H
through x0 and L would contain at most three points of A and so there would be
at least five points of A not in H. Therefore by the pigeon-hole principle, three of
these points would lie on the same side of H. Consequently the line L would not
intersect the convex hull of these three points and x0.

On the other hand, if A is a set of six points in R
3, then there is always a

transversal line to the convex hulls of the 4-sets of A. For this, if x0 ∈ A, then every
4-set either contains x0 or is contained in A − x0. Moreover, the family of 4-sets
of A − x0 satisfies the 3-Helly property (recall that a family F of convex sets in R

d

has the λ-Helly property if every subfamily F ′ of F with size λ + 1 is intersecting)
and consequently there is a point y0 in the intersection of the convex hulls of these
4-sets. Therefore the line through x0 and y0 is a transversal line to the convex hulls
of all the 4-sets of A.
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With seven points in R
3 we may have both options. The suspension of a suitable

pentagon with two extra points (one above and one below the pentagon) has a
transversal line to the convex hulls of the 4-sets, see Figure 1.
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Figure 1.
→

67 is a transversal line of all tetrahedrons.

The construction of a set of seven points in general position without a transversal
line to the convex hulls of the 4-sets is more difficult. Such construction will be
discussed at the end of the paper (see Appendix).

We define the following two functions: let k, d, λ ≥ 1 be integers with d ≥ λ.

m(k, d, λ)
def
= the maximum positive integer n such that every set of n points (not

necessarily in general position) in R
d has the property that the convex hulls of all

k-sets have a transversal (d − λ)-plane,

and

M(k, d, λ)
def
= the minimum positive integer n such that for every set of n points

in general position in R
d the convex hulls of the k-sets do not have a transversal

(d − λ)-plane.

The purpose of this paper is to study the above functions. It is clear that
m(k, d, λ) < M(k, d, λ), and from the above we have m(4, 3, 2) = 6 and M(4, 3, 2) =
8. In the next section, we prove the following.

Theorem 1. Let k, d, λ ≥ 1 be integers and d ≥ λ. Then

M(k, d, λ) =

{

d + 2(k − λ) + 1 if k ≥ λ,

k + (d − λ) + 1 if k ≤ λ.
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After discussing some topological results in Section 3 and following the spirit of
Dol’nikov in [5] and [6], we will introduce a special Kneser hypergraph and establish
a close connection between its chromatic number and both m(k, d, λ) and M(k, d, λ).
We then give an upper bound for the chromatic number of such hypergraphs (The-
orem 4) yielding to the a lower bound for m(k, d, λ) (Corollary 1).

The well-known Rado’s central point theorem [14] states that if X is a bounded
measurable set in R

d then there exists a point x ∈ R
d such that measure(P ∩X) ≥

measure(X/(d + 1)) for each half-space P that contains x (see also [13] for the case
d = 2).

Corollary 1 led us to the following generalisation of the discrete version of Rado’s
theorem.

Theorem 2. Let X be a finite set of n points in R
d. Then there is a (d − λ)-plane

L such that any closed half-space H through L contains at least ⌊n−d+2λ
λ+1

⌋ + (d − λ)
points.

In order to show tha above theorem, we shall consider the following two functions.

k(n, d, λ)
def
= the minimum positive integer k such that for any collection X of n

points in d-dimensional Euclidean space, there is a (d − λ)-plane transversal to the
convex hulls of all k-sets of X.

τ(n, d, λ)
def
= the maximum positive integer τ such that for any collection X of n

points in d-dimensional Euclidean space, there is a (d − λ)-plane LX such that any
closed half-space H through LX contains at least τ points.

It is clear that n−τ(n, d, λ)+1 = k(n, d, λ). We shall see that Corollary 1 implies

that k(n, d, λ) ≤ ⌊λ(n−d+λ)
λ+1

⌋ + 1 and therefore τ(n, d, λ) ≥
⌊

n−d+2λ
λ+1

⌋

+ (d − λ) from
which our generalization follows (see the proof of Theorem 2).

We will use Theorem 2 to give a result (Corollary 3) that can be considered as
a discrete version of the following result due to R. Živaljević and S. Vrećica [20,
Theorem 1].

Theorem 3. [20] Let 1 ≤ λ ≤ d, and let µ0, . . . , µd−λ,S,ST be σ-additive probability
measures on R

d. Then there is a (d − λ)-flat L with the property that every closed
half-space containing L has µi-measure at least 1

λ+1
, for all 0 ≤ i ≤ d − λ.

Theorem 3 reduces to Rado’s central point theorem in the case λ = d and to
the Ham sandwich theorem1 in the case λ = 1. As remarked in [17], Rado’s central

1For every collection of n measurable sets R
d there exists a hyperplane which bisects all of them,

see [12, 15, 16].
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point theorem can also be obtained by using the well-known Tverberg’s generaliza-
tion of Radon’s theorem [18]. Tverberg-type results on flat transversal are natural
strengthenings of the central (flat) transversal theorem and thus closely related to
our work. In particular, a Tverberg’s flat-type result due to S.A. Bogatyi [2] yields
to an alternative proof of Theorem 2 from which Corollary 1 can be achieved; see
also [9, 19, 21].

We shall consider the following.

Conjecture 1. m(k, d, λ) = (d − λ) + k + ⌈ k
λ
⌉ − 1.

We will see that Theorem 2 is sharp if Conjecture 1 is true. We finally show
that Conjecture 1 is true when d = λ (Theorem 6) and if either λ = 1 or k ≤ λ or
λ = k − 1 or k = 2, 3 (Theorem 7).

2. Formula for M(k, d, λ)

Let conv(x1, . . . , xn) denote the convex hull of the points x1, . . . , xn. We prove
Theorem 1.

Proof of Theorem 1. We first prove that

M(k, d, λ) ≤

{

d + 2(k − λ) + 1 if k ≥ λ,

k + (d − λ) + 1 if k ≤ λ.

Case 1) If k ≥ λ then we can use essentially the same idea as in the introduction.
Let A be a collection of d + 2(k − λ) + 1 points in general position in R

d and
assume Xd−λ is a transversal (d − λ)-plane for the convex hulls of all the k-sets
of A. Sine Xd−λ contains at most (d − λ + 1) points of A then there are at least
d+2(k−λ)+1−(d−λ+1) = (2k−λ) > 0 points of A not lying on Xd−λ. Let x1 ∈ A,
not belonging to Xd−λ, and let Xd−λ+1 be the (d− λ + 1)-plane generated by Xd−λ

and x1. Again, we have that Xd−λ+1 contains at most (d−λ+2) points of A, and so
there are at least 2k − λ − 1 > 0 points of A not lying on Xd−λ+1. Let x2 ∈ A, not
belonging to Xd−λ+1 (and therefore x2 is neither in Xd−λ), and let Xd−λ+2 be the
(d − λ + 2)-plane generated by Xd−λ+1 and x2. Note that conv(x1, x2) ∩ Xd−λ = ∅.
By carrying on this procedure, we can construct a set {x1, . . . , xλ−1} ⊂ A and a
(d − 1)-plane Xd−1 containing Xd−λ such that {x1, . . . , xλ−1} ⊂ Xd−1, but where
conv(x1, . . . , xλ−1) does not intersect our original transversal (d − λ)-plane Xd−λ.
Therefore, since Xd−1 can have at most d points of A then there still are at least
2(k−λ) + 1 points of A not lying on Xd−1, and so there are at least (k−λ) + 1 > 0
points of A in one of the open half-spaces determined by Xd−1. These (k − λ) + 1
points of A together with {x1, . . . , xλ−1} ⊂ A give rise to a k-set of A whose convex
hull does not intersect Xd−λ.
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Case 2) If k ≤ λ, then k + (d − λ) ≤ d. Let A be a collection of k + d − λ + 1
points in general position in R

d and assume Xd−λ is a transversal (d − λ)-plane for
the convex hulls of all the k-sets of A. We have Xd−λ contains at most (d − λ + 1)
points of A, and so there are at least k + d−λ + 1− (d−λ + 1) = k points of A not
lying on Xd−λ. The convex hull of these k points do not intersect Xd−λ.

We can now prove that

M(k, d, λ) ≥

{

d + 2(k − λ) + 1 if k ≥ λ,

k + (d − λ) + 1 if k ≤ λ.

Case 1) If k − λ ≥ 0, then we construct a collection of d + 2(k − λ) = (d − λ +
1) + (2k − λ − 1) points in general position in R

d = R
d−λ ⊕ R

λ with the property
that the convex hulls of its k-sets have a transversal (d − λ)-plane.

A classic result of Gale [8] states that there is a set of 2k′ + d′ points in gen-
eral position in Sd′ such that every open half-space contains at least k′ points. In
particular, this implies that the origin lies in the interior of the convex hulls of ev-
ery (k′ + d′ + 1)-set, otherwise there would be an open half-space with less than k′

points. Therefore if we put k′ = k − λ and d′ = λ − 1, we obtain a finite set A of
2(k − λ) + (λ − 1) = 2k − λ − 1 points in general position in R

λ − {0} with the
property that the origin lies in the interior of the convex hulls of all k-sets of A.
Now let B be a set of (d − λ + 1) points in general position in R

d−λ. By suitably
moving the points of A, we can obtain a set of points A′ such that A′ ∪B is a set of
(d−λ+1)+(2k−λ)−1 points in general position in R

d = R
d−λ⊕R

λ. Furthermore,
A′ has the property that R

d−λ ⊕ {0} is a transversal (d − λ)-plane for the convex
hulls of all its k-sets, and hence R

d−λ ⊕ {0} is a transversal (d − λ)-plane for the
convex hulls of all k-sets of A ∪ B.

Case 2) If k ≤ λ, then k + (d − λ) ≤ d. Hence a collection A = {a1, . . . , ak+d−λ}
of k + (d− λ) points in general position in R

d is a simplex, and so the (d− λ)-plane

generated by {
k

∑

i=1

1
k
ai, ak+1, . . . , ak+d−λ} is transversal to all k-sets of A. �

3. Topological results and Kneser hypergraphs

Let G(d, λ) be the Grassmanian λ(d − λ)-manifold of all λ-planes through the
origin in Euclidean space R

d and let M(d, λ) be the set of all λ-planes in R
d. Thus

G(d, λ) ⊂ M(d, λ). We shall regard M(d, λ) as an open subset of G(d + 1, λ + 1),
making the following identifications:

Let z0 ∈ R
d+1−R

d be a fixed point and, without loss of generality, let G(d+1, λ+1)
be the space of all (λ + 1)-planes in Rd+1 through z0. Let us identify H ∈ M(d, λ)
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with the unique (λ + 1)-plane H ′ ∈ G(d + 1, λ + 1) which contains H and passes
through z0. Thus

G(d, λ) ⊂ M(d, λ) ⊂ G(d + 1, λ + 1),

where M(d, λ) is an open subset of G(d+1, λ+1) and G(d, λ) is a retract of M(d, λ).

A system Ω of λ-planes in R
d is a continuous selection of a unique λ-plane in every

direction of R
d. More precisely, it is a continuous function Ω: G(d, λ) → M(d, λ)

with the property that Ω(H) is parallel to H, for every H ∈ G(d, λ).

If γd,λ : Ed,λ → G(d, λ) is the standard vector bundle of all λ-planes through the
origin in R

d, then a system of λ-planes is just a section s : G(d, d− λ) → Ed,d−λ for
the vector bundle γd,d−λ. That is, Ω(H) = H + s(H⊥).

For example, the affine diameters of a strictly convex body K ⊂ R
d are a system

of 1-planes or a system of lines in R
d, although the standard system of lines in R

d

is the collection of lines through a fixed point p0 in R
d. It is not difficult to verify

that two systems of lines in R
d agree in some direction. In particular, this is the

reason why there is an affine diameter of K through any point p0 of R
d. In the plane

the lines that divide the area or the perimeter of K in half are a system of lines;
therefore there is always a line that divides the area and the perimeter of K in half
and through every point there is a line that divides the perimeter of K in half. In
3-space the planes that divide the volume or the surface of K in half are a system
of 2-planes or a system of planes. This time it is a little more difficult to verify
that three systems of planes (independently of the dimension of R

d) agree in some
direction. So, for example, through every point of R

3 there is a plane that divides
the volume and the surface of K in half or through every line of R

3 there is a plane
that divides the volume K in half (recall the ham sandwich theorem [12]).

For completeness, we review the basics from Grassmannian geometry. Let λ1, . . . , λm

be a sequence of integers such that 0 ≤ λ1 ≤ · · · ≤ λm ≤ d − m. Let us denote by
{λ1, . . . , λm} = {H ∈ G(d, m) |dim(H ∩ R

λj+j) ≥ j, j = 1, . . . ,m}. It is known
that {λ1, . . . , λm} is a compact subset of G(d, m) of dimension λ = λ1 + · · · + λm,
which is a closed connected λ-manifold, except possibly for a closed connected sub-
set of codimension three. Thus, Hλ({λ1, . . . , λm}, Z2) = Z2 = Hλ({λ1, . . . , λm}, Z2).
Let (λ1, . . . , λm) ∈ Hλ(G(m, d), Z2) be the λ-cycle which is induced by the inclu-
sion {λ1, . . . , λm} ⊂ G(m.d). These cycles are called Schubert-cycles. A canoni-
cal basis for Hλ(G(m, d), Z2) consists of all Schubert-cycles (ξ1, . . . , ξm) such that
0 ≤ ξ1 ≤ · · · ≤ ξn ≤ d − m and λ = ξ1 + · · · + ξn. Let us denote by [λ1, . . . , λm] ∈
Hλ(G(d, m), Z2) the λ -cocycle whose value is one for (λ1, . . . , λm) and zero for any
other Schubert-cycle of dimension λ. Thus, a canonical basis for Hλ(G(d, m), Z2)
consists of all Schubert-cocycles [ξ1, . . . , ξm] such that 0 ≤ ξ1 ≤ · · · ≤ ξn ≤ d − m
and λ = ξ1 + · · · + ξn. The cohomology classes [0, . . . , 0, 1, . . . , 1], where the last
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symbol consist of m − i zeros and i ones, i = 1, . . . ,m, are the classical Stiefel-
Whitney characteristic classes of the standard vector bundle over G(m, d).The iso-
morphism D : Hλ(G(m, d), Z2) → Hd−λ(G(d, m), Z2) given by D((λ1, . . . , λm)) =
[d − m − λ1, . . . , d − m − λm] is the classical Poincaré Duality Isomorphism (we
refer the reader to [3] for further details).

So, a system Ω of λ-planes in R
d determines the Schubert cycle (0, d−λ, . . . , d−λ)

∈ Hλ(d−λ)(G(d + 1, λ + 1), Z2). Its dual under the Poincaré Duality Isomorphism
D : Hλ(d−λ)(G(d + 1, λ + 1), Z2) → Hd−λ(G(d + 1, λ + 1), Z2) is the Schubert cocycle
[0, . . . , 0, d − λ] ∈ Hd−λ(G(d + 1, λ + 1), Z2). The fact that using the Cap-product
in H∗(G(d + 1, λ + 1), Z2) we obtain [0, . . . , 0, d − λ]λ+1 as the fundamental class
[d− λ, . . . , d− λ] ∈ H(λ+1)(d−λ)(G(d + 1, λ + 1), Z2) of G(d + 1, λ + 1), implying the
following result (which can be considered as a restatement of Dol’nikov’s Lemma [7,
Section 1]).

Lemma 1. Given λ+1 systems of λ-planes in R
d; Ω0, . . . , Ωλ : G(d, λ) → M(d, λ),

they all agree in at least one direction. In other words, there is H ∈ G(d, λ) such
that Ω0(H) = · · · = Ωλ(H).

We say that a system Ω of λ-planes is transversal to a given family F of convex
sets in R

d if every λ -plane of Ω is a transversal λ-plane for the family F . Notice
that if λ ≤ d and the family F has the λ-Helly property, then F has a transversal
system ΩF of (d− λ)-planes. Indeed, for a given (d− λ)-plane H ∈ G0(d, d− λ), we
may project the family F orthogonally onto the λ-plane H⊥. By Helly’s Theorem,
there is a (d − λ)-plane ΩF (H) parallel to H and transversal to F . Furthermore, it
is easy to see that we can choose ΩF (H) continuously. See [20] for proof.

Given a family F of convex sets in R
d, we say that a coloration of F is λ-admissible

if every subfamily of F consisting of all convex sets of F with the same color has
the λ-Helly property, that is, if every monochromatic subfamily of F of size λ + 1 is
intersecting. We denote by χλ(F ) the minimum positive integer r such that there
is a λ-admissible coloration of the convex sets of F with r colors.

Proposition 1. Let F be a family of convex set in R
d and suppose that F has a

λ-admissible coloration with d − λ + 1 colors, λ ≤ d. Then F admits a transversal
(d − λ)-plane. In other words, if χλ(F ) ≤ d − λ + 1, then there is a transversal
(d − λ)-plane to all convex sets of F .

Proof. For every color i ∈ {0, 1, . . . , d − λ}, there is a system Ωi of (d − λ)-planes
for the subfamily of convex sets of color i. By Lemma 1, there is a (d − λ)-plane
transversal to subfamily of convex sets of every color. �

Proposition 1 was first announced by Dol’nikov in [5] and published with proof in
[6].
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3.1. Kneser hypergraphs. Let n ≥ k ≥ 1 be integers. Let [n] denote the set

{1, . . . , n} and
(

[n]
k

)

the collection of k-subsets of [n]. The well known Kneser

graph has vertex set
(

[n]
k

)

, and two k-subsets are connected by an edge if they are

disjointed. We shall consider a generalization of this graph in terms of hypergraphs.
A hypergraph is a family S ⊆ 2N where the set N is its ground set. Let λ ≥ 1
be an integer. We define the Kneser hypergraph KGλ+1(n, k) as the hypergraph

whose vertices are
(

[n]
k

)

and a collection of vertices {S1, . . . , Sρ} is a hyperedge of

KGλ+1(n, k) if and only if 2 ≤ ρ ≤ λ + 1 and S1 ∩ · · · ∩ Sρ = φ. We remark
that KGλ+1(n, k) is the Kneser graph when λ = 1. Let s ≥ 1 be an integer. In
[1], a Kneser hypergraph KG(n, k, r, s) is defined in which the vertices are all the
k-subsets of [n] and a collection of r vertices forms a hyperedge if each pair of
the corresponding k-sets have an intersection of cardinality smaller than an integer
s ≥ 1. Notice that KGλ+1(n, k) is different from KG(n, k, λ + 1, 1).

A coloring of a hypergraph S ⊆ 2N with m colors is a function c : N → [m] that
assigns colors to the ground set so that no hyperedge S ∈ S is monochromatic, that
is, at least two elements in S have different colors. The chromatic number χ(S) of a
hypergraph is the smallest number m such that a coloring of S with m colors exists.

We notice that the collection of vertices {S1, . . . , Sξ} of KGλ+1(n, k) is indepen-
dent if and only if either ξ ≤ λ + 1 and S1 ∩ · · · ∩ Sξ 6= φ or ξ > λ + 1 and any
(λ + 1)-subfamily {Si1 , . . . , Siλ+1

} of {S1, . . . , Sξ} is such that S11
∩ · · · ∩ Siλ+1

6= φ
(satisfies the λ-Helly property). Therefore if A is any finite set with n points in R

d

and F is the family of convex hulls of k-sets of A, then χ(KGλ+1(n, k)) ≥ χλ(F ).

Proposition 2. If χ(KGλ+1(n, k)) ≤ d − λ + 1, then n ≤ m(k, d, λ).

Proof. If χλ(F ) ≤ χ(KGλ+1(n, k)) ≤ d − λ + 1, then by Proposition 1, there is a
transversal (d−λ)-plane to the convex hulls of all k-sets of A where A is any subset
of n points in R

d, and therefore n ≤ m(k, d, λ). �

Theorem 4. Let n ≥ k + ⌈ k
λ
⌉ and λ ≥ 1. Then χ(KGλ+1(n, k)) ≤ n− k −⌈ k

λ
⌉+ 2.

Proof. Let α ≥ 1 be an integer. We first claim that if A1 ∪ · · · ∪ Aα ⊂ X, where
| X |= m and | Aj |= k, then | ∩α

j=1Aj |≥ αk − (α − 1)m. We prove it by induction
on α. It is clearly true for α = 1. We suppose that it is true for α − 1 and prove it
for α. Consider the subsets Aα and A′ = ∩α−1

j=1 Aj of X. Note that | Aα |= k and
| A′ |≥ (α−1)k−(α−2)m. So | ∩α

j=1Aj |=| A′∩Aα | ≥ (α−1)k−(α−2)m+k−m =
αk − (α − 1)m.

Thus, by setting α = λ + 1, we have that the family of k-sets of a set X with
cardinality m has the λ-Helly property if and only if (λ+1)k−λm > 0 or equivalently
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if and only if k + k
λ

> m. Therefore, by taking m = k + ⌈ k
λ
⌉ − 1, we have that

the family of k-sets of B = {1, . . . , k + ⌈ k
λ
⌉ − 1} has the λ-Helly property. Let

Cj = {S ∈
(

[n]
k

)

| k+⌈ k
λ
⌉+j ∈ S} for each j = 0, . . . , n−(k+⌈ k

λ
⌉). Notice that each

Cj also has the λ-Helly property. So the family of k-sets (corresponding to vertices
of KGλ+1(n, k)) of B and the families of k-sets (also corresponding to vertices of
KGλ+1(n, k)) of each Ci with j = 0, . . . , n − (k + ⌈ k

λ
⌉) are independent. These sets

of independent vertices give rise to an admissible coloration for KGλ+1(n, k) with
n − k − ⌈ k

λ
⌉ + 2 colors. �

We have the following corollaries:

Corollary 1. d − λ + k + ⌈ k
λ
⌉ − 1 ≤ m(k, d, λ).

Proof. By combining Theorem 4 and Proposition 2. �

Corollary 2.

χ(KGλ+1(n, k)) >

{

n − 2k + λ if k ≥ λ,

n − k if k ≤ λ.

Proof. By Proposition 2, we have that if m(k, d, λ) < n, then d−λ+1 < χ(KGλ+1(n, k)).
The result follows by setting n = M(k, d, λ) and by using the values of M(k, d, λ)
given in Theorem 1. �

As an immediate consequence of Corollary 2 and Theorem 4 (with λ = 1) we
obtain the following theorem conjectured by Kneser [10] and first proved by Lovász
[11].

Theorem 5. [11] Let n ≥ 2k ≥ 4. Then χ(KG2(n, k)) = n − 2k + 2.

We may now prove Theorem 2.

Proof of Theorem 2. It is clear that

n − τ(n, d, λ) + 1 = k(n, d, λ). (1)

We claim that k(n, d, λ) ≤ ⌊λ(n−d+λ)
λ+1

⌋+1. Indeed, this follows since, by Corollary

1, we have that if k = ⌊λ(n−d+λ)
λ+1

⌋ + 1, then

(d − λ) +

⌈

(λ + 1)⌊λ(n−d+λ)
λ+1

+ 1⌋

λ

⌉

− 1 ≥ n,
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due to the fact that

(λ + 1)⌊λ(n−d+λ)
λ+1

+ 1⌋

λ
> n − d + λ.

Now, for any two positive integers x and y, we have that ⌊ xy

x+1
⌋ = y − ⌊x+y

x+1
⌋. So,

by taking x = λ and y = n − d + λ we have

k(n, d, λ) ≤

⌊

λ(n − d + λ)

λ + 1

⌋

+ 1 = n − d − λ −

⌊

2λ + n − d

λ + 1

⌋

+ 1 (2)

By combining (1) and (2), we obtain

τ(n, d, λ) ≥

⌊

n − d + 2λ

λ + 1

⌋

+ (d − λ)

and the result follows. ⊓⊔

Notice that if d−λ+
⌈

(λ+1)k
λ

⌉

−1 = m(k, d, λ), then τ(n, d, λ) = ⌊n−d+2λ
λ+1

⌋+(d−λ).

The bound ⌊n−d+2λ
λ+1

⌋+ (d−λ) = ⌊n+λ(d−λ+1)
λ+1

⌋ yields to the following result that can
be considered as a discrete version of Theorem 3.

Corollary 3. For every i = 1, . . . , d − λ + 1 let Ai ⊂ R
d. Then, there is a (d − λ)-

plane L such that any closed half-space H through L contains at least ⌊ |Ai|+λ

λ+1
⌋ points

of Ai.

Proof. The result follows immediately from Lemma 1, when we orthogonally project
Ai over every λ-dimensional linear subspace of R

d and by the discrete central theorem
(Theorem 2 with d = λ). The continuity can be achieved by the fact that given a
finite set A ⊂ R

λ, the set of points x, with the property that every closed half-space

H through x contains at least ⌊ |A|+λ

λ+1
⌋ points of A, is a convex set whose barycentric

varies continuously with A. �

3.2. Results on m(k, d, λ). Let us first notice that Conjecture 1 is equivalent to
the following conjecture (by setting d = α + λ).

Conjecture 2. There is a set A with α + k + ⌈ k
λ
⌉ points in R

α+λ such that the
convex hulls of the k-sets do not admit a transversal α-plane.

Theorem 6. m(k, λ, λ) = k + ⌈ k
λ
⌉ − 1.
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Proof. We shall show that m(k, λ, λ) < k+⌈ k
λ
⌉. The result follows since by Corollary

1 (with λ = d), we have that k + ⌈ k
λ
⌉ − 1 ≤ m(k, λ, λ). So by Conjecture 2, it is

enough to prove that there is a set A with k + ⌈ k
λ
⌉ points in R

λ such that the family
of convex hulls of the k-sets of A does not have a common point in the intersection.
We have two cases.

Case 1) If k > λ, then k = pλ + j − 1 for some integers p ≥ 1 and 2 ≤ j ≤ λ + 1,
and so

k +

⌈

k

λ

⌉

= pλ + j − 1 +

⌈

pλ + j − 1

λ

⌉

= p(λ + 1) + j − 1 +

⌈

j − 1

λ

⌉

= p(λ + 1) + j.

We shall next prove that there is an embedding of p(λ + 1) + j points with the
property that the convex hulls of the (pλ + j − 1)-sets has no common point. To
this end, we take a simplex in R

λ with λ + 1 vertices. We split the vertices of the
simplex into j red vertices and λ + 1 − j blue vertices. At every red vertex we put
p + 1 points and at every blue vertex we put p points. So in each facet we have at
least p(λ + 1 − j) + (p + 1)(λ − (λ + 1 − j)) = pλ + j − 1 = k points. Therefore for
each facet, we can form a k-set, and clearly the intersection of the convex hulls of
all such k-sets has no common point.

Case 2) If k ≤ λ, then k + ⌈ k
λ
⌉ = k + 1. In this case, we consider a simplex with

k + 1 vertices embedded in R
λ. It is clear that the family of (k − 1)-faces of the

simplex has an empty intersection. �

Theorem 7. Conjecture 1 is true if either (a) λ = 1 or (b) k ≤ λ or (c) λ = k − 1
or (d) k = 2, 3.

Proof. Part (a) follows by Theorem 5. For parts (b) and (c), we remark that by
Theorem 1 and Corollary 1,

d−λ+k+

⌈

k

λ

⌉

−1 ≤ m(k, d, λ) < M(k, d, λ) =

{

d + 2(k − λ) + 1 if k ≥ λ,

k + d − λ + 1 if k ≤ λ.
(3)

So if λ ≥ k, then d−λ+k ≤ m(k, d, λ) < k+d−λ+1, and therefore m(k, d, λ) =
k + d − λ, giving Conjecture 1. If λ = k − 1, then d + 2 ≤ m(k, d, λ) < d + 3, and
therefore m(k, d, λ) = d + 2, also giving Conjecture 1. We may then suppose that
λ < k. Finally for part (d), if k = 2, then λ = 1, and it follows by part (a); and if
k = 3, then either λ = 1 or 2, and it follows by parts (a) and (c). �

We notice that if (3) is used Conjecture 1 is also true if k = 4 when λ = 1 or 3, but
λ = 2 does not yield the validity of the conjecture. This case is more complicated
and we leave it for future work. In fact, we are investigating a general improved
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upper bound for m(k, d, λ) giving the conjectured value for k = 4 and 5 (work in
progress).

Note: One of the referees informed us that in [5] Dol’nikov announced that
χ(KGλ(n, k)) = n−k−⌊ k

λ−1
⌋+2 and proved the result for the case λ = 1. Also, we

were informed that proof of the inequality χ(KGλ(n, k)) ≤ n − k − ⌊ k
λ−1

⌋ + 2 was
given in a recent MSc thesis by A.A. Belova (unpublished), presenting a particular
coloring similar to the above.
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Appendix

We shall discuss the construction of a set of seven points in general position
without a transversal line to the convex hulls of the 4-sets. For, we need the following
result:

Lemma 2. Let A be a set of seven points in general position in R
3 and let L be a

transversal line to the convex hulls of the 4-sets in A. Then either L contains two
points of A, or L contains one point of A and it intersects three intervals whose ends
are among the other six points of A.

Proof. Since the points are in general position, L contains at most two points of
A. Let us first show that L contains at least one point of A. We proceed by
contradiction, let us then suppose that L does not contain any points of A. Let
x0 ∈ A and let H be the plane through x0 and L. The plane H contains at most
three points of A (none lying on L). If H contains exactly three points, then there
would be four points of A not in H, and by the pigeon-hole principle, there would be
at least two points {a, b} ⊂ A on the same side of H. By the same reasoning, there
would be at least two points {c, d} ⊂ A ∩ H on the same side of L. This implies
that L does not intersect the convex hull of {a, b, c, d}, which is a contradiction. If
H contains at most two points, then there would be at least five points of A not
in H and by the pigeon-hole principle, there would be at least three points on the
same side of H. The line L would not intersect the convex hull of these three points
and x0, which is a contradiction. Therefore L must contain either one or two points
of A. Let us suppose that L contains one point, say x0, and let H be the plane
generated by L and a point u ∈ A \ {x0}. We shall show that there exists a unique
point v ∈ A \ {u, x0} such that the interval [u, v] intersects L. We know that H
contains at most three points; if it contained at most two, then by using arguments
as above, we can show that there would be least three points of A on the same side
of H. These three points and u would form a tetrahedron having empty intersection
with L, which is not possible. Then we suppose that H contains exactly three points
and thus there are two points, say p, q ∈ A\{x0}, on the same side of H. Moreover,
among the three points in H (say u, v and x0 ∈ L), we cannot have that u and v
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lie on the same side of L, otherwise the tetrahedron formed by u, v, p and q would
have an empty intersection with L, which is not possible. Therefore u and v lie on
opposite sides of L, and thus [u, v] intersects L, since u, v ∈ H. �

We now consider the points of a tetrahedron and those of a suitable triangle placed
under the tetrahedron, see Figure 2.

Figure 2. Configuration of 7 points without transversal line to the
convex hull of the 4-sets.

We claim that any line containing two of these points has empty intersection with
the convex hull of a 4-set. By the symmetry of the configuration, there are just five
cases to be checked, see Figure 3.

Figure 3. Transversals missing a tetrahedron.

Moreover it can be verified that any line passing through one of the vertices does
not intersect three intervals having ends on the other six points (a little perturbation
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of the vertices may be needed). Therefore by Lemma 2, this configuration does not
have a transversal line to the convex hulls of the 4-sets.
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