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Introduction

The Connes-Kreimer Hopf algebra of rooted forests H CK is introduced and studied in [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF][START_REF] Moerdijk | On the Connes-Kreimer construction of Hopf algebras[END_REF]. This commutative, noncocommutative Hopf algebra is used to study a problem of Renormalisation in Quantum Field Theory, as explained in [START_REF]Renormalization in quantum field theory and the Riemann-Hilbert problem I. the Hopf algebra of graphs and the main theorem[END_REF][START_REF]Renormalization in quantum field theory and the Riemann-Hilbert problem II. β-function, diffeomorphisms and the renormalization group[END_REF]. The coproduct is given by admissible cuts. We denote by H D CK the Hopf algebra of rooted trees, where the vertices are decorated by decorations belonging to the set D. A noncommutative version, the Hopf algebra H N CK of planar rooted forests, is introduced in [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés, I[END_REF][START_REF] Holtkamp | Comparaison of Hopf algebras on trees[END_REF]. When the vertices are given a total order, we obtain the Hopf algebra of ordered forests H o and, adding an increasing condition, we obtain the Hopf subalgebra of heap-ordered forests H ho (see [START_REF] Foissy | Ordered forests, permutations and iterated integrals[END_REF][START_REF] Grossman | Hopf-algebraic structure of combinatorial objects and differential operators[END_REF]).

Moreover, the Hopf algebra FQSym of free quasi-symmetric functions is introduced in [DHT02, MR95]. L. Foissy and J. Unterberger prove in [START_REF] Foissy | Ordered forests, permutations and iterated integrals[END_REF] that there exists a Hopf algebra morphism from H o to FQSym and that its restriction to H ho is an isomorphism of Hopf algebras.

In this text, we introduce the notion of preordered forests. A preorder is a binary reflexive and transitive relation. A preordered forest is a rooted forest with a total preorder on its vertices. We prove that the algebra of preordered forests H po is a Hopf algebra for the cut coproduct. With an increasing condition, we define the algebra of heap-preordered trees H hpo and we prove that H hpo is a Hopf subalgebra of H po .

In [START_REF] Novelli | Polynomial realizations of some trialgebras[END_REF], J.-C. Novelli and J.-Y. Thibon construct a generalization of FQSym: the Hopf algebra WQSym * of free packed words. We prove a result similar to that of L. Foissy and J. Unterberger, by substituting the ordered forests by the preordered forests and the quasisymmetric functions by the packed words. More precisely, we prove that there exists a Hopf algebra morphism from H po to WQSym * . In addition, we prove that its restriction to H hpo is an injection of Hopf algebras.

Afterwards, we study a another coproduct called in this paper the contraction coproduct. In [START_REF] Calaque | Two interacting Hopf algebras of trees[END_REF], D. Calaque, K. Ebrahimi-Fard and D. Manchon define this coproduct in a commutative case, on a quotient C CK of H CK (see also [START_REF] Manchon | Lois pré-Lie en interaction[END_REF]). We give a decorated version C D CK of C CK . We define two operations and £ on the vector space T D CK spanned by the trees of C D CK . We prove that (T D CK , , £) is a commutative prelie algebra, that is to say that (A, ) is a commutative algebra, (A, £) is a prelie algebra and with the following relation: for all x, y, z ∈ T D CK ,

x £ (y z) = (x £ y) z + (x £ z) y.

We prove that (T D CK , , £) is generated as commutative prelie algebra by the trees q q d , d ∈ D. We construct a noncommutative version of C CK . For this, we consider quotients of H N CK , H ho , H o , H hpo , H po , denoted respectively C N CK , C ho , C o , C hpo , C po , and we define on these quotients a contraction coproduct. We prove that C ho , C o , C hpo , C po are Hopf algebras and that C N CK is a left comodule of the Hopf algebra C ho .

Finally, we study the Hopf algebra morphisms from H D CK or C D CK to the Hopf algebra Sh D of shuffles or the Hopf algebra Csh D of quasi-shuffles (see [START_REF] Hoffman | Quasi-shuffle products[END_REF]). We give a combinatorial description of these morphisms in each case. In particular, we note that, in the description of the morphism from H D CK to Sh D or Csh D , the contraction coproduct and the preordered forests appear naturally. This text is organized as follows: the first section is devoted to recalls about the Hopf algebras, for the cut coproduct, of rooted forests, planar forests and ordered and heap-ordered forests. We give recalls on the Hopf algebras of words in the second section. We define the Hopf algebra of permutations and packed words and we deduce the construction of Sh D and Csh D . In section three, we define the algebras H po and H hpo of preordered and heap-preordered forests and we prove that these are Hopf algebras. The contraction coproduct, is introduced in the section four. We describe a commutative case and we study an insertion operation. We give a noncommutative version using ordered and preordered forests. The last section deals with Hopf algebra morphisms from H D CK or C D CK to Sh D or Csh D . We give a combinatorial description of these morphisms in each case.
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Notations.

1. We shall denote by K a commutative field of characteristic zero. Every vector space, algebra, coalgebra, etc, will be taken over K. Given a set X, we denote by K (X) the vector space spanned by X.

2. Let n be an integer. We denote by Σ n the symmetric group of order n (Σ 0 = {1}) and Σ the disjoint union of Σ n for all n ≥ 0.

3. Let (A, ∆, ε) be a counitary coalgebra. Let 1 ∈ A, non zero, such that ∆(1) = 1 ⊗ 1. We then define the noncounitary coproduct:

∆ : Ker(ε) → Ker(ε) ⊗ Ker(ε), a → ∆(a) -a ⊗ 1 -1 ⊗ a.
1 Recalls on the Hopf algebras of forests

The Connes-Kreimer Hopf algebra of rooted trees

We briefly recall the construction of the Connes-Kreimer Hopf algebra of rooted trees [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF].

A rooted tree is a finite graph, connected, without loops, with a distinguished vertex called the root [START_REF] Stanley | Enumerative combinatorics[END_REF]. We denote by 1 the empty rooted tree. If T is a rooted tree, we denote by R T the root of T . A rooted forest is a finite graph F such that any connected component of F is a rooted tree. The length of a forest F , denoted l(F ), is the number of connected components of F . The set of vertices of the rooted forest F is denoted by V (F ). The vertices degree of a forest F , denoted |F | v , is the number of its vertices. The set of edges of the rooted forest F is denoted by E(F ). The edges degree of a forest F , denoted |F | e , is the number of its edges.

Remark. Let F be a rooted forest.

Then |F | v = |F | e + l(F ).
Examples.

1. Rooted trees of vertices degree ≤ 5:

1, q , q q , q ∨ q q , q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q , q ∨ q q r q q

, q ∨ q q q q , q ∨ q q q q , q ∨ q q ∨ q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q q q ∨ q q

, q q q q q .

2. Rooted forests of vertices degree ≤ 4:

1, q , q q , q q , q q q , q q q , q ∨ q q , q q q , q q q q , q q q q, q q q q , q ∨ q q q , q q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q .

Let D be a nonempty set. A rooted forest with its vertices decorated by D is a couple (F, d) with F a rooted forest and d : V (F ) → D a map.

Examples. Rooted trees with their vertices decorated by D of vertices degree smaller than 4: q a , a ∈ D, q q a b , (a, b) ∈ D 2 , q ∨ q q a c b , q q q a b c , (a, b, c) ∈ D 3 q ∨ q q q a d c b , q ∨ q q q a d b c , q ∨ q q q a c b d , q ∨ q q q a b d c , q q q q a b c d , (a, b, c, d) ∈ D 4 .

Let F H CK be the set of rooted forests and F D H CK the set of rooted forests with their vertices decorated by D. We will denote by H CK the K-vector space generated by F H CK and by H D CK the K-vector space generated by F D H CK . The set of nonempty rooted trees will be denoted T H CK and the set of nonempty rooted trees with their vertices decorated by D will be denoted T D H CK . H CK and H D CK are algebras: the product is given by the concatenation of rooted forests.

Let F be a nonempty rooted forest. A subtree T of F is a nonempty connected subgraph of F . A subforest T 1 . . . T k of F is a product of disjoint subtrees T 1 , . . . , T k of F . We can give the same definition in the decorated case.

Examples. Consider the tree T = q ∨ q q q . Then:

• The subtrees of T are q (which appears 4 times), q q (which appears 3 times), q ∨ q q , q q q and q ∨ q q q (which appear once).

• The subforests of T are q q , q q q (which appear 6 times), q , q q q (which appear 4 times), q q , q q q q (which appear 3 times) and q ∨ q q , q q q , q q q q , q ∨ q q q , q q q q , q ∨ q q q (which appear once).

Let F be a rooted forest. The edges of F are oriented downwards (from the leaves to the roots). If v, w ∈ V (F ), we shall note v → w if there is an edge in F from v to w and v ։ w if there is an oriented path from v to w in F . By convention, v ։ v for any v ∈ V (F ).

Let v be a subset of V (F ). We shall say that v is an admissible cut of F , and we shall write v |= V (F ), if v is totally disconnected, that is to say that v ։ w / for any couple (v, w) of two different elements of v. If v |= V (F ), we denote by Lea v (F ) the rooted subforest of F obtained by keeping only the vertices above v, that is to say {w ∈ V (F ), ∃v ∈ v, w ։ v}, and the edges between these vertices. Note that v ⊆ Lea v (F ). We denote by Roo v (F ) the rooted subforest obtained by keeping the other vertices and the edges between these vertices.

In particular, if v = ∅, then Lea v (F ) = 1 and Roo v (F ) = F : this is the empty cut of F . If v contains all the roots of F , then it contains only the roots of

F , Lea v (F ) = F and Roo v (F ) = 1: this is the total cut of F . We shall write v ||= V (F ) if v is a nontotal, nonempty admissible cut of F .
Connes and Kreimer proved in [START_REF] Connes | Hopf algebras, Renormalization and Noncommutative geometry[END_REF] that H CK is a Hopf algebra. The coproduct is the cut coproduct defined for any rooted forest F by:

∆ H CK (F ) = v|=V (F ) Lea v (F ) ⊗ Roo v (F ) = F ⊗ 1 + 1 ⊗ F + v||=V (F ) Lea v (F ) ⊗ Roo v (F ).

For example:

∆ H CK ( q ∨ q q q ) = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q + q ⊗ q ∨ q q + q q ⊗ q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q .

In the same way, we can define a cut coproduct on H D CK . With this coproduct, H D CK is also a Hopf algebra. For example:

∆ H D CK ( q ∨ q q q a d b c ) = q ∨ q q q a d b c ⊗ 1 + 1 ⊗ q ∨ q q q a d b c + q c ⊗ q ∨ q q a d b + q q b c ⊗ q q a d + q d ⊗ q q q a b c + q c q d ⊗ q q a b + q q b c q d ⊗ q a .
H CK is graded by the number of vertices. We give some values of the number f H CK n of rooted forests of vertices degree n: n 0 1 2 3 4 5 6 7 8 9 10 f H CK n 1 1 2 4 9 20 48 115 286 719 1842

These is the sequence A000081 in [Slo].

Hopf algebras of planar trees

We now recall the construction of the noncommutative generalization of the Connes-Kreimer Hopf algebra [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés, I[END_REF][START_REF] Holtkamp | Comparaison of Hopf algebras on trees[END_REF].

A planar forest is a rooted forest F such that the set of the roots of F is totally ordered and, for any vertex v ∈ V (F ), the set {w ∈ V (F ) | w → v} is totally ordered. Planar forests are represented such that the total orders on the set of roots and the sets {w ∈ V (F ) | w → v} for any v ∈ V (F ) is given from left to right. We denote by T H NCK the set of nonempty planar trees and F H NCK the set of planar forests.

Examples.

1. Planar rooted trees of vertices degree ≤ 5: q , q q , q ∨ q q , q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q , q ∨ q q r q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q ∨ q q , q ∨ q q∨ q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q q q ∨ q q , q q q q q . 2. Planar rooted forests of vertices degree ≤ 4:

1, q , q q , q q , q q q , q q q , q q q , q ∨ q q , q q q , q q q q , q q q q , q q q q , q q q q , q ∨ q q q , q q ∨ q q , q q q q , q q q q , q q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q .

If v |= V (F ), then Lea v (F ) and Roo v (F ) are naturally planar forests. It is proved in [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés, I[END_REF] that the space H N CK generated by planar forests is a Hopf algebra. Its product is given by the concatenation of planar forests and its coproduct is defined for any rooted forest F by:

∆ H NCK (F ) = v|=V (F ) Lea v (F ) ⊗ Roo v (F ) = F ⊗ 1 + 1 ⊗ F + v||=V (F ) Lea v (F ) ⊗ Roo v (F ).
For example:

∆ H NCK ( q ∨ q q q ) = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨
q q q + q ⊗ q ∨ q q + q q ⊗ q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q, ∆ H NCK ( q ∨ q q q ) = q ∨ q q q ⊗ 1 + 1 ⊗ q ∨ q q q + q ⊗ q ∨ q q + q q ⊗ q q + q ⊗ q q q + q q ⊗ q q + q q q ⊗ q.

As in the nonplanar case, there is a decorated version H D N CK of H N CK . Moreover, H N CK is a Hopf algebra graded by the number of vertices. The number f H NCK n of planar forests of vertices degree n (equal to the number of planar trees of vertices degree n + 1) is the n-Catalan number (2n)! n!(n+1)! , see sequence A000108 of [Slo]. We have:

T H NCK (x) = 1 - √ 1 -4x 2 , F H NCK (x) = 1 - √ 1 -4x 2x . (1) 
This gives: n 0 1 2 3 4 5 6 7 8 9 10 f H NCK n 1 1 2 5 14 42 132 429 1430 4862 16796

Ordered and heap-ordered forests

Definition 1 An ordered forest F is a rooted forest F with a total order on V (F ). The set of ordered forests is denoted by F Ho and the K-vector space generated by F Ho is denoted by H o .

Remarks and notations. If F is an ordered forest, then there exits a unique increasing bijection σ : V (F ) → {1, . . . , |F | v } for the total order on V (F ).

Reciprocally, if F is a rooted forest and if σ : V (F ) → {1, . . . , |F | v } is a bijection, then σ defines a total order on V (F ) and F is an ordered forest.

Depending on the case, we shall denote an ordered forest by F or (F, σ).

Examples. Ordered forests of vertices degree ≤ 3:

1, q 1 , q 1 q 2 , q q 1 2 , q q 2 1 , q 1 q 2 q 3 , q 1 q q 2 3 , q 1 q q 3 2 , q q 1 3 q 2 , q 2 q q 3 1 , q q 1 2 q 3 , q q 2 1 q 3 , q ∨ q q 1 3 2

, q ∨ q q 2 3 1 , q ∨ q q 3 2 1 , q q q 1 2 3 , q q q 1 3 2 , q q q 2 1 3 , q q q 2 3 1 , q q q 3 1 2 , q q q 3 2 1 .
Let (F, σ F ) and (G, σ G ) be two ordered forests. Then the rooted forest F G is also an ordered forest (F G, σ F G ) where

σ F G = σ F ⊗ σ G :    V (F ) V (G) → {1, . . . , |F | v + |G| v } a ∈ V (F ) → σ F (a) a ∈ V (G) → σ G (a) + |F | v . (2) 
In other terms, we keep the initial order on the vertices of F and G and we assume that the vertices of F are smaller than the vertices of G. This defines a noncommutative product on the set of ordered forests. For example, the product of q 1 and q q 1 2 gives q 1 q q 2 3 = q q 2 3 q 1 , whereas the product of q q 1 2 and q 1 gives q q 1 2 q 3 = q 3 q q 1 2 . This product is linearly extended to H o , which in this way becomes an algebra.

H o is graded by the number of vertices and there is (n + 1) n-1 ordered forests in vertices degree n, see sequence A000272 of [Slo].

If F is an ordered forest, then any subforest G of F is also ordered: the total order on V (G) is the restriction of the total order of V (F ). So we can define a coproduct ∆ Ho :

H o → H o ⊗ H o on H o in the following way: for all F ∈ F Ho , ∆ Ho (F ) = v|=V (F ) Lea v (F ) ⊗ Roo v (F ).
For example,

∆ Ho ( q ∨ q q q 2 3 4 1 ) = q ∨ q q q 2 3 4 1 ⊗ 1 + 1 ⊗ q ∨ q q q 2 3 4 1 + q 1 ⊗ q ∨ q q 1 3 2 + q q 2 1 ⊗ q q 1 2 + q 1 ⊗ q q q 2 3 1 + q 1 q 2 ⊗ q q 1 2 + q q 3 1 q 2 ⊗ q 1 .
With this coproduct, H o is a Hopf algebra.

Definition 2 [GL90] A heap-ordered forest is an ordered forest F such that if a, b ∈ V (F ), a = b and a ։ b, then a is greater than b for the total order on V (F ). The set of heap-ordered forests is denoted by F H ho .

Examples. Heap-ordered forests of vertices degree ≤ 3: 1, q 1 , q 1 q 2 , q q 1 2 , q 1 q 2 q 3 , q 1 q q 2 3 , q 2 q q 1 3 , q 3 q q 1 2 , q ∨ q q 1 3 2 , q q q 1 2 3 . Definition 3 A linear order on a nonempty rooted forest F is a bijective map σ : V (F ) → {1, . . . , |F | v } such that if a, b ∈ V (F ) and a ։ b, then σ(a) ≥ σ(b). We denote by O(F ) the set of linear orders on the nonempty rooted forest F .

Remarks. If (F, σ) is a heap-ordered forest, then the increasing bijection σ : V (F ) → {1, . . . , |F | v } is a linear order on F . Reciprocally, if F is a rooted forest and σ ∈ O(F ), then σ defines a total order on V (F ) such that (F, σ) is a heap-ordered forest.

If F and G are two heap-ordered forests, then F G is an ordered forest with (2) and also a heap-ordered forest. Moreover, any subforest G of a heap-ordered forest F is also a heap-ordered forest by restriction on V (G) of the total order of V (F ). So the subspace H ho of H o generated by the heap-ordered forests is a graded Hopf subalgebra of H o .

The number of heap-ordered forests of vertices degree n is n!, see sequence A000142 of [Slo].

Remarks.

1. A planar forest can be considered as an ordered forest by ordering its vertices in the "northwest" direction (this is the order defined in [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés, I[END_REF] or given by the Depth First Search algorithm). This defines an algebra morphism φ : H N CK → H o . For example:

q ∨ q q φ -→ q ∨ q q 1 3 2 q q q φ -→ q q q 1 2 3 q ∨ q q q q q φ -→ q ∨ q q q 1 4 3 2 q q 5 6 q ∨ q q q ∨ q q q φ -→ q ∨ q q 1 3 2 q ∨
q q q 4 7 5 6 q ∨ q q q q q q φ -→ q ∨ q q q 1 3 2 4 q q q 5 6 7 q q q ∨ q q q φ -→ q q 1 2 q ∨ q q q 3 4 6 5

(3) 2. Reciprocally, an ordered forest is also planar, by restriction of the total order to the subsets of vertices formed by the roots or {w ∈ V (F) | w → v}. This defines an algebra morphism ψ : H o → H N CK . For example:

q 1 q q 3 2 ψ -→ q q q q 2 q q 1 3 ψ -→ q q q q ∨ q q q 5 1 3 4 q q 2 6 ψ -→ q q q ∨ q q q q ∨ q q q 1 5 3 2 q q q 4 7 6 ψ -→ q ∨ q qq q q q q ∨ q q q 4 7 5 1 q ∨ q q 2 6 3 ψ -→ q ∨ q q q ∨ q q q q ∨ q q 5 3 1 q ∨ q q q 2 6 7 4 ψ -→ q ∨ q q q q ∨ q q (4) Note that ψ • φ = Id H NCK therefore ψ is surjective and φ is injective. ψ and φ are not bijective (by considering the dimensions).

Moreover φ is a Hopf algebra morphism and its image is included in H ho . ψ is not a Hopf algebra morphism: in the expression of (ψ ⊗ ψ) • ∆ Ho ( q 3 q q q 4 1 2

) we have the tensor q q q ⊗ q and in the expression of ∆ H NCK • ψ( q 3 q q q 4 1 2 ) we have the different tensor q q q ⊗ q . By cons, the restriction of ψ of H ho is a Hopf algebra morphism.

In the following, we consider H N CK as a Hopf subalgebra of H ho and H o .

2 Recalls on the Hopf algebras of words

Hopf algebra of permutations and shuffles

Notations.

1. Let k, l be integers. A (k, l)-shuffle is a permutation ζ of {1, . . . , k + l}, such that ζ(1) < . . . < ζ(k) and ζ(k + 1) < . . . < ζ(k + l).
The set of (k, l)-shuffles will be denoted by Sh(k, l).

2. We represent a permutation σ ∈ Σ n by the word (σ(1) . . . σ(n)). For example, Sh(2, 1) = {(123), (132), (231)}.

Remark. For any integer k, l, any permutation σ ∈ Σ k+l can be uniquely written as ǫ • (σ 1 ⊗ σ 2 ), where σ 1 ∈ Σ k , σ 2 ∈ Σ l , and ǫ ∈ Sh(k, l). Similarly, considering the inverses, any permutation τ ∈ Σ k+l can be uniquely written as (τ 1 ⊗ τ 2 ) • ζ -1 , where τ 1 ∈ Σ k , τ 2 ∈ Σ l , and ζ ∈ Sh(k, l). Note that, whereas ǫ renames the numbers of each lists (σ(1), . . . , σ(k)), (σ(k + 1), . . . , σ(k + l)) without changing their orderings, ζ -1 shuffles the lists (τ (1), . . . , τ (k)), (τ (k + 1), . . . , τ (k + l)). For instance, if k = 4, l = 3 and σ = (5172436) then

• σ = ǫ • (σ 1 ⊗ σ 2 ), with ǫ = (1257346) ∈ Sh(4, 3), σ 1 = (3142) ∈ Σ 4 and σ 2 = (213) ∈ Σ 3 , • σ = (τ 1 ⊗ τ 2 ) • ζ -1 , with τ 1 = (1243) ∈ Σ 4 , τ 2 = (132) ∈ Σ 3 and ζ = (2456137) ∈ Sh(4, 3).
We here briefly recall the construction of the Hopf algebra FQSym of free quasi-symmetric functions, also called the Malvenuto-Reutenauer Hopf algebra [START_REF] Duchamp | Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]. As a vector space, a basis of FQSym is given by the disjoint union of the symmetric groups Σ n , for all n ≥ 0. By convention, the unique element of Σ 0 is denoted by 1. The product of FQSym is given, for σ ∈ Σ k , τ ∈ Σ l , by:

σ.τ = ζ∈Sh(k,l) (σ ⊗ τ ) • ζ -1 .
In other words, the product of σ and τ is given by shifting the letters of the word representing τ by k, and then summing all the possible shufflings of this word and of the word representing σ. For example: Let σ ∈ Σ n . For all 0 ≤ k ≤ n, there exists a unique triple σ

(k) 1 , σ (k) 2 , ǫ k ∈ Σ k × Σ n-k × Sh(k, n -k) such that σ = ǫ k • σ (k) 1 ⊗ σ (k) 2
. The coproduct of FQSym is then defined by:

∆ FQSym (σ) = n k=0 σ (k) 1 ⊗ σ (k) 2 = n k=0 σ=ǫ•(σ 1 ⊗σ 2 ) ǫ∈Sh(k,n-k),σ 1 ∈Σ k ,σ 2 ∈Σ n-k σ 1 ⊗ σ 2 . Note that σ (k) 1 and σ (k)
2 are obtained by cutting the word representing σ between the k-th and the (k + 1)-th letter, and then standardizing the two obtained words by the following process. If v is a words of length n whose the letters are distinct integers, then the standardizing of v, denoted Std(v), is the word obtained by applying to the letters of v the unique increasing bijection to {1, . . . , n}. Then FQSym is a Hopf algebra. It is graded, with FQSym(n) = V ect(Σ n ) for all n ≥ 0.

It is also possible to give a decorated version of FQSym. Let D be a nonempty set. A D-decorated permutation is a couple (σ, d), where σ ∈ Σ n and d is a map from {1, . . . , n} to D. A D-decorated permutation is represented by two superposed words ( a 1 ...an v 1 ...vn ), where (a 1 . . . a n ) is the word representing σ and for all i, v i = d(a i ). The vector space FQSym D generated by the set of D-decorated permutations is a Hopf algebra. For example, if x, y, z, t ∈ D:

213 yxz . ( 1 t ) = 2134 yxzt + 2143 yxtz + 2413 ytxz + 4213 tyxz , ∆ FQSym D 4321 tzyx = 4321 tzyx ⊗ 1 + 321 tzy ⊗ ( 1 x ) + ( 21 tz ) ⊗ 21 yx + ( 1 t ) ⊗ 321 zyx + 1 ⊗ 4321 tzyx .
In other words, if (σ, d) and (τ, d ′ ) are decorated permutations of respective degrees k and l: d) is a decorated permutation of degree n:

(σ, d).(τ, d ′ ) = ζ∈Sh(k,l) ((σ ⊗ τ ) • ζ -1 , d ⊗ d ′ ), where d ⊗ d ′ is defined by (d ⊗ d ′ )(i) = d(i) if 1 ≤ i ≤ k and (d ⊗ d ′ )(k + j) = d ′ (j) if 1 ≤ j ≤ l. If (σ,
∆ FQSym D ((σ, d)) = n k=0 σ=ǫ•(σ 1 ⊗σ 2 ) ǫ∈Sh(k,l),σ 1 ∈Σ k ,σ 2 ∈Σ l (σ 1 , d ′ ) ⊗ (σ 2 , d ′′ ), where d = (d ′ ⊗ d ′′ ) • ǫ -1 .
In some sense, a D-decorated permutation can be seen as a word with a total order on the set of its letters.

We can now define the shuffle Hopf algebra Sh D (see [START_REF] Hoffman | Quasi-shuffle products[END_REF][START_REF] Reutenauer | Free Lie algebras[END_REF]). A D-word is a finite sequence of elements taken in D. It is graded by the degree of words, that is to say the number of their letters. As a vector space, Sh D is generated by the set of D-words.

The surjective linear map from FQSym D to Sh D , sending the decorated permutation ( a 1 ...an v 1 ...vn ) to the D-word (v 1 . . . v n ), define a Hopf algebra structure on Sh D :

• The product of Sh D is given in the following way: if (v 1 . . . v k ) is a D-word of degree k, (v k+1 . . . v k+l ) is a D-word of degree l, then

(v 1 . . . v k ) (v k+1 . . . v k+l ) = ζ∈Sh(k,l) v ζ -1 (1) . . . v ζ -1 (k+l) . • The coproduct ∆ Sh D of Sh D is given on any D-word w = (v 1 . . . v n ) by ∆ Sh D (w) = n i=0 (v 1 . . . v i ) ⊗ (v i+1 . . . v n ).
Examples.

1. If (v 1 v 2 v 3 ) and (v 4 v 5 ) are two D-words, (v 1 v 2 v 3 ) (v 4 v 5 ) = (v 1 v 2 v 3 v 4 v 5 ) + (v 1 v 2 v 4 v 3 v 5 ) + (v 1 v 2 v 4 v 5 v 3 ) + (v 1 v 4 v 2 v 3 v 5 ) +(v 1 v 4 v 2 v 5 v 3 ) + (v 1 v 4 v 5 v 2 v 3 ) + (v 4 v 1 v 2 v 3 v 5 ) + (v 4 v 1 v 2 v 5 v 3 ) +(v 4 v 1 v 5 v 2 v 3 ) + (v 4 v 5 v 1 v 2 v 3 ). 2. If (v 1 v 2 v 3 v 4 ) is a D-word, ∆ Sh D ((v 1 v 2 v 3 v 4 )) = (v 1 v 2 v 3 v 4 ) ⊗ 1 + (v 1 v 2 v 3 ) ⊗ (v 4 ) + (v 1 v 2 ) ⊗ (v 3 v 4 ) +(v 1 ) ⊗ (v 2 v 3 v 4 ) + 1 ⊗ (v 1 v 2 v 3 v 4 ).
There is a link between the algebras H o , H ho and FQSym given by the following result (see [START_REF] Foissy | Ordered forests, permutations and iterated integrals[END_REF]): Proposition 4

1. Let n ≥ 0. For all (F, σ) ∈ F Ho , let S F be the set of permutations θ ∈ Σ n such that for all a, b ∈ V (F ), (a ։ b) ⇒ (θ -1 (σ(a)) ≤ θ -1 (σ(b))). Let us define:

Θ :    H o → FQSym F ∈ F Ho → θ∈S F θ.
Then Θ : H o → FQSym is a Hopf algebra morphism, homogeneous of degree 0.

2. The restriction of Θ to H ho is an isomorphism of graded Hopf algebras.

Hopf algebra of packed words and quasi-shuffles

Recall the construction of the Hopf algebra WQSym * of free packed words (see [START_REF] Novelli | Polynomial realizations of some trialgebras[END_REF]).

Notations.

1. Let n ≥ 0. We denote by Surj n the set of maps σ : {1, . . . , n} → N * , such that σ({1, . . . , n}) = {1, . . . , k} for a certain k ∈ N. In this case, k is the maximum of σ and is denoted by max(σ) and n is the length of σ. We represent the element σ of Surj n by the packed word (σ(1) . . . σ(n)).

2. Let k, l be two integers. A (k, l)-surjective shuffle is an element ǫ of Surj k+l such that ǫ(1) < . . . < ǫ(k) and ǫ(k + 1) < . . . < ǫ(k + l). The set of (k, l)-surjective shuffles will be denoted by SjSh(k, l). For example, SjSh(2, 1) = {(121), (122), ( 123), ( 132), (231)}.

Let v be a word such that the letters occuring in v are integers a 1 < a 2 < . . . < a k . The packing of v, denoted by pack(v), is the image of letters of v by the application a i → i. For example, pack((22539)) = (11324), pack((831535)) = (421323).

Remark. Let k, l be two integers and σ ∈ Surj k+l . We set p k = max(pack((σ(1) . . . σ(k)))) and q k = max(pack((σ(k+1) . . . σ(k+l)))). Then σ can be uniquely written as ǫ•(σ 1 ⊗σ 2 ), where σ 1 ∈ Surj k , σ 2 ∈ Surj l , and ǫ ∈ SjSh(p k , q k ). For instance, if k = 4, l = 3 and σ = (2311223)

then p 4 = 3, q 4 = 2 and σ = ǫ • (σ 1 ⊗ σ 2 ) with ǫ = (12323) ∈ SjSh(3, 2), σ 1 = (2311) ∈ Surj 4 and σ 2 = (112) ∈ Surj 3 .
As a vector space, a basis of WQSym * is given by the disjoint union of the sets Surj n , for all n ≥ 0. By convention, the unique element of Surj 0 is denoted by 1. The product of WQSym * is given, for σ ∈ Surj k and τ ∈ Surj l , by:

σ.τ = ζ∈Sh(k,l) (σ ⊗ τ ) • ζ -1 .
In other words, as in the FQSym case, the product of σ and τ is given by shifting the letters of the word representing τ by k, and summing all the possible shuffings of this word and of the word representing σ. For example:

(112)(21) = (11243) + (11423) + (14123) + (41123) + (11432) + (14132) +(41132) + (14312) + (41312) + (43112) Let σ ∈ Surj n . For all 0 ≤ k ≤ n, there exists a unique triple σ (k) 1 , σ (k) 2 , ǫ k ∈ Surj k × Surj n-k × SjSh(p k , q k ) such that σ = ǫ k • σ (k) 1 ⊗ σ (k) 2
. The coproduct of WQSym * is then given by:

∆ WQSym * (σ) = n k=0 σ (k) 1 ⊗ σ (k) 2 = n k=0 σ=ǫ•(σ 1 ⊗σ 2 ) ǫ∈SjSh(p k ,q k ),σ 1 ∈Surj k ,σ 2 ∈Surj n-k σ 1 ⊗ σ 2 . Note that σ (k) 1 and σ (k)
2 are obtained by cutting the word representing σ between the k-th and the (k + 1)-th letter, and then packing the two obtained words. For example:

∆ WQSym * ((21132)) = 1 ⊗ (21132) + pack((2)) ⊗ pack((1132)) + pack((21)) ⊗ pack((132)) +pack((211)) ⊗ pack((32)) + pack((2113)) ⊗ pack((2)) + (21132) ⊗ 1 = 1 ⊗ (21132) + (1) ⊗ (1132) + (21) ⊗ (132) + (211) ⊗ (21) +(2113) ⊗ (1) + (21132) ⊗ 1.
Then WQSym * is a graded Hopf algebra, with WQSym * (n) = Surj n for all n ≥ 0. We give some numerical values: if f WQSym * n is the number of packed words of length n, then

n 0 1 2 3 4 5 6 7 f WQSym * n 1 1 3 13 75 541 4683 47293
These is the sequence A000670 in [Slo].

WQSym * is the gradued dual of WQSym, described as follows. A basis of WQSym is given by the disjoint union of the sets Surj n . The product of WQSym is given, for σ ∈ Surj k , τ ∈ Surj l by:

σ.τ = γ=γ 1 ...γ k+l pack(γ 1 ...γ k )=σ, pack(γ k+1 ...γ k+l )=τ γ
In other terms, the product of σ and τ is given by shifting certain letters of the words representing σ and τ and then summing all concatenations of obtained words. For example: If σ ∈ Surj n , then the coproduct of WQSym is given by:

∆ WQSym (σ) = 0≤k≤max(σ) σ |[1,k] ⊗ pack(σ |[k+1,max(σ)] ),
where σ |A is the subword obtained by tacking in σ the letters from the subset A of [1, max(σ)]. For example:

∆ WQSym ((21312245)) = 1 ⊗ (21312245) + (11) ⊗ pack((232245)) + (21122) ⊗ pack((345)) +(213122) ⊗ pack((45)) + (2131224) ⊗ pack((5)) + (21312245) ⊗ 1 = 1 ⊗ (21312245) + (11) ⊗ (121134) + (21122) ⊗ (123) +(213122) ⊗ (12) + (2131224) ⊗ (1) + (21312245) ⊗ 1.
Then WQSym is a Hopf algebra.

We give a decorated version of WQSym. Let D be a nonempty set. A D-decorated surjection is a couple (σ, d), where σ ∈ Surj n and d is a map from {1, . . . , n} to D. As in the FQSym D case, we represent a D-decorated surjection by two superposed words ( a 1 ...an v 1 ...vn ), where (a 1 . . . a n ) is the packed word representing σ and for all i, v i = d(a i ). The vector space WQSym D generated by the set of D-decorated surjections is a Hopf algebra. For example, if x, y, z, t ∈ D:

211 yxz . ( 1 t ) = 2111 yxzt + 2112 yxzt + 2113 yxzt + 3221 yxzt + 3112 yxzt . ∆ WQSym D 2113 yxzt = 2113 yxzt ⊗ 1 + ( 11 xz ) ⊗ 12 yt + 211 yxz ⊗ ( 1 t ) + 1 ⊗ 2113 yxzt .
In other words, if (σ, d) and (τ, d ′ ) are decorated surjections of respective degrees k and l:

(σ, d).(τ, d ′ ) = γ=γ 1 ...γ k+l pack(γ 1 ...γ k )=σ, pack(γ k+1 ...γ k+l )=τ (γ, d ⊗ d ′ ), where d ⊗ d ′ is defined by (d ⊗ d ′ )(i) = d(i) if 1 ≤ i ≤ k and (d ⊗ d ′ )(k + j) = d ′ (j) if 1 ≤ j ≤ l. If (σ, d) is a decorated surjection of degree n: ∆ WQSym D ((σ, d)) = 0≤k≤max(σ) (σ |[1,k] , d ′ ) ⊗ (σ |[k+1,max(σ)] , d ′′ ).
where d ′ and d take the same values on σ -1 ({1, . . . , k}) and d ′′ and d take the same values on σ -1 ({k + 1, . . . , max(σ)}).

In some sense, a D-decorated surjection can be seen as a packed word with a preorder on the set of its letters.

Suppose that D is equipped with an associative and commutative product

[•, •] : (a, b) ∈ D 2 → [ab] ∈ D. We define by induction [•, •] (k) : [•, •] (0) = Id, [•, •] (1) = [•, •] and [•, •] (k) = •, [•, •] (k-1) .
We can now define the quasi-shuffle Hopf algebra Csh D (see [START_REF] Hoffman | Quasi-shuffle products[END_REF]). Csh D is, as a vector space, generated by the set of D-words.

Let ϕ be the surjective linear map from WQSym D to Csh D defined, for (σ, d) a decorated surjection of maximum k, by ϕ((σ, d)) = (w 1 . . . w k ) where w j = [d(i 1 ) . . . d(i p )] (p) with σ -1 (j) = {i 1 , . . . , i p }. For instance,

ϕ 2114324 yxztvwu = ([xz] [yw] v [tu]) Notations. Let k, l be integers. A (k, l)-quasi-shuffle of type r is a surjective map ζ : {1, . . . , k + l} ։ {1, . . . , k + l -r} such that ζ(1) < . . . < ζ(k), ζ(k + 1) < . . . < ζ(k + l). Remark that ζ -1 (j) contains 1 or 2 elements for all 1 ≤ j ≤ k + l -r. The set of (k, l)-quasi- shuffles of type r is denoted by Csh(p, q, r). Remark that Csh(k, l, 0) = Sh(k, l).
ϕ define a Hopf algebra structure on Csh D :

• The product -of Csh D is given in the following way: if (v 1 . . . v k ) is a D-word of degree k, (v k+1 . . . v k+l ) is a D-word of degree l, then (v 1 . . . v k ) -(v k+1 . . . v k+l ) = r≥0 ζ∈Csh(k,l,r) (w 1 . . . w k+l-r ),
where

w j = v i if ζ -1 (j) = {i} and w j = [v i 1 v i 2 ] if ζ -1 (j) = {i 1 , i 2 }. • The coproduct ∆ Csh D of Csh D is given on any D-word v = (v 1 . . . v n ) by ∆ Csh D (v) = n i=0 (v 1 . . . v i ) ⊗ (v i+1 . . . v n ).
This is the same coproduct as for Sh D .

Example. If (v 1 v 2 ) and (v 3 v 4 ) are two D-words,

(v 1 v 2 ) -(v 3 v 4 ) = (v 1 v 2 v 3 v 4 ) + (v 1 v 3 v 2 v 4 ) + (v 3 v 1 v 2 v 4 ) + (v 1 v 3 v 4 v 2 ) +(v 3 v 1 v 4 v 2 ) + (v 3 v 4 v 1 v 2 ) + (v 1 [v 2 v 3 ] v 4 ) + ([v 1 v 3 ] v 2 v 4 ) +(v 1 v 3 [v 2 v 4 ]) + (v 3 [v 1 v 4 ] v 2 ) + ([v 1 v 3 ] [v 2 v 4 ])
3 Preordered forests

Preordered and heap-preordered forests

A preorder is a binary, reflexive and transitive relation. In particular, an antisymmetric preorder is an order. A preorder is total if two elements are always comparable. We introduce another version of ordered forests, the preordered forests.

Definition 5 A preordered forest F is a rooted forest F with a total preorder on V (F ). The set of preordered forests is denoted by F Hpo and the K-vector space generated by F Hpo is denoted by H po .

Remarks and notations.

1. Let F be a preordered forest. We denote by ≤ the total preorder on V (F ). Remark that the antisymmetric relation "x ≤ y and y ≤ x" is an equivalence relation denoted by R and the quotient set V (F )/R is totally ordered. We denote by q the cardinality of this quotient set. Let σ be the unique increasing map from V (F )/R to {1, . . . , q}. There exists a unique surjection σ : V (F ) → {1, . . . , q}, compatible with the equivalence R, such that the induced map on V (F )/R is σ. In the sequel, we shall note q = max(F ) (and we have always

q ≤ |F | v ).
Reciprocally, if F is a rooted forest and if σ : V (F ) → {1, . . . , q} is a surjection, q ≤ |F | v , then σ define a total preorder on V (F ) and F is a preordered forest.

As in the ordered case, we shall denote a preordered forest by F or (F, σ).

2. An ordered forest is also a preordered forest. Conversely, a preordered forest

(F, σ) is an ordered forest if |F | v = max(F ).
Examples. Preordered forests of vertices degree ≤ 3:

1, q 1 , q 1 q 1 , q 1 q 2 , q q 1 1 , q q 1 2 , q q 2 1 , q 1 q 1 q 1 , q 1 q 1 q 2 , q 1 q 2 q 2 , q 1 q 2 q 3 , q 1 q q 1 1 , q 1 q q 1 2 , q 1 q q 2 1 , q 1 q q 2 2 , q 1 q q 2 3 , q 1 q q 3 2 , q 2 q q 1 1 , q 2 q q 1 2 , q 2 q q 2 1 , q 2 q q 1 3 , q 2 q q 3 1 , q 3 q q 1 2 , q 3 q q 2 1 , q ∨ q q 1 1 1

, q ∨ q q 1 2 1 , q ∨ q q 2 1 1 , q ∨ q q 1 2 2 , q ∨ q q 2 2 1 , q ∨ q q 1 3 2 , q ∨ q q 2 3 1 , q ∨ q q 3 2 1 , q q q 1 1 1 , q q q 1 1 2 , q q q 1 2 1 , q q q 2 1 1 , q q q 1 2 2 , q q q 2 1 2 , q q q 2 2 1 , q q q 1 2 3 , q q q 1 3 2 , q q q 2 1 3 , q q q 3 1 2 , q q q 2 3 1 , q q q 3 2 1 .
Let (F, σ F ) and (G, σ G ) be two preordered forests with σ F : V (F ) → {1, . . . , q}, σ G : V (G) → {1, . . . , r}, q = max(F ) and r = max(G). Then F G is also a preordered forest (F G, σ F G ) where

σ F G = σ F ⊗ σ G :    V (F ) V (G) → {1, . . . , q + r} a ∈ V (F ) → σ F (a) a ∈ V (G) → σ G (a) + q.
(5)

In other terms, we keep the initial preorder on the vertices of F and G and we assume that the vertices of F are smaller than the vertices of G. In this way, we define a noncommutative product on the set of preordered forests. For example, the product of q q 1 3 q 2 and q ∨ q q 1 2 1 gives q q 1 3 q 2 q ∨ q q 4 5 4

, whereas the product of q ∨ q q 1 2 1 and q q 1 3 q 2 gives q ∨ q q 1 2 1 q q 3 5 q 4 . Remark that, if F and G are two preordered forests, max(F G) = max(F ) + max(G). This product is linearly extended to H po , which in this way becomes an algebra, gradued by the number of vertices.

Remark. The formula (5) on the preordered forests extends the formula (2) on the ordered forests.

We give some numerical values: if f Hpo n is the number of preordered forests of vertices degree n,

n 0 1 2 3 4 5 f Hpo n 1 1 5 38 424 6284
If F is a preordered forest, then any subforest G of F is also preordered: the total preorder on V (G) is the restriction of the total preorder of V (F ). So we can define a coproduct ∆ Hpo : H po → H po ⊗ H po on H po in the following way: for all F ∈ F Hpo ,

∆ Hpo (F ) = v|=V (F ) Lea v (F ) ⊗ Roo v (F ).
For example,

∆ Hpo ( q ∨ q q q 1 3 2 1 ) = q ∨ q q q 1 3 2 1 ⊗ 1 + 1 ⊗ q ∨ q q q 1 3 2 1 + q 1 ⊗ q ∨ q q 1 3 2 + q q 2 1 ⊗ q q 1 2 + q 1 ⊗ q q q 1 2 1 + q 1 q 2 ⊗ q q 1 2 + q q 2 1 q 3 ⊗ q 1 . With this coproduct, H po is a Hopf algebra. Remark that H o is a Hopf subalgebra of H po . Definition 6 A heap-preordered forest is a preordered forest F such that if a, b ∈ V (F ), a = b
and a ։ b, then a is strictly greater than b for the total preorder on V (F ). The set of heap-preordered forests is denoted by F H hpo Examples. Heap-preordered forests of vertices degree ≤ 3: 1, q 1 , q 1 q 1 , q 1 q 2 , q q 1 2 , q 1 q 1 q 1 , q 1 q 1 q 2 , q 1 q 2 q 2 , q 1 q 2 q 3 , q 1 q q 1 2 , q 1 q q 2 3 , q 2 q q 1 2 , q 2 q q 1 3 , q 3 q q 1 2 , q ∨ q q 1 2 2 , q ∨ q q 1 3 2 , q q q 1 2 3 . Definition 7 Let F be a nonempty rooted forest and q an integer ≤ |F | v . A linear preorder is a surjection σ : V (F ) → {1, . . . , q} such that if a, b ∈ V (F ), a = b and a ։ b then σ(a) > σ(b). We denote by O p (F ) the set of linear preorders on the nonempty rooted forest F .

Remarks. If (F, σ) is a heap-preordered forest, the surjection σ : V (F ) → {1, . . . , max(F )} is a linear preorder on F . Reciprocally, if F is a rooted forest and σ ∈ O p (F ), then σ define a total preorder on V (F ) such that (F, σ) is a heap-preordered forest.

If F and G are two heap-preordered forests, then F G is also heap-preordered. Moreover, any subforest G of a heap-preordered forest F is also a heap-preordered forest by restriction on V (G) of the total preorder of V (F ). So the subspace H hpo of H po generated by the heap-preordered forests is a graded Hopf subalgebra of H po .

We give some numerical values: if f

H hpo n
is the number of preordered forests of vertices degree n, n 0 1 2 3 4 5 f

H hpo n 1 1 3 12 64 428
We have the following diagram

H N CK / / H ho _ / / H o _ H hpo / / H po (6)
where the arrows ֒→ are injective morphisms of Hopf algebras (for the cut coproduct).

A morphism from H po to WQSym *

In this section, we give a similar result of proposition 4 in the preordered case.

Definition 8 Let (F, σ) be a nonempty preordered forest of vertices degree n and τ ∈ Surj n . Then we denote by S τ (F,σ) the set of bijective maps ϕ : V (F ) → {1, . . . , n} such that:

1. if v ∈ V (F ), then σ(v) = τ (ϕ(v)), 2. if v, v ′ ∈ V (F ), v ′ ։ v, then ϕ(v) ≥ ϕ(v ′ ).
Remark.

1. If max(F ) = max(τ ), then S τ (F,σ) = ∅. 2. Let F, G ∈ F Hpo , |F | v = k, |G| v = l. If ϕ 1 : V (F ) → {1, . . . , k} and ϕ 2 : V (G) → {1, . . . , l} are two bijective maps and ζ ∈ Sh(k, l), then ζ • (ϕ 1 ⊗ ϕ 2 ) : V (F G) → {1, . . . , k + l}, where ϕ 1 ⊗ ϕ 2 is defined in formula (2)
, is also a bijective map. Similary, considering a bijective map ϕ : V (F G) → {1, . . . , k + l} and ζ ∈ Sh(k, l). Then ϕ can be uniquely written as

ζ • (ϕ 1 ⊗ ϕ 2 )
, where ϕ 1 : V (F ) → {1, . . . , k} and ϕ 2 : V (G) → {1, . . . , l} are two bijective maps.

Theorem 9 Let us define:

Φ :    H po → WQSym * (F, σ) ∈ F Hpo → τ ∈Surj |F | v card(S τ (F,σ) ) τ. (7) 
Then Φ : H po → WQSym * is a Hopf algebra morphism, homogeneous of degree 0.

Examples.

• In vertices degree 1: Φ( q 1 ) = (1).

• In vertices degree 2:

Φ( q 1 q 1 ) = 2(11), Φ( q 1 q 2 ) = ( 12) + (21), Φ( q q b a ) = (ab).

• In vertices degree 3:

Φ( q 1 q 1 q 1 ) = 6(111) Φ( q q 1 2 q 2 ) = (212) + 2(221) Φ( q ∨ q q 2 1 2 ) = (122) + (212) Φ( q 2 q q 3 1 ) = (213) + (123) + (132) Φ( q q q 1 3 2 ) = (231) Φ( q 1 q q 3 2 ) = (123) + (213) + (231) Φ( q ∨ q q 1 2 2 ) = 2(221) Φ( q 1 q 1 q 2 ) = 2 [(112) + (121) + (211)] Proof. Obviously, Φ is homogeneous of degree 0. Let (F, σ F ), (G, σ G ) ∈ F Hpo , |F | v = k, |G| v = l and τ ∈ Surj k+l . τ can be uniquely written as τ = (τ 1 ⊗ τ 2 ) • ζ -1 with τ 1 ∈ Surj k , τ 2 ∈ Surj l and ζ ∈ Sh(k, l). Let ϕ ∈ S τ (F G,σ F G ) . Then ϕ can be uniquely written as ζ • (ϕ 1 ⊗ ϕ 2 ) with ϕ 1 : V (F ) → {1, . . . , k} and ϕ 2 : V (G) → {1, . . . , l} two bijective maps. 1. (a) If v ∈ V (F ), then σ F (v) = σ F G (v) = τ (ϕ(v)) = (τ 1 ⊗ τ 2 ) • ζ -1 • ζ • (ϕ 1 ⊗ ϕ 2 )(v) = τ 1 (ϕ 1 (v)).
Note that with this equality, we also have that max(F ) = max(τ 1 ).

(b) If v ∈ V (G), then σ G (v) + max(F ) = σ F G (v) = τ (ϕ(v)) = (τ 1 ⊗ τ 2 ) • ζ -1 • ζ • (ϕ 1 ⊗ ϕ 2 )(v) = τ 2 (ϕ 2 (v)) + max(τ 1 ). As max(F ) = max(τ 1 ), σ G (v) = τ 2 (ϕ 2 (v)). 2. (a) If v ′ ։ v in F , then v ′ ։ v in F G, so: ϕ(v) ≥ ϕ(v ′ ) ζ • (ϕ 1 ⊗ ϕ 2 )(v) ≥ ζ • (ϕ 1 ⊗ ϕ 2 )(v ′ ) ζ (ϕ 1 (v)) ≥ ζ ϕ 1 (v ′ ) ϕ 1 (v) ≥ ϕ 1 (v ′ ), as ζ is increasing on {1, . . . , k}. (b) If v ′ ։ v in G, then v ′ ։ v in F G, so: ϕ(v) ≥ ϕ(v ′ ) ζ • (ϕ 1 ⊗ ϕ 2 )(v) ≥ ζ • (ϕ 1 ⊗ ϕ 2 )(v ′ ) ζ (k + ϕ 2 (v)) ≥ ζ k + ϕ 2 (v ′ ) ϕ 2 (v) ≥ ϕ 2 (v ′ ), as ζ is increasing on {k + 1, . . . , k + l}. So ϕ 1 ∈ S τ 1 (F,σ F ) and ϕ 2 ∈ S τ 2 (G,σ G ) . Conversely, if ϕ = ζ • (ϕ 1 ⊗ ϕ 2 ), with ϕ 1 ∈ S τ 1 (F,σ F ) and ϕ 2 ∈ S τ 2 (G,σ G ) , the same computations shows that ϕ ∈ S (τ 1 ⊗τ 2 )•ζ -1 (F G,σ F G ) . So card(S τ (F G,σ F G ) ) = card(S τ 1 (F,σ F ) ) × card(S τ 2 (G,σ G ) ) and Φ((F G, σ F G )) = τ ∈Surj k+l card(S τ (F G,σ F G ) ) τ = ζ∈Sh(k,l) τ 1 ∈Surj k τ 2 ∈Surj l card(S (τ 1 ⊗τ 2 )•ζ -1 (F G,σ F G ) ) (τ 1 ⊗ τ 2 ) • ζ -1 = ζ∈Sh(k,l) τ 1 ∈Surj k τ 2 ∈Surj l card(S τ 1 (F,σ F ) ) × card(S τ 2 (G,σ G ) ) (τ 1 ⊗ τ 2 ) • ζ -1 =   τ 1 ∈Surj k card(S τ 1 (F,σ F ) ) τ 1     τ 2 ∈Surj l card(S τ 2 (G,σ G ) ) τ 2   = Φ((F, σ F ))Φ((G, σ G )).
So Φ is an algebra morphism.

Let (F, σ) ∈ F Hpo be a preordered forest such that |F | v = n and let v be an admissible cut of F . We obtain two preordered forests (Lea v (F ), σ 1 ) and

(Roo v (F ), σ 2 ). We set k = |Lea v (F )| v and l = |Roo v (F )| v . Let τ 1 ∈ Surj k , τ 2 ∈ Surj l and ϕ 1 ∈ S τ 1 (Leav(F ),σ 1 ) , ϕ 2 ∈ S τ 2 (Roov(F ),σ 2 ) . We set ϕ = ϕ 1 ⊗ ϕ 2 and we define τ by τ = σ • ϕ -1 . τ ∈ Surj n and max(τ ) = max(F ). Let us show that ϕ ∈ S τ (F,σ) . 1. By definition, τ = σ • ϕ -1 . So σ(v) = τ (ϕ(v)) for all v ∈ V (F ).
2. If v ′ ։ v in F , then three cases are possible:

(a) v and v ′ belong to V (Lea v (F )). As ϕ 1 ∈ S τ 1 (Leav(F ),σ 1 ) , ϕ 1 (v) ≥ ϕ 1 (v ′ ). Then ϕ(v) = (ϕ 1 ⊗ ϕ 2 )(v) = ϕ 1 (v) ≥ ϕ 1 (v ′ ) = (ϕ 1 ⊗ ϕ 2 )(v ′ ) = ϕ(v ′ ). (b) v and v ′ belong to V (Roo v (F )). As ϕ 2 ∈ S τ 2 (Leav(F ),σ 2 ) , ϕ 2 (v) ≥ ϕ 2 (v ′ ). Then ϕ(v) = (ϕ 1 ⊗ ϕ 2 )(v) = ϕ 2 (v) + k ≥ ϕ 2 (v ′ ) + k = (ϕ 1 ⊗ ϕ 2 )(v ′ ) = ϕ(v ′ ). (c) v ′ belong to V (Lea v (F )) and v belong to V (Roo v (F )). Then ϕ(v ′ ) = (ϕ 1 ⊗ ϕ 2 )(v ′ ) = ϕ 1 (v ′ ) ∈ {1, . . . , k} and ϕ(v) = (ϕ 1 ⊗ ϕ 2 )(v) = ϕ 2 (v) + k ∈ {k + 1, . . . , k + l}. So ϕ(v) > ϕ(v ′ ).
In any case, ϕ(v) ≥ ϕ(v ′ ).

Conversely, let (F, σ) ∈ F Hpo be a preordered forest of vertices degree n, τ ∈ Surj n and ϕ ∈ S τ (F,σ) . Let k ∈ {0, . . . , n} be an integer. We set τ (k) 1 and τ (k) 2 the words obtained by cutting the word representing τ between the k-th and the (k + 1)-th letter, and then packing the two obtained words.

Moreover, we define v a subset of ϕ -1 ({1, . . . , k}) such that v ։ w / for any couple (v, w) of two different elements of v. Then v |= V (F ) and we considere the two preordered forests

(Lea v (F ), σ (k) 1 ) and (Roo v (F ), σ (k)
2 ). Remark that, with the second point of definition 8, V (Lea v (F )) = ϕ -1 ({1, . . . , k}) and V (Roo v (F )) = ϕ -1 ({k + 1, . . . , n}).

We set ϕ

(k) 1 : v ∈ V (Lea v (F )) → ϕ(v) ∈ {1, . . . , k} and ϕ (k) 2 : v ∈ V (Roo v (F )) → ϕ(v) -k ∈ {1, . . . , n -k}. Thus ϕ = ϕ (k) 1 ⊗ ϕ (k) 2 .
Let us prove that ϕ

(k) 1 ∈ S τ (k) 1 (Leav(F ),σ (k) 1 )
and ϕ

(k) 2 ∈ S τ (k) 2 (Roov(F ),σ (k) 2 ) . 1. (a) If v ∈ V (Lea v (F )), ϕ(v) = ϕ (k) 1 (v) ∈ {1, . . . , k} and then σ (k) 1 (v) = pack • σ(v) = pack • τ • ϕ(v) = τ (k) 1 • ϕ (k) 1 (v). (b) If v ∈ V (Roo v (F )), ϕ(v) = ϕ (k) 2 (v) + k ∈ {k + 1, . . . , n} and then σ (k) 2 (v) = pack • σ(v) = pack • τ • ϕ(v) = τ (k) 2 • ϕ (k) 2 (v). 2. (a) If v ′ ։ v in Lea v (F ), then v ′ ։ v in F and ϕ (k) 1 (v) = ϕ(v) ≥ ϕ(v ′ ) = ϕ (k) 2 (v ′ ). (b) If v ′ ։ v in Roo v (F ), then v ′ ։ v in F and ϕ (k) 2 (v) = ϕ(v) -k ≥ ϕ(v ′ ) -k = ϕ (k) 2 (v ′ ).
Hence, there is a bijection:

       S τ (F,σ) × {0, . . . , |F | v } → v|=V (F ) S τ (k) 1 (Leav(F ),σ (k) 1 ) × S τ (k) 2 (Roov(F ),σ (k) 2 ) (ϕ, k) → ϕ (k) 1 , ϕ (k) 2 
.

Finally,

∆ WQSym * • Φ((F, σ)) = τ ∈Surj |F | v 0≤k≤n card(S τ (F,σ) ) τ (k) 1 ⊗ τ (k) 2 = v|=V (F ) τ 1 ∈Surj |Leav (F )| v τ 2 ∈Surj |Roov (F )| v card(S τ 1 (Leav(F ),σ (k) 1 ) 
)

τ 1 ⊗ card(S τ 2 (Roov (F ),σ (k) 2 ) 
)

τ 2 = (Φ ⊗ Φ) • ∆ Hpo .
So Φ is a coalgebra morphism. P Theorem 10 The restriction of Φ defined in formula (7) to H hpo is an injection of graded Hopf algebras.

Proof. We introduce a lexicographic order on the words with letters ∈ N * . Let u = (u 1 . . . u k ) and v = (v 1 . . . v l ) be two words. Then

• if u k = v k , u k-1 = v k-1 , . . . , u i+1 = v i+1 and u i > v i (resp. u i < v i ) with i ∈ {1, . . . , min(k, l)}, then u > v (resp. u < v), • if u i = v i for all i ∈ {1, . . . , min(k, l)} and if k > l (resp. k < l) then u > v (resp. u < v).
For example, (541) < (22), (433) < (533), (5362) < (72), (8225) < (1327), (215) < (1215).

If u and v are two words, we denote by uv the concatenation of u and v.

In this proof, if (F, σ) is a preordered forest, we consider F as a decorated forest where the vertices are decorated by integers. Consider

F = {(F, d) | F ∈ F H CK , d : V (F ) → N * such that if v → w then d(v) > d(w)}
the set of forests with their vertices decorated by nonzero integers and with an increasing condition.

Let (F, d) ∈ F be a forest of vertices degree n and if u = (u 1 . . . u n ) is a word of length n with u i ∈ N * . In the same way that definition 8, we define S u (F,d) as the set of bijective maps ϕ : V (F ) → {1, . . . , n} such that:

1. if v ∈ V (F ), then d(v) = u ϕ(v) , 2. if v, v ′ ∈ V (F ), v ′ ։ v, then ϕ(v) ≥ ϕ(v ′ ).

For example,

• if (F, d) = q ∨ q q q 2 4 3 7 ∈ F, then the words u such that S u (F,d) = ∅ are (7342), (7432), (4732).

• if (F, d) = q ∨ q q 1 4 3 q q 3 6 ∈ F, then the words u such that S u (F,d) = ∅ are (43163), ( 43613), ( 46313), ( 64313), ( 43631), ( 46331), ( 64331), ( 63431), (34163), (34613), (36413), ( 63413), (34631), (36431), (36341), (63341).

Let (F, d) be a forest of F. Then we set

m((F, d)) = max {u | S u (F,d) = ∅} .
For example, for (F, d)

= q ∨ q q q 2 4 3 7 ∈ F, m((F, d)) = (7342) and for (F, d) = q ∨ q q 1 4 3 q q 3 6 ∈ F, m((F, d)) = (34163).
If (F, d) ∈ F is the empty tree, m((F, σ)) = 1. Let (F, d) ∈ F be a nonempty tree of vertices degree n. We denote by (G, d ′ ) the forest of F obtained by deleting the root of

F . Then, if m((F, d)) = (u 1 . . . u n ), we have m((G, d ′ )) = (u 1 . . . u n-1
) and u n = d(R F ) the decoration of the root of F . Let (F, d) be a forest of vertices degree n, (F, d) is the disjoint union of trees with their vertices decorated by nonzero integers

(F 1 , d 1 ), . . . , (F k , d k ) ordered such that m((F 1 , d 1 )) ≤ . . . ≤ m((F k , d k )). Then m((F, d)) = m((F 1 , d 1 )) . . . m((F k , d k )): • By definition, S m((F i ,d i )) (F i ,d i ) = ∅ and if ϕ i ∈ S m((F i ,d i )) (F i ,d i ) then ϕ : V (F ) → {1, . . . , n}, defined for all 1 ≤ i ≤ k and v ∈ V (F i ) by ϕ(v) = ϕ i (v), is an element of S m((F 1 ,d 1 ))...m((F k ,d k )) (F,d) and S m((F 1 ,d 1 ))...m((F k ,d k )) (F,d) = ∅. So m((F, d)) ≥ m((F 1 , d 1 )) . . . m((F k , d k )). • If S u (F,d) = ∅, u is the shuffle of u 1 , . . . , u k such that S u i (F i ,d i ) = ∅ (see the proof of theorem 9). In particular, u i ≤ m((F i , d i )), so u ≤ m((F 1 , d 1 )) . . . m((F k , d k )) and m((F, d)) ≤ m((F 1 , d 1 )) . . . m((F k , d k )).
Let (F, d) ∈ F be a forest of vertices degree n and m((F, d)) = (u 1 . . . u n ). Let i 1 be the smallest index such that u 1 , . . . , u i 1 -1 > u i 1 and, for all j > i 1 , u i 1 ≤ u j . By construction, there exists a connected component

(F 1 , d 1 ) of (F, d) such that m((F 1 , d 1 )) = (u 1 . . . u i 1 ). Consider the word (u i 1 +1 . . . u n ). Let i 2 > i 1 be the smallest index such that u i 1 +1 , . . . , u i 2 -1 > u i 2 and, for all j > i 2 , u i 2 ≤ u j . Then there exists a connected component (F 2 , d 2 ) (different from (F 1 , d 1 )) such that m((F 2 , d 2 )) = (u i 1 +1 . . . u i 2 ).
In the same way, we construct i 3 , . . . , i k and

(F 3 , d 3 ), . . . , (F k , d k ). Then we have m((F, d)) = m((F 1 , d 1 )) . . . m((F k , d k ))
Let us prove that m is injective on F by induction on the vertices degree. If (F, d) is the empty tree, it is obvious. Let (F, d) be a nonempty forest of F of vertices degree n. • If (F, d) is not a tree, then (F, d) is the product of trees (F 1 , d 1 ), . . . ,

• If (F, d) is a tree, m((F, d)) = (u 1 . . . u n-1 u n ) with u n = d(R F ) the
(F k , d k ) of F ordered such that m((F 1 , d 1 )) ≤ . . . ≤ m((F k , d k )). So m((F, d)) = m((F 1 , d 1 )) . . . m((F k , d k ))
. By the induction hypothesis, for all 1 ≤ i ≤ k, (F i , d i ) is the unique tree of F such that its image by m is m((F i , d i )). So the product (F, d) of (F i , d i )'s is the unique forest of F such that its image by m is m((F, d)).

So m is injective on F. By triangularity, m is injective on F H hpo and we deduce that the restriction of Φ to H hpo is an injection of graded Hopf algebras. P 4 Hopf algebras of contractions

Commutative case

In [START_REF] Calaque | Two interacting Hopf algebras of trees[END_REF], D. Calaque, K. Ebrahimi-Fard and D. Manchon introduce a new coproduct, called in this paper the contraction coproduct, on the augmentation ideal of H CK (see also [START_REF] Manchon | Lois pré-Lie en interaction[END_REF]).

Definition 11 Let F be a nonempty rooted forest and e a subset of E(F ). Then we denote by 1. P art e (F ) the subforest of F obtained by keeping all the vertices of F and the edges of e, 2. Cont e (F ) the forest obtained by contracting each edge of e in F and identifying the two extremities of each edge of e.

We shall say that e is a contraction of F , P art e (F ) is the partition of F by e and Cont e (F ) is the contracted of F by e. Each vertex of Cont e (F ) can be identified to a connected component of P art e (F ).

Remarks.

• If e = ∅, then P art e (F ) = q . . .

q |F | v ×
and Cont e (F ) = F : this is the empty contraction of F .

• If e = E(F ), then P art e (F ) = F and Cont e (F ) = q : this is the total contraction of F .

Notations. We shall write e |= E(F ) if e is a contraction of F and e ||= E(F ) if e is a nonempty, nontotal contraction of F .

Example. Let T = q ∨ q q q be a rooted tree. Then contraction e q ∨ q q q q ∨ q q q q ∨ q q q q ∨ q q q q ∨ q q q q ∨ q q q q ∨ q q q q ∨ q q q P art e (T ) q ∨ q q q q q q q q q ∨ q q q q q q q q q q q q q q q q q q q q q q Cont e (T ) q q q q q q q q q q q ∨ q q q ∨ q q q ∨ q q q where, in the first line, the edges not belonging to e are striked out.

Remarks. Let F be a nonempty rooted forest and e |= E(F ). 

We have the following relation on the vertices degrees:

|F | v = |Cont e (F )| v + |P art e (F )| v -l(P art e (F )).
Let C CK be the quotient algebra H CK /I CK where I CK is the ideal spanned by q -1. In others terms, one identifies the unit 1 (for the concatenation) with the tree q . We note in the same way a rooted forest and his class in C CK . Then we define on C CK a contraction coproduct on each forest F ∈ C CK :

∆ C CK (F ) = e|=E(F ) P art e (F ) ⊗ Cont e (F ), = F ⊗ q + q ⊗ F + e||=E(F )
P art e (F ) ⊗ Cont e (F ).

In particular, ∆ C CK ( q ) = q ⊗ q .

Example.

∆ C CK ( q ∨ q q q ) = q ⊗ q ∨ q q q + q ∨ q q q ⊗ q + 2 q q ⊗ q ∨ q q + q q ⊗ q q q + q q q ⊗ q q + q ∨ q q ⊗ q q + q q q q ⊗ q q .

We define an algebra morphism ε:

ε : C CK → K F forest → δ F, q .
Then (C CK , ∆ C CK , ε) is a commutative Hopf algebra graded by the number of edges. C CK is non cocommutative (see for example the coproduct of q ∨ q q q ).

Remark. We define inductively:

∆ (0) C CK = Id, ∆ (1) 
C CK = ∆ C CK , ∆ (k) 
C CK = (∆ C CK ⊗ Id ⊗(k-1) ) • ∆ (k-1) C CK .
For all k ∈ N, ∆

C CK : C CK → C ⊗(k+1) CK (k) 
. If F is a rooted forest with n edges, there are (k + 1) n terms in the expression of ∆ (k)

C CK (F ): • If k = 0, this is obvious. • If k > 0, we have ( n l ) tensors F (1) ⊗ F (2) in ∆ C CK (F )
such that the left term F (1) have l edges. By the induction hypothesis, there are k l terms in ∆ (k-1)

C CK (F (1) ). So there are 0≤l≤n ( n l ) k l = (k + 1) n terms in the expression of ∆ (k) C CK (F ).
We give the first numbers of trees t C CK The first sequence is the sequence A000081 in [Slo].

We recall a combinatorial description of the antipode S C CK : C CK → C CK (see [START_REF] Calaque | Two interacting Hopf algebras of trees[END_REF]): 

Examples.

S C CK ( q ) = q , S C CK ( q q ) =q qq , S C CK ( q ∨ q q ) =q ∨ q q + 2 q q q q + 2 q q , S C CK ( q q q ) =q q q + 2 q q q q + 2 q q , S C CK ( q ∨ q q q ) =q ∨ q q q + 3 q q q ∨ q q + 2 q ∨ q q + 2 q q q q q + q q q -5 q q q q q q -6 q q q qq q .

We now give a decorated version of C CK . Let D be a nonempty set. A rooted forest with their edges decorated by D is a couple (F, d) where F is a forest of C CK and d : E(F ) → D is a map. We denote by C D CK the K-vector space spanned by rooted forests with edges decorated by D.

Examples.

1. Rooted trees decorated by D with edges degree smaller than 3:

q q a , a ∈ D, q ∨ q q b a , q q q a b , (a, b) ∈ D 2 , q q q q d a b c , q ∨ q q q b a c , q ∨ q q q b a c , q ∨ q q q a b c , q q q q a b c
, (a, b, c) ∈ D 3 .

2. Rooted forests decorated by D with edges degree smaller than 3: q q a , a ∈ D, q q a q q b , q ∨ q q b a , q q q a b , (a, b) ∈ D 2 , q q a q q b q q c , q q a q ∨ q q c b , q q a q q q b c , q q q q d a b c , q ∨ q q q b a c

, q ∨ q q q b a c , q ∨ q q q a b c , q q q q a b c , (a, b, c) ∈ D 3 . If F ∈ C D CK e |= E(F ), then P art e (F )
and Cont e (F ) are naturally rooted forests with their edges decorated by D: we keep the decoration of each edges. The vector space C D CK is a Hopf algebra. Its product is given by the concatenation and its coproduct is the contraction coproduct.

For example: if (a, b, c) ∈ D 3 , ∆ C D CK ( q ∨ q q q b a c ) = q ∨ q q q b a c ⊗ q + q ⊗ q ∨ q q q b a c + q q c ⊗ q ∨ q q b a + q q a ⊗ q ∨ q q b c
+ q q b ⊗ q q q a c + q q c q q b ⊗ q q a + q ∨ q q b a ⊗ q q c + q q q a c ⊗ q q b .

Notation. The set of nonempty trees of C CK (that is to say with at least one edge) will be denoted by T C CK . The set of nonempty trees with their edges decorated by D of C D CK will be denoted by T D C CK .

Insertion operations

Let T D CK be the K-vector space having for basis T D C CK . In this section, we prove that T D CK is equiped with two operations and £ such that (T D CK , , £) is a commutative prelie algebra.

Definition 13

1. A commutative prelie algebra is a K-vector space A together with two K-linear maps , £ : A ⊗ A → A such that x y = y x for all x, y ∈ A (that is to say is commutative) and satisfying the following relations : for all x, y, z ∈ A,

   (x y) z = x (y z), x £ (y £ z) -(x £ y) £ z = y £ (x £ z) -(y £ x) £ z, x £ (y z) = (x £ y) z + (x £ z) y. (9)
In other words, (A, , £) is a commutative prelie algebra if (A, ) is a commutative algebra and (A, £) is a left prelie algebra with a relationship between and £.

2. The commutative prelie operad, denoted ComPreLie, is the operad such that ComPreLiealgebras are commutative prelie algebras.

Remark. From this definition, it is clear that the operad ComPreLie is binary and quadratic (see [START_REF] Loday | Algebraic Operads[END_REF] for a definition).

Notations.

1. Let T ∈ T C CK be a tree with at least one edge. We denote by V * (T ) = V (T ) \ {R T } the set of vertices of T different from the root of T .

Let

T 1 , T 2 ∈ T C CK and v ∈ V (T 2 ). Then T 1 • v T 2
is the tree obtained by identifying the root R T 1 of T 1 and the vertex v of T 2 .

We define two K-linear maps :

T D CK ⊗ T D CK → T D CK and £ : T D CK ⊗ T D CK → T D CK as follow: if T 1 , T 2 ∈ T D C CK , T 1 T 2 = T 1 • R T 2 T 2 , T 1 £ T 2 = s∈V * (T 2 ) T 1 • s T 2 .
Examples.

1. For the map :

T D CK ⊗ T D CK → T D CK : q q a q q b = q ∨ q q b a q q a q q q b c = q ∨ q q q b a c q q q a b q q c = q ∨ q q q c a b q q a q ∨ q q c b = q q q q d a b c q ∨ q q b a q q c = q q q q d a b c q ∨ q q q a c d q q b = q ∨ q q ∨ q q b c a d 2. For the map £ : T D CK ⊗ T D CK → T D CK : q q a £ q q b = q q q b a q q a £ q ∨ q q c b = q ∨ q q q c b a + q ∨ q q q c b a q ∨ q q b a £ q q c = q ∨ q q q c a b q q q a b
£ q q c = q q q q c a b q q a £ q q q b c = q ∨ q q q b a c

+ q q q q b c a q ∨ q q b a £ q ∨ q q d c = q ∨ q q ∨ q q d a c b + q ∨ q q∨ q q c d b a Proposition 14 (T D CK , , £) is a ComPreLie-algebra. Proof. Let T 1 , T 2 , T 3 ∈ T D C CK .
Then

T 1 T 2 = T 1 • R T 2 T 2 = T 2 • R T 1 T 1 = T 2 T 1 .
Moreover,

(T 1 T 2 ) T 3 = (T 1 • R T 2 T 2 ) • R T 3 T 3 = T 1 • R (T 2 • R T 3 T 3 ) (T 2 • R T 3 T 3 ) = T 1 (T 2 T 3 ).
Therefore (T D CK , ) is a commutative algebra.

T 1 £ (T 2 £ T 3 ) = v∈V * (T 3 ) w∈V * (T 2 )∪V * (T 3 ) T 1 • w (T 2 • v T 3 ) = v∈V * (T 3 ),w∈V * (T 2 ) T 1 • w (T 2 • v T 3 ) + v,w∈V * (T 3 ) T 1 • w (T 2 • v T 3 ) = v∈V * (T 3 ),w∈V * (T 2 ) (T 1 • w T 2 ) • v T 3 + v,w∈V * (T 3 ) T 1 • w (T 2 • v T 3 ) = (T 1 £ T 2 ) £ T 3 + v,w∈V * (T 3 ) T 1 • w (T 2 • v T 3 ). So T 1 £ (T 2 £ T 3 ) -(T 1 £ T 2 ) £ T 3 = v,w∈V * (T 3 ) T 1 • w (T 2 • v T 3 ) = v,w∈V * (T 3 ) T 2 • v (T 1 • w T 3 ) = T 2 £ (T 1 £ T 3 ) -(T 2 £ T 1 ) £ T 3 .
Therefore, (T D CK , £) is a left prelie algebra.

It remains to prove the last relation of (9):

T 1 £ (T 2 T 3 ) = v∈V * (T 2 • R T 3 T 3 ) T 1 • v (T 2 • R T 3 T 3 ) = v∈V * (T 2 ) T 1 • v (T 2 • R T 3 T 3 ) + v∈V * (T 3 ) T 1 • v (T 2 • R T 3 T 3 ) = v∈V * (T 2 ) T 1 • v (T 2 • R T 3 T 3 ) + v∈V * (T 3 ) T 1 • v (T 3 • R T 2 T 2 ) =   v∈V * (T 2 ) T 1 • v T 2   • R T 3 T 3 +   v∈V * (T 3 ) T 1 • v T 3   • R T 2 T 2 = (T 1 £ T 2 ) T 3 + (T 1 £ T 3 ) T 2 .

P

Theorem 15 (T D CK , , £) is generated as ComPreLie-algebra by q q d , d ∈ D.

Notation. 

B a ( q ) = q q a B a⊗b ( q ⊗ q ) = q ∨ q q b a B a ( q q b ) = q q q a b B a ( q q q b c ) = q q q q a b c B a⊗b ( q q c ⊗ q ) = q ∨ q q q b a c B a⊗b ( q ⊗ q q c ) = q ∨ q q q b a c B a⊗b⊗c ( q ⊗ q ⊗ q ) = q q q q d a b c B a ( q ∨ q q c b ) = q ∨ q q q a b c B a⊗b ( q ∨ q q d c ⊗ q ) = q ∨ q q ∨ q q b c a d Proof.
Let us prove that (T D CK , , £) is generated as ComPreLie-algebra by q q d , d ∈ D by induction on the edges degree n. If n = 1, this is obvious. Let T ∈ T D CK be a tree of edges degree n ≥ 2. Let k be an integer such that T = B d 1 ⊗...⊗d k (T 1 ⊗ . . . ⊗ T k ) with d 1 , . . . , d k ∈ D and T 1 , . . . , T k trees (possibly empty) of C D CK . Then:

1. If k = 1, T = B d 1 (T 1 ) with |T 1 | e = n -1 ≥ 1.
By induction hypothesis, T 1 can be constructed from trees q q d , d ∈ D, with the operations and £. So T = T 1 £ q q d 1 can be also constructed from trees q q d , d ∈ D, with the operations and £.

2. Suppose that k ≥ 2. Then, for all i, 1 ≤ |B d i (T i )| e ≤ n -1. By induction hypothesis, the trees B d i (T i ) can be constructed from trees q q d , d ∈ D, with the operations and £. So T = B d 1 (T 1 ) . . . B d k (T k ) can be also constructed from trees q q d , d ∈ D, with the operations and £.

We conclude with the induction principle. P

Remarks.

1. (T D CK , , £) is not the free ComPreLie-algebra generated by q q d , d ∈ D. For example, q q a £ ( q q b £ q q c ) = q ∨ q q q c a b

+ q q q q c b a = ( q q a q q b ) £ q q c + ( q q a £ q q b ) £ q q c .

A description of the free

ComPreLie-algebra is given in [START_REF]The Hopf algebra of Fliess operators and its dual pre-Lie algebra[END_REF].

Noncommutative case

We give a noncommutative version of C CK . To do this, we work on the algebra H po .

Definition 16 Let (F, σ F ) be a nonempty preordered forest. In particular, F is a nonempty rooted forest. Let e be a contraction of F , P art e (F ) the partition of F by e and Cont e (F ) the contracted of F by e (see definition 11). Then:

1. P art e (F ) is a preordered forest (P art e (F ), σ P ) where σ P : v ∈ V (P art e (F )) → σ F (v). In other words, we keep the initial preorder of the vertices of F in P art e (F ). 

   σ F (R A ) < σ F (R B ) =⇒ σ C (a) < σ C (b), σ F (R A ) = σ F (R B ) =⇒ σ C (a) = σ C (b), σ F (R A ) > σ F (R B ) =⇒ σ C (a) > σ C (b). ( 10 
)
In other words, we contract each connected component of P art e (F ) to its root and we keep the initial preorder of the roots.

Example. Let T = q ∨ q q q 2 3 3 1 be a preordered tree. Then contraction e q ∨ q q q 2 3 3

1 q ∨ q q q 2 3 3 1 q ∨ q q q 2 3 3 1 q ∨ q q q 2 3 3 1 q ∨ q q q 2 3 3 1 q ∨ q q q 2 3 3 1 q ∨ q q q 2 3 3 1 q ∨ q q q 2 3 3 1 P art e (T )
q ∨ q q q 2 3 3 1 q q 2 3 q q 3 1 q 1 q ∨ q q 2 3 3 q q q 2 3 1 q 3 q 1 q q 2 3 q 3 q 2 q 3 q q 3 1 q 1 q q 2 3 q 3 q 1 q 2 q 3 q 3 Cont e (T )

q 1 q q 1 2 q q 2 1 q q 1 2 q q q 2 3 1 q ∨ q q 1 2 2 q ∨ q q 2 3 1 q ∨ q q q 2 3 3 1
where, in the first line, the edges not belonging to e are striked out.

Let I po be the ideal of H po generated by the elements F q i -F with F q i ∈ H po and F the forest contructed from F q i by deleting the vertex q i and keeping the same preorder on V (F ). For example,

• if F q i = q ∨ q q 3 3 1 q 2 then F = q ∨ q q 2 2 1 , • if F q i = q ∨ q q q 2 3 1 2 q 2 then F = q ∨ q q q 2 3 1 2 .
Let C po be the quotient algebra H po /I po . So one identifies the unit 1 (for the concatenation) with the tree q 1 . Note that C po is a graded algebra by the number of edges. We note in the same way a forest and his class in C po . We define on C po a contraction coproduct on each preordered forest F ∈ C po :

∆ Cpo (F ) = e|=E(F ) P art e (F ) ⊗ Cont e (F ), = F ⊗ q 1 + q 1 ⊗ F + e||=E(F ) P art e (F ) ⊗ Cont e (F ).
Examples.

∆ Cpo ( q 1 ) = q 1 ⊗ q 1 ∆ Cpo ( q q 2 1 ) = q q 2 1 ⊗ q 1 + q 1 ⊗ q q 2 1 ∆ Cpo ( q ∨ q q 2 2 1 ) = q ∨ q q 2 2 1 ⊗ q 1 + q 1 ⊗ q ∨ q q 2 2 1 + q q 2 1 ⊗ q q 1 1 + q q 1 1 ⊗ q q 2 1 ∆ Cpo ( q q 2 4 q q 3 1 ) = q q 2 4 q q 3 1 ⊗ q 1 + q 1 ⊗ q q 2 4 q q 3 1 + q q 1 2 ⊗ q q 2 1 + q q 2 1 ⊗ q q 1 2 ∆ Cpo ( q ∨ q q q 2 3 3 1 ) = q ∨ q q q 2 3 3 1 ⊗ q 1 + q 1 ⊗ q ∨ q q q 2 3 3 1 + q q 2 3 q q 3 1 ⊗ q q 1 2 + q ∨ q q 1 2 2 ⊗ q q 2 1 + q q q 2 3 1 ⊗ q q 1 2 + q q 1 2 ⊗ q q q 2 3 1 + q q 2 1 ⊗ q ∨ q q 1 2 2 + q q 1 2 ⊗ q ∨ q q 2 3 1 ∆ Cpo ( q ∨ q q 3 5 2 q q 4 1 ) = q ∨ q q 3 5 2 q q 4 1 ⊗ q 1 + q 1 ⊗ q ∨ q q 3 5 2 q q 4 1 + q q 2 1 ⊗ q q 2 4 q q 3 1 + q q 1 2 ⊗ q q 3 2 q q 4 1 + q q 2 1 ⊗ q ∨ q q 2 3 1 + q q 3 2 q q 4 1 ⊗ q q 1 2 + q q 2 4 q q 3 1 ⊗ q q 2 1 + q ∨ q q 2 3 1 ⊗ q q 2 1
Remark. ∆ Cpo is non cocommutative (see for example the coproduct of q ∨ q q q 2 3 3 1 ). In particular, if T is a preordered tree and e |= E(T ), Cont e (T ) is a preordered tree and P art e (T ) can be disconnected. The second component of the coproduct is linear: a tree instead of a polynomial in trees. This is a right combinatorial Hopf algebra (see [START_REF]Combinatorial hopf algebras[END_REF]).

Proposition 17

1. ∆ Cpo is a graded algebra morphism.

2. ∆ Cpo is coassociative.

Proof.

1. Let F, G be two preordered forests. Then

∆ Cpo (F G) = e|=E(F G) P art e (F G) ⊗ Cont e (F G) = e|=E(F ),f|=E(G) (P art e (F )P art f (G)) ⊗ (Cont e (F )Cont f (G)) =   e|=E(F ) P art e (F ) ⊗ Cont e (F )     f |=E(G) P art f (G) ⊗ Cont f (G)   = ∆ Cpo (F )∆ Cpo (G),
and ∆ Cpo is an algebra morphism. It is a graded algebra morphism with (8).

2. Let F be a nonempty preordered forest. Then

(∆ Cpo ⊗ Id) • ∆ Cpo (F ) = e|=E(F ) ∆ Cpo (P art e (F )) ⊗ Cont e (F ) = e|=E(F ) f |=E(P arte(F )) P art f (P art e (F )) ⊗ Cont f (P art e (F )) ⊗ Cont e (F ) = f ⊆e⊆E(F ) P art f (F ) ⊗ Cont f (P art e (F )) ⊗ Cont e (F ), and 
(Id ⊗ ∆ Cpo ) • ∆ Cpo (F ) = f |=E(F ) P art f (F ) ⊗ ∆ Cpo (Cont f (F )) = f |=E(F ) e|=E(Cont f (F )) P art f (F ) ⊗ P art e (Cont f (F )) ⊗ Cont e (Cont f (F )) = f |=E(F ),e⊆f P art f (F ) ⊗ P art e (Cont f (F )) ⊗ Cont e∪f (F ),
where to the last equality we use that

E(Cont f (F )) = f the complement of f in E(F ) and Cont e (Cont f (F )) = Cont e∪f (F ). Remark that {(e, f ) | f ⊆ e ⊆ E(F )} and {(e, f ) | f |= E(F ), e ⊆ f } are in bijection:    {(e, f ) | f ⊆ e ⊆ E(F )} → {(e, f ) | f |= E(F ), e ⊆ f } (e, f ) → (e \ f , f ) (e ∪ f , f ) ← (e, f ).

Moreover,

• in Cont f (P art e (F )) with f ⊆ e ⊆ E(F ): the edges belong to e ∩ f = e \ f ; the vertices are the connected components of P art e∩f (F ) = P art f (F ). The preorder on the vertices is given by the preorder on the roots of the connected components of P art f (F ).

• in P art e (Cont f (F )) with f |= E(F ), e ⊆ f : the edges belong to f ∩ e = e \ f = e; the vertices are the connected components of P art f (F ). As in the precedent case, the preorder on the vertices is given by the preorder on the roots of the connected components of P art f (F ).

So Cont f (P art e (F )) and P art e (Cont f (F )) are the same forests with the same preorder on the vertices.

Therefore (∆ Cpo ⊗ Id) • ∆ Cpo (F ) = (Id ⊗ ∆ Cpo ) • ∆ Cpo (F ).

P

We now define ε :

C po → K F forest → δ F, q 1 .
ε is an algebra morphism.

Proposition 18 ε is a counit for the coproduct ∆ Cpo .

Proof. Let F be a forest ∈ C po . We use the Sweedler notation:

∆ Cpo (F ) = F ⊗ q 1 + q 1 ⊗ F + F F (1) ⊗ F (2) . Then (ε ⊗ Id) • ∆ Cpo (F ) = ε(F ) q 1 + ε( q 1 )F + F ε(F (1) ) ⊗ F (2) = F, (Id ⊗ ε) • ∆ Cpo (F ) = F ε( q 1 ) + q 1 ε(F ) + F F (1) ε(F (2) ) = F.
Therefore ε is a counit for the coproduct ∆ Cpo . P

As (C po , ∆ Cpo , ε) is gradued (by the number of edges) and connected, we have the following theorem:

Theorem 19 (C po , ∆ Cpo , ε) is a Hopf algebra.
We denote the antipode of the Hopf algebra C po by S Cpo . We have the same combinatorial description of S Cpo as the commutative case (see proposition 12). We give some values of S Cpo :

• In edges degree 0, S Cpo ( q 1 ) = q 1 .

• In edges degree 1, S Cpo ( q q 1 1 ) =q q 1 1q 1 , S Cpo ( q q 1 2 ) =q q 1 2q 1 and S Cpo ( q q 2 1 ) =q q 2 1q 1 .

• In edges degree 2,

S Cpo ( q ∨ q q 1 2 2 ) = -q ∨ q q 1 2 2 + 2 q q 1 2 q q 3 4 + 2 q q 1 2 , S Cpo ( q ∨ q q 2 3 1 ) = -q ∨ q q 2 3 1 + q q 2 1 q q 3 4 + q q 1 2 q q 4 3 + q q 1 2 + q q 2 1 , S Cpo ( q q q 1 2 1 ) = -q q q 1 2 1 + q q 1 2 q q 3 3 + q q 2 1 q q 3 4 + q q 1 1 + q q 1 2 , S Cpo ( q q 2 3 q q 3 1 ) = -q q 2 3 q q 3 1 + q q 1 2 q q 4 3 + q q 2 1 q q 3 4 + q q 2 1 + q q 1 2 .
• In edges degree 3, S Cpo ( q ∨ q q q 2 3 3 1 ) =q ∨ q q q 2 3 3 1 + q q 2 3 q q 3 1 q q 4 5q q 1 2 q q 4 3 q q 5 6q q 2 1 q q 3 4 q q 5 6q q 2 1 q q 3 4q q 1 2 q q 3 4 + q ∨ q q 1 2 2 q q 4 3 -2 q q 1 2 q q 3 4 q q 6 5 -2 q q 1 2 q q 4 3 + q q q 2 3 1 q q 3 4q q 2 1 q q 3 4 q q 5 6q q 1 2 q q 3 4q q 1 2 q q 4 3 q q 5 6q q 2 1 q q 3 4 + q q 1 2 q q q 4 5 3

+ q q q 2 3 1 + q q 2 1 q ∨ q q 3 4 4 + q ∨ q q 1 2 2 + q q 1 2 q ∨ q q 4 5 3 + q ∨ q q 2 3 1 . Let C ′
hpo be the K-algebra spanned by nonempty heap-preordered forests, C ′ o be the Kalgebra spanned by nonempty ordered forests, C ′ ho be the K-algebra spanned by nonempty heap-ordered forests and C ′ N CK be the K-algebra spanned by nonempty planar forests. We consider the quotients

C hpo = C ′ hpo /(I po ∩ C ′ hpo ), C o = C ′ o /(I po ∩ C ′ o ), C ho = C ′ ho /(I po ∩ C ′ ho ) and C N CK = C ′ N CK /(I po ∩ C ′ N CK ).
We have in this case a similar diagram to (6):

C N CK / / C ho _ / / C o _ C hpo / / C po
where the arrows ֒→ are injective morphisms of algebras. But they are not always morphisms of Hopf algebras (for the contraction coproduct):

Theorem 20 1. C hpo is a Hopf subalgebra of the Hopf algebra C po .

2. C o is a Hopf subalgebra of the Hopf algebra C po .

3. C ho is a Hopf subalgebra of the Hopf algebra C o and of the Hopf algebra C hpo .

4. C N CK is a left comodule of the Hopf algebra C ho .

Notations. We denote by

∆ C hpo , ∆ Co , ∆ C ho the restrictions of ∆ Cpo to C hpo , C o , C ho .
Remark. C N CK is not a Hopf subalgebra of the Hopf algebra C ho . For example, q ∨ q q q 1 4 2 3 ∈ C N CK and

∆ C ho ( q ∨ q q q 1 4 2 3 ) = q ∨ q q q 1 4 2 3 ⊗ q 1 + q 1 ⊗ q ∨ q q q 1 4 2 3 + q q q 1 2 3 ⊗ q q 1 2 + q ∨ q q 1 3 2 ⊗ q q 1 2 + 2 q q 1 2 ⊗ q ∨ q q 1 3 2 + q q 1 2 ⊗ q q q 1 2 3 + q q 1 4 q q 2 3 ⊗ q q 1 2 . Then q q 1 4 q q 2 3 ⊗ q q 1 2 / ∈ C N CK ⊗ C N CK .
Proof. In the ordered case, we give some values in a small degrees : These is the sequence A105785 in [Slo].

(F, σ F ) ∈ C hpo , σ F (R A ) > σ F (R B ). Then, by definition 16, σ C (a) > σ C (b). So (Cont e (F ), σ C ) ∈ C hpo . Therefore if (F, σ F ) ∈ C hpo , ∆ Cpo (F ) ∈ C hpo ⊗ C hpo and C hpo is a Hopf subalgebra of C po . 2. C o is a subalgebra of C po . Let (F, σ F ) ∈ C o
, R A ։ R C , R B ։ R C and R A is on the left of R B . As (F, σ F ) ∈ C N CK , σ F (R A ) < σ F (R B ). So σ C (a) < σ C (b).
n
Let us now study the heap-ordered case. We denote by f C ho n,l the forests of C ho of edges degree n and of length l, and by f C ho n the forests of C ho of edges degree n. In small degree, we have the following values:

         f C ho 0,0 = f C ho 1,1 = 1, f C ho 0,l = 0 for all l ≥ 1, f C ho 1,l = 0 for all l = 1, f C ho n,0 = 0 for all n = 1.
Let n and l be two integers ≥ 1. To obtain a forest F ∈ C ho of edges degree n and of length l (so |F | v = n + l), we have two cases :

1. We consider a forest G ∈ C ho of edges degree n -1 and of length l and we graft the vertex n + l on the vertex i of G. For each forest G, we have n + l -1 possibilities.

2. We consider a forest G ∈ C ho of edges degree n -1 and of length l -1. Then, for all i ∈ {1, . . . , n + l -1}, the forest G q q i n + l of edges degree n and of vertices degree l is an element of C ho (where G is the same forest of G with for all j ≥ i the vertex j in G is the vertex j + 1 in G). For each forest G, we have n + l -1 possibilities.

So

f C ho n,l = (n + l -1)f C ho n-1,l + (n + l -1)f C ho n-1,l-1 .
We give some values of f C ho n,l in a small degrees and in a small lengths : This is the sequence A032188 in [Slo].

Remark. Consider the map ϕ : F H ho → Σ defined by induction as follows. If F = 1, ϕ(F ) = 1 and if F = q 1 , ϕ(F ) = (1). Let F ∈ H ho be a forest of vertices degree n and v the vertex indexed by n. As F is a heap-ordered forest, two cases are possible:

• The vertex v is an isolated vertex. We denote by G the heap-ordered forest obtained by deleting the vertex v of F . Thus ϕ(G) = τ ′ is well defined by induction. Then ϕ(F ) is the permutation τ defined by

τ (i) = τ ′ (i) if i = n τ (n) = n.
• The vertex v is a leaf and we denote by k the indexe of v ′ with v → v ′ . Similarly, we denote by G the heap-ordered forest obtained by deleting the vertex v of F . ϕ(G) = τ ′ is well defined by induction and ϕ(F ) is the permutation τ defined by

   τ (i) = τ ′ (i) if i = k τ (k) = n τ (n) = τ ′ (k).
Then ϕ : F H ho → Σ is a bijective map. Remark that, if F ∈ F H ho , each connected component of F corresponds to one cycle in the writing of ϕ(F ) in product of disjoint cycles. Moreover, the restriction of ϕ to the forests of C ho is a bijective map with values in the set of permutations without fixed point.

In the planar case, we can obtain the formal series. Let t C NCK n be the number of trees ∈ C N CK of edges degree n and f C NCK n be the number of forests ∈ C N CK of edges degree n. We put

T C NCK (x) = k≥0 t C NCK k x k and F C NCK (x) = k≥0 f C NCK k x k . Then:
Proposition 21 The formal series T C NCK and F C NCK are given by:

T C NCK (x) = 1 -2x - √ 1 -4x 2x , F C NCK (x) = 2x 4x -1 + √ 1 -4x .
Proof. With formula (1), we deduce that:

T C NCK (x) = 1 - √ 1 -4x 2x -1 = 1 -2x - √ 1 -4x 2x . 5.1 From H D CK to Sh D Let ϕ : K T D H CK → K (D) be a K-linear map.
Theorem 23 There exists a unique Hopf algebra morphism Φ :

H D CK → Sh D such that the following diagram K T D H CK ϕ / / _ i K (D) H D CK Φ / / Sh D π O O O O (11) is commutative.
Proof. Existence: We define Φ by induction on the number of vertices. We put Φ(1) = 1 ⊗ 1 and Φ( q a ) = ϕ( q a ) for all a ∈ D. Suppose that Φ is defined for all forest F of vertices degree < n and satisfies the condition

(Φ ⊗ Φ) • ∆H D CK (F ) = ∆Sh D • Φ(F ). Let F ∈ H D CK be a forest of vertices degree n. If F = F 1 F 2 , we put Φ(F ) = Φ(F 1 )Φ(F 2 ). Suppose that F is a tree. By induction hypothesis, (Φ ⊗ Φ) • ∆H D CK (F ) is well defined. Moreover, ( ∆Sh D ⊗ Id Sh D -Id Sh D ⊗ ∆Sh D ) • (Φ ⊗ Φ) • ∆H D CK (F ) = (Φ ⊗ Φ ⊗ Φ) • ( ∆H D CK ⊗ Id H D CK -Id H D CK ⊗ ∆H D CK ) • ∆H D CK (F ) = 0,
using induction hypothesis in the first equality and the coassociativity in the second equality.

So

(Φ ⊗ Φ)• ∆H D CK (F ) ∈ Ker( ∆Sh D ⊗ Id Sh D -Id Sh D ⊗ ∆Sh D ). As Sh D is cofree, with lemma 22, (Φ ⊗ Φ) • ∆H D CK (F ) ∈ Im( ∆Sh D ) and there exists w ∈ Sh D such that (Φ ⊗ Φ) • ∆H D CK (F ) = ∆Sh D (w). We put Φ(F ) = w -π(w) + ϕ(F ). Then π • Φ(F ) = π(w) -π • π(w) + π • ϕ(F ) = ϕ(F ), ∆Sh D • Φ(F ) = ∆Sh D (w) -∆Sh D (π(w)) + ∆Sh D (ϕ(F )) = ∆Sh D (w) = (Φ ⊗ Φ) • ∆H D CK (F ).
By induction, the result is established.

Uniqueness: Let Φ 1 and Φ 2 be two Hopf algebra morphisms such that the diagram (11) is commutative. Let us prove that Φ 1 (T ) = Φ 2 (T ) for all tree T ∈ H D CK by induction on the vertices degree of

T . If n = 0, Φ 1 (1) = Φ 2 (1) = 1. If n = 1, for i = 1, 2, ∆Sh D • Φ i ( q a ) = (Φ i ⊗ Φ i ) • ∆H D CK ( q a ) = 0. So Φ i ( q a ) ∈ V ect(D). As the diagram (11) is commutative, Φ 1 ( q a ) = Φ 2 ( q a ) = ϕ( q a ).
Suppose that the result is true in vertices degree < n and let T be a tree of vertices degree n. Using induction hypothesis in the second equality,

∆Sh D • Φ 1 (T ) = (Φ 1 ⊗ Φ 1 ) • ∆H D CK (T ) = (Φ 2 ⊗ Φ 2 ) • ∆H D CK (T ) = ∆Sh D • Φ 2 (T ). So Φ 1 (T )-Φ 2 (T ) ∈ V ect(T D H CK ) and Φ 1 (T )-Φ 2 (T ) = π(Φ 1 (T )-Φ 2 (T )) = ϕ(T )-ϕ(T ) = 0. P Notation.
We consider F ∈ H CK , e |= E(F ) and σ ∈ O(Cont e (F )) a linear order on Cont e (F ) (see definition 3). For all i ∈ {1, . . . , |Cont e (F )| v }, σ -1 (i) is the connected component of P art e (F ) such that her image by σ is equal to i.

The following proposition give a combinatorial description of the morphism Φ defined in theorem 23 :

Proposition 24 Let T be a nonempty tree ∈ H D CK . Then

Φ(T ) = e|=E(T )   σ∈O(Conte(T )) ϕ(σ -1 (|Cont e (F )| v )) . . . ϕ(σ -1 (1))   . (12) 
Proof. We use the following lemma:

Lemma 25 Let T be a rooted tree of vertices degree n. We define :

E(T ) = {(v, σ 1 , σ 2 ) | v ||= V (T ), σ 1 ∈ O(Lea v (T )), σ 2 ∈ O(Roo v (T ))}, F(T ) = {(σ, p) | σ ∈ O(T ), p ∈ {1, . . . , n -1}}.
Then E(T ) and F(T ) are in bijection.

Proof. We define two maps f and g. Let f be the map defined by

f : E(T ) → F(T ) (v, σ 1 , σ 2 ) → (σ, |Roo v (T )| v )
where σ : V (T ) → {1, . . . , n} is defined by σ(v) = σ 2 (v) for all v ∈ V (Roo v (T )) and σ(v) = σ 1 (v) + |Roo v (T )| v for all v ∈ V (Lea v (T )). By definition, σ ∈ O(T ).

Let g be the map defined by g :

F(T ) → E(T ) (σ, p) → (v, σ 1 , σ 2 )
where

• σ 1 : V (Lea v (T )) → {1, . . . , |Lea v (T )| v } is defined by σ 1 (v) = σ(v) -|Roo v (T )| v for all v ∈ V (Lea v (T )). Then σ 1 ∈ O(Lea v (T )) • σ 2 : V (Roo v (T )) → {1, . . . , |Roo v (T )| v } is defined by σ 2 (v) = σ(v) for all v ∈ V (Roo v (T )). Then σ 2 ∈ O(Roo v (T )) • v is the subset v ∈ σ -1 ({k, . . . , n}) | if w ∈ σ -1 ({k, . . . , n}) and v ։ w then v = w of V (T ). We have v ||= V (T ).
So f and g are well defined. Then we show easily that f • g = Id F(T ) and g • f = Id E(T ) . P

Let us show formula (12) by induction on the number n of vertices. If n = 1, T = q a with a ∈ D. Then Φ( q a ) = ϕ( q a ) and formula (12

) is true. If n ≥ 2, ∆Sh D • Φ(T ) = (Φ ⊗ Φ) • ∆H D CK (T ) = v||=V (T ) Φ(Lea v (T )) ⊗ Φ(Roo v (T )) = v||=V (T )   e|=E(Leav(T ))   σ 1 ∈O(Conte(Leav(T ))) ϕ(σ -1 1 (|Cont e (Lea v (T ))| v )) . . . ϕ(σ -1 1 (1))     ⊗   f |=E(Roov(T ))   σ 2 ∈O(Cont f (Roov (T ))) ϕ(σ -1 2 (|Cont f (Roo v (T ))| v )) . . . ϕ(σ -1 2 (1))     = e|=E(T ) (v,σ 1 ,σ 2 )∈E(Conte(T )) ϕ(σ -1 1 (|Lea v (Cont e (T ))| v )) . . . ϕ(σ -1 1 (1)) ⊗ϕ(σ -1 2 (|Roo v (Cont e (T ))| v )) . . . ϕ(σ -1 2 (1)) = e|=E(T ) (σ,p)∈F(Conte(T )) ϕ(σ -1 (|Cont e (T )| v )) . . . ϕ(σ -1 (p + 1)) ⊗ ϕ(σ -1 (p)) . . . ϕ(σ -1 (1)). So Φ(T ) = e|=E(T )   σ∈O(Conte(T )) ϕ(σ -1 (|Cont e (F )| v )) . . . ϕ(σ -1 (1))  
and by induction, we have the result. P

Examples.

• In vertices degree 1, Φ( q a ) = ϕ( q a ).

• In vertices degree 2, Φ( q q a b ) = ϕ( q b )ϕ( q a ) + ϕ( q q a b ) Φ( q a q b ) = ϕ( q a )ϕ( q b ) + ϕ( q b )ϕ( q a ).

• In vertices degree 3,

Φ( q ∨ q q a c b ) = ϕ( q b )ϕ( q c )ϕ( q a ) + ϕ( q c )ϕ( q b )ϕ( q a ) + ϕ( q b )ϕ( q q a c ) + ϕ( q c )ϕ( q q a b ) + ϕ( q ∨ q q a c b ) Φ( q q q a b c ) = ϕ( q c )ϕ( q b )ϕ( q a ) + ϕ( q c )ϕ( q q a b ) + ϕ( q q b c )ϕ( q a ) + ϕ( q q q a b c ) Φ( q ∨ q q q a d b c ) = ϕ( q c )ϕ( q b )ϕ( q d )ϕ( q a ) + ϕ( q c )ϕ( q d )ϕ( q b )ϕ( q a ) + ϕ( q d )ϕ( q c )ϕ( q b )ϕ( q a ) +ϕ( q c )ϕ( q b )ϕ( q q a d ) + ϕ( q c )ϕ( q d )ϕ( q q a b ) + ϕ( q d )ϕ( q c )ϕ( q q a b ) + ϕ( q q b c )ϕ( q d )ϕ( q a ) +ϕ( q d )ϕ( q q b c )ϕ( q a ) + ϕ( q q b c )ϕ( q q a d ) + ϕ( q c )ϕ( q ∨ q q a d b ) + ϕ( q d )ϕ( q q q a b c ) + ϕ( q ∨ q q q a d b c
).

Particular case. If ϕ( q a ) = a for all a ∈ D and ϕ(T ) = 0 if |T | v ≥ 1, then this is the particular case of arborification (see [START_REF] Ecalle | The arborification-coarborification transform: analytic, combinatorial, and algebraic aspects[END_REF]). For example : Theorem 26 There exists a unique Hopf algebra morphism Φ :

Φ( q a ) = a Φ( q q a b ) = ba Φ( q a q b ) = ab + ba Φ( q ∨ q q a c b ) = bca + cba Φ( q q q a b c ) = cba Φ( q ∨ q q q a d b c ) = cbda + cdba + dcba.
H D CK → Csh D such that the following diagram K T D H CK ϕ / / _ i K (D) H D CK Φ / / Csh D π O O O O (13) is commutative.
Proof. Noting that Csh D is cofree, this is the same proof as for theorem 23. P Notation. Let F ∈ H CK be a nonempty rooted forest, e |= E(F ) and σ ∈ O p (Cont e (F )) a lineair preorder on Cont e (F ) (see definition 7), σ : V (Cont e (F )) → {1, . . . , q} surjective. For all i ∈ {1, . . . , q}, σ -1 (i) is the forest T 1 . . . T n of all connected components T k of P art e (F ) such that σ(T k ) = i for all k ∈ {1, . . . , n}. In this case, ϕ(σ -1 (i)) is the element [ϕ(T 1 ) . . . ϕ(T n )] (n) . Now, we give a combinatorial description of the morphism Φ defined in theorem 26:

Proposition 27 Let T be a nonempty tree ∈ H D CK . Then

Φ(T ) = e|=E(T ) σ∈Op(Conte(T )) Im(σ)={1,...,q} ϕ(σ -1 (q)) . . . ϕ(σ -1 (1)) . (14) 
Proof. It suffices to resume the proof of proposition 24. Note that, if T is a rooted tree and v |= V (T ), Roo v (T ) is a tree and Lea v (T ) is a forest. So there is possibly contractions for the product [•, •] to the left of (Φ ⊗ Φ) • ∆H D CK (T ). We deduce formula (14). P

Examples.

• In vertices degree 1, Φ( q a ) = ϕ( q a ).

• In vertices degree 2, Φ( q a q b ) = ϕ( q a )ϕ( q b ) + ϕ( q b )ϕ( q a ) + [ϕ( q a )ϕ( q b )] Φ( q q a b ) = ϕ( q b )ϕ( q a ) + ϕ( q q a b ).

• In vertices degree 3,

Φ( q ∨ q q a c b ) = ϕ( q b )ϕ( q c )ϕ( q a ) + ϕ( q c )ϕ( q b )ϕ( q a ) + [ϕ( q c )ϕ( q b )] ϕ( q a ) + ϕ( q b )ϕ( q q a c ) +ϕ( q c )ϕ( q q a b ) + ϕ( q ∨ q q a c b ) Φ( q q q a b c ) = ϕ( q c )ϕ( q b )ϕ( q a ) + ϕ( q c )ϕ( q q a b ) + ϕ( q q b c )ϕ( q a ) + ϕ( q q q a b c ) Φ( q ∨ q q q a d b c ) = ϕ( q c )ϕ( q b )ϕ( q d )ϕ( q a ) + ϕ( q c ) [ϕ( q b )ϕ( q d )] ϕ( q a ) + ϕ( q c )ϕ( q d )ϕ( q b )ϕ( q a ) + [ϕ( q c )ϕ( q d )] ϕ( q b )ϕ( q a ) + ϕ( q d )ϕ( q c )ϕ( q b )ϕ( q a ) + ϕ( q c )ϕ( q b )ϕ( q q a d ) +ϕ( q c )ϕ( q d )ϕ( q q a b ) + ϕ( q d )ϕ( q c )ϕ( q q a b ) + ϕ( q q b c )ϕ( q d )ϕ( q a ) + [ϕ( q q b c )ϕ( q d )] ϕ( q a ) + ϕ( q d )ϕ( q q b c )ϕ( q a ) + ϕ( q q b c )ϕ( q q a d ) + ϕ( q c )ϕ( q ∨ q q a d b ) +ϕ( q d )ϕ( q q q a b c ) + ϕ( q ∨ q q q a d b c ).
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5.3 From C D CK to Sh D Let ϕ : K T D C CK → K (D) be a K-linear map.
Theorem 28 There exists a unique Hopf algebra morphism Φ :

C D CK → Sh D such that the following diagram K T D C CK ϕ / / _ i K (D) C D CK Φ / / Sh D π O O O O (15) is commutative.
Proof. This is the same proof as for theorem 23. P

As in the sections 5.1 and 5.2, we give a combinatorial description of the morphism Φ defined in theorem 28. We need the following definition:

Definition 29 Let F be a nonempty rooted forest of C CK . A generalized partition of F is a k-uplet (e 1 , . . . , e k ) of subsets of E(F ), 1 ≤ k ≤ |F | e , such that:

1. e i = ∅, e i ∩ e j = ∅ if i = j and ∪ i e i = E(F ), 2. the edges ∈ e i are the edges of the same connected component of F , 3. if v and w are two vertices of P art e i (F ) and if the shortest path in F between v and w contains an edge ∈ e j , then j < i.

We shall denote by P(F ) the set of generalized partitions of F .

Remark. If F is a nonempty rooted forest and if (e 1 , . . . , e k ) ∈ P(F ), Cont e i (F ) = P art e i (F ) is a tree for all i (with the second point of the definition 29). 

Proof. We use the following lemma:

Lemma 31 If F ∈ C D CK is a nonempty tree, then the sets E(F ) = {((e 1 , . . . , e k ), p) | (e 1 , . . . , e k ) ∈ P(F ), 1 ≤ p ≤ k -1} F(F ) = { e, (f 1 , . . . , f q ), (g 1 , . . . , g r ) | e ||= E(F ), (f 1 , . . . , f q ) ∈ P(P art e (F )), (g 1 , . . . , g r ) ∈ P(Cont e (F ))} are in bijections.

Proof. Consider the following two maps:

f : E(F ) → F(F ) ((e 1 , . . . , e k ), p) → (∪ 1≤i≤p e i , (e 1 , . . . , e p ), (e p+1 , . . . , e k )) and g : F(F ) → E(F ) e, (f 1 , . . . , f q ), (g 1 , . . . , g r ) → (f 1 , . . . , f q , g 1 , . . . , g r ), q . f is well defined :

Let ((e 1 , . . . , e k ), p) ∈ E(F ). Then e = ∪ 1≤i≤p e i is a nonempty nontotal contraction of F . (c) Let v and w be two vertices of P art e i (P art e (F )) = P art e i (F ) (because e i ⊆ e). If the shortest path in P art e (F ) between v and w contains an edge ∈ e j , then the shortest path in F between v and w contains also an edge ∈ e j . As (e 1 , . . . , e k ) ∈ P(F ), we have j < i.

So (e 1 , . . . , e p ) ∈ P(P art e (F )). (c) Let i be an integer ∈ {p + 1, . . . , k} and v and w two vertices of P art e i (Cont e (F )) = P art e i (F ) (because e i ∩ e = ∅). If the shortest path in Cont e (F ) between v and w contains an edge ∈ e j then the shortest path in F between v and w contains also an edge ∈ e j . As (e 1 , . . . , e k ) ∈ P(F ), we have j < i.

Thus (e p+1 , . . . , e k ) ∈ P(Cont e (F )).

So f (((e 1 , . . . , e k ), p)) ∈ F(F ).

g is well defined : Let e, (f 1 , . . . , f q ), (g 1 , . . . , g r ) ∈ F(F ). Let us show that (f 1 , . . . , f q , g 1 , . . . , g r ) ∈ P(F ).

1. As (f 1 , . . . , f q ) ∈ P(P art e (F )) and (g 1 , . . . , g r ) ∈ P(Cont e (F )), 3. (a) Let i be an integer ∈ {1, . . . , q} and v and w two vertices of P art f i (F ). We have f i ⊆ e therefore P art f i (F ) = P art f i (P art e (F )). If the shortest path in F between v and w contains:

f i = ∅, g i = ∅, f i ∩ f j = ∅, g i ∩ g j = ∅ and (∪ i f i ) (∪ i g i ) =
i. an edge ∈ f j . As (f 1 , . . . , f q ) ∈ P(P art e (F )), j < i. ii. an edge ∈ g j . Then the connected component of P art e (F ) containing v and w has an edge ∈ g j . This is impossible because E(P art e (F )) = e and g j ⊆ E(Cont e (F )) = e.

(b) Let i be an integer ∈ {1, . . . , r} and v and w two vertices of P art g i (F ). g i ∩ e = ∅ therefore P art g i (F ) = P art g i (Cont e (F )). If the shortest path in F between v and w contains:

i. an edge ∈ g j . As (g 1 , . . . , g r ) ∈ P(Cont e (F )), j < i. ii. an edge ∈ f j . It is good because f j is before g i . Thus (f 1 , . . . , f q , g 1 , . . . , g r ) ∈ P(F ).

So g e, (f 1 , . . . , f q ), (g 1 , . . . , g r ) ∈ E(F ) Finally, we easily see that f • g = Id F(F ) and g • f = Id E(F ) . P

We now prove proposition 30. By induction on the edges degree n of F ∈ C D CK . If n = 1, F = q q a with a ∈ D. Then Φ( q q a ) = ϕ( q q a ) and formula ( 16) is true. Suppose that n ≥ 2 and that the property is true in degrees k < n. Then and by induction, we have the result. P

Examples. We introduce a notation. If w = w 1 . . . w n is a D-word, we denote Perm(w) the sum of all D-words whose letters are w 1 , . . . , w n . For example, Perm(abc) = abc + acb + bac + bca + cab + cba.

• In edges degree 1, Φ( q q a ) = ϕ( q q a ).

• In edges degree 2, Φ( q ∨ q q b a ) = ϕ( q ∨ q q b a ) + ϕ( q q a )ϕ( q q b ) + ϕ( q q b )ϕ( q q a ) Φ( q q q a b ) = ϕ( q q q a b ) + ϕ( q q a )ϕ( q q b ) + ϕ( q q b )ϕ( q q a ).

• In edges degree 3, Φ( q q q q d a b c ) = ϕ( q q q q d a b c ) + ϕ( q q a )ϕ( q ∨ q q c b ) + ϕ( q ∨ q q c b )ϕ( q q a ) + ϕ( q q b )ϕ( q ∨ q q c a ) + ϕ( q ∨ q q c a )ϕ( q q b ) +ϕ( q q c )ϕ( q ∨ q q b a ) + ϕ( q ∨ q q b a )ϕ( q q c ) + Perm(ϕ( q q a )ϕ( q q b )ϕ( q q c )) Φ( q ∨ q q q a b c ) = ϕ( q ∨ q q q a b c ) + ϕ( q q a )ϕ( q ∨ q q c b ) + ϕ( q ∨ q q c b )ϕ( q q a ) + ϕ( q q c )ϕ( q q q a b ) + ϕ( q q q a b )ϕ( q q c ) +ϕ( q q b )ϕ( q q q a c ) + ϕ( q q q a c )ϕ( q q b ) + Perm(ϕ( q q a )ϕ( q q b )ϕ( q q c )) Φ( q ∨ q q q b a c ) = ϕ( q ∨ q q q b a c ) + ϕ( q q a )ϕ( q ∨ q q b c ) + ϕ( q q b )ϕ( q q q a c ) + ϕ( q q q a c )ϕ( q q b ) + ϕ( q q c )ϕ( q ∨ q q b a ) +ϕ( q ∨ q q b a )ϕ( q q c ) + Perm(ϕ( q q a )ϕ( q q b )ϕ( q q c )).

• Finally, in edges degree 4, with the tree q ∨ q q ∨ q q b c a d , Φ( q ∨ q q ∨ q q b c a d ) = ϕ( q ∨ q q ∨ q q b c a d ) + ϕ( q q a )ϕ( q q q q d c d b ) + ϕ( q q b )ϕ( q ∨ q q qa c d ) + ϕ( q ∨ q q q a c d )ϕ( q q b ) + ϕ( q q c )ϕ( q ∨ q q q b a d ) +ϕ( q ∨ q q q b a d )ϕ( q q c ) + ϕ( q q d )ϕ( q ∨ q q q b a c ) + ϕ( q ∨ q q q b a c )ϕ( q q d ) + ϕ( q ∨ q q b a )ϕ( q ∨ q q d c ) +ϕ( q ∨ q q d c )ϕ( q ∨ q q b a ) + ϕ( q q q a d )ϕ( q ∨ q q b c ) + ϕ( q q q a c )ϕ( q ∨ q q b d ) + Perm(ϕ( q ∨ q q b a )ϕ( q q c )ϕ( q q d )) +Perm(ϕ( q ∨ q q d c )ϕ( q q a )ϕ( q q b )) + Perm(ϕ( q q q a d )ϕ( q q b )ϕ( q q c )) +Perm(ϕ( q q q a c )ϕ( q q b )ϕ( q q d )) + ϕ( q q a )ϕ( q ∨ q q c b )ϕ( q q d ) + ϕ( q q a )ϕ( q q d )ϕ( q ∨ q q c b ) +ϕ( q q d )ϕ( q q a )ϕ( q ∨ q q c b ) + ϕ( q q a )ϕ( q ∨ q q d b )ϕ( q q c ) + ϕ( q q a )ϕ( q q c )ϕ( q ∨ q q d b ) +ϕ( q q c )ϕ( q q a )ϕ( q ∨ q q d b ) + Perm(ϕ( q q a )ϕ( q q b )ϕ( q q c )ϕ( q q d )) Proof. This is the same proof as for theorem 23. P

From

We give a combinatorial description of the morphism Φ defined in theorem 32. For this, we give the following definition:

Definition 33 Let F be a nonempty rooted forest of C CK . A generalized and contracted partition of F is a l-uplet (f 1 , . . . , f l ) such that:

1. for all 1 ≤ i ≤ l, f i = (e i 1 , . . . , e i k i ) is a k i -uplet of subsets of E(F ), 2. (e 1 1 , . . . , e 1 k 1 , e 2 1 , . . . , e l k l ) ∈ P(F ), 3. if P art e i p (F ) and P art e i q (F ) are two disconnected components of F and if the shortest path in F between P art e i p (F ) and P art e i q (F ) contains an edge ∈ e j r , then j > i.

We shall denote by P c (F ) the set of generalized and contracted partitions of F . We deduce formula (18). P

Remark. In the expression of Φ(F ) (formula (18)), we find the terms of ( 16) and other terms with contractions for the product [•, •]. Taking [•, •] = 0, we obtain (16) again.

Examples.

From the examples at the end of section 5.3, we give the other terms with contractions for the product [•, •].

• There are no terms with contractions for the following trees: q q a , q ∨ q q b a , q q q a b , q q q q d c b a , q ∨ q q q a c b .

• For the tree q ∨ q q q b a c , Φ( q ∨ q q q b a c ) = . . . + [ϕ( q q b )ϕ( q q c )] ϕ( q q a )

• For the tree q ∨ q q ∨ q q b c a d , Φ( q ∨ q q ∨ q q b c a d ) = . . . + [ϕ( q q b )ϕ( q q c )] ϕ( q q q a d ) + [ϕ( q q b )ϕ( q q d )] ϕ( q q q a c ) + ϕ( q q b )ϕ( q ∨ q q d c ) ϕ( q q a ) +ϕ( q q c ) [ϕ( q q b )ϕ( q q d )] ϕ( q q a ) + [ϕ( q q b )ϕ( q q d )] ϕ( q q a )ϕ( q q c ) + [ϕ( q q b )ϕ( q q d )] ϕ( q q c )ϕ( q q a ) + [ϕ( q q b )ϕ( q q c )] ϕ( q q a )ϕ( q q d ) + [ϕ( q q b )ϕ( q q c )] ϕ( q q d )ϕ( q q a ) + ϕ( q q d ) [ϕ( q q b )ϕ( q q c )] ϕ( q q a ).

(

  123)(21) = (12354) + (12534) + (15234) + (51234) + (12543) +(15243) + (51243) + (15423) + (51423) + (54123).

  For example: ∆ FQSym ((41325)) = 1 ⊗ (41325) + Std(4) ⊗ Std(1325) + Std(41) ⊗ Std(325) +Std(413) ⊗ Std(25) + Std(4132) ⊗ Std(5) + (41325) ⊗ 1 = 1 ⊗ (41325) + (1) ⊗ (1324) + (21) ⊗ (213) +(312) ⊗ (12) + (4132) ⊗ (1) + (41325) ⊗ 1.

(

  112)(21) = (11221) + (11321) + (22321) + (33421) + (11231) + (22331) + (22431) +(11232) + (11332) + (11432) + (22341) + (11342) + (11243)

  decoration of the root of F . Let (G, d ′ ) be the forest of F obtained by deleting the root of F . Then m((G, d ′ )) = (u 1 . . . u n-1 ). By induction hypothesis, (G, d ′ ) is the unique forest of F such that m((G, d ′ )) = (u 1 . . . u n-1 ). So (F, d) is also the unique forest of F such that m((F, σ)) = (u 1 . . . u n-1 d(R F )).

  PREORDERED FORESTS, PACKED WORDS AND CONTRACTION ALGEBRAS 21 2. Note e the complementary to e in E(F ). Then E(P art e (F )) = e and E(Cont e (F )) = e and |F | e = |Cont e (F )| e + |P art e (F )| e .

Proposition 12

 12 The antipode S C CK : C CK → C CK of the Hopf algebra (C CK , ∆ C CK , ε) is given (recursively with respect to number of edges) by the following formulas: for all forest F ∈ C CK , S C CK (F ) = -F -e||=E(F ) S C CK (P art e (F ))Cont e (F ) = -F -e||=E(F ) P art e (F )S C CK (Cont e (F )).

2.

  Cont e (F ) is also a preordered forest (Cont e (F ), σ C ) where σ C : V (Cont e (F )) → {1, . . . , p} is the surjection (p ≤ |Cont e (F )| v ) such that if A, B are two connected components of P art e (F ), if a (resp. b) is the vertex obtained by contracting A (resp. B) in F , then

1.

  C hpo is a subalgebra of C po . Let us prove that if (F, σ F ) ∈ C hpo and e |= E(F ) then (Cont e (F ), σ C ) and (P art e (F ), σ P ) ∈ C hpo . If a, b ∈ V (P art e (F )), a = b, such that a ։ b then a, b are the vertices of a subtree of (F, σ F ) ∈ C hpo and σ F (a) > σ F (b). With definition 16, σ P (a) > σ P (b). So (P art e (F ), σ P ) ∈ C hpo . If a, b ∈ V (Cont e (F )), a = b, such that a ։ b, then a and b are the vertices obtained by contracting two connected components A and B of P art e (F ). As a ։ b, R A ։ R B and as

  and e |= E(F ). Let us show that (Cont e (F ), σ C ) and (P art e (F ), σ P ) ∈ C o , that is to say that σ C and σ P are bijective. By definition 16, σ P is bijective because we keep the initial order of the vertices of F in P art e (F ). By definition, σ C is a surjection. Let a, b ∈ V (Cont e (F )) such that σ C (a) = σ C (b) and A and B be the two connected components of P art e (F ) associated with a and b. With (10), σ F (R A ) = σ F (R B ) and R A = R B because σ F is bijective. So A = B, a = b and σ C is injective. Therefore σ C and σ P are bijective and C o is a Hopf subalgebra of C ho . 3. As C hpo is a Hopf subalgebra of the Hopf algebra C po and C o is a Hopf subalgebra of the Hopf algebra C po , C ho = C hpo ∩ C o is a Hopf subalgebra of C hpo and C o . 4. Let us prove that if (F, σ F ) ∈ C N CK and e |= E(F ) then (Cont e (F ), σ C ) ∈ C N CK . As C ho is a Hopf algebra, (Cont e (F ), σ C ) ∈ C ho . So, if a, b ∈ V (Cont e (F )), such that a ։ b then σ C (a) ≥ σ C (b). Moreover, if a, b, c ∈ V (Cont e (F )) three distinct vertices such that a ։ c, b ։ c and a is on the left of b. The vertices a, b and c are obtained by contracting of connected components A, B and C in F . As a ։ c, b ։ c and a is on the left of b

  Therefore if (F, σ F ) ∈ C N CK and e |= E(F ) then (Cont e (F ), σ C ) ∈ C N CK . Consequently, ∆ C ho (C N CK ) ⊆ C ho ⊗ C N CK . P4.4 Formal seriesThe algebras C po , C hpo , C o , C ho and C N CK are graded by the number of edges.

  that f C ho n,1 = n! for all n ≥ 1. With the formula f C ho n = l≥0 f C hon,l , we obtain the number of forests of edges degree n. This gives:

5. 2

 2 From H D CK to Csh D Let ϕ : K T D H CK → K (D) be a K-linear map. We suppose that D is equipped with an associative and commutative product [•, •] : (a, b) ∈ D 2 → [ab] ∈ D.

Proposition 30

 30 Let F be a nonempty forest ∈ C D CK . Then Φ(F ) = (e 1 ,...,e k )∈P(F ) ϕ(Cont e 1 (F )) . . . ϕ(Cont e k (F )).

  1. (a) (e 1 , . . . , e p ) is a p-uplet of subsets of E(P art e (F )) = e. By hypothesis, (e 1 , . . . , e k ) ∈ P(F ). So e i = ∅, e i ∩ e j = ∅ and ∪ 1≤i≤p e i = E(P art e (F )).(b) The edges ∈ e i , 1 ≤ i ≤ p, are the edges of the same connected component of F therefore of P art e (F ) because e i ⊆ e.

  2. (a) (e p+1 , . . . , e k ) is a (kp)-uplet of subsets of E(Cont e (F )) = e. By hypothesis, (e 1 , . . . , e k ) ∈ P(F ). So e i = ∅, e i ∩ e j = ∅ and ∪ p+1≤i≤k e i = E(Cont e (F )). (b) The edges ∈ e i , p + 1 ≤ i ≤ k, are the edges of the same connected component of F therefore of Cont e (F ) (we contract in F some connected components).

  E(P art e (F )) E(Cont e (F )) = E(F ). In addition, as f i ⊆ E(P art e (F )) = e and g j ⊆ E(Cont e (F )) = e, f i ∩ g j = ∅.2. The edges ∈ f i are the edges of the same connected component of P art e (F ). As all the trees of the forest P art e (F ) are subtrees of F , the edges ∈ f i are the edges of the same connected component of F . Moreover if the edges ∈ g i are the edges of the same connected component of Cont e (F ), it is also true in F .

  ∆Sh D • Φ(F ) = (Φ • Φ) • ∆C D CK art e (F )) ⊗ Φ (Cont e (F )) = e||=E(F )   (f 1 ,...,f q )∈P(P arte(F )) ϕ(Cont f 1 (F )) . . . ϕ(Cont f q (,...,g r )∈P(Conte(F )) ϕ(Cont g 1 (F )) . . . ϕ(Cont g r (F ))  using induction hypothesis in the last equality. So, with lemma 31,∆Sh D • Φ(F ) =(e,(f 1 ,...,f q ),(g 1 ,...,g r ))∈F(F )ϕ(Cont f 1 (F )) . . . ϕ(Cont f q (F )) ⊗ϕ(Cont g 1 (F )) . . . ϕ(Cont g r (F )) = ((e 1 ,...,e k ),p)∈E(F ) ϕ(Cont e 1 (F )) . . . ϕ(Cont ep (F )) ⊗ϕ(Cont e p+1 (F )) . . . ϕ(Cont e k (F )) = (e 1 ,...,e k )∈P(F ) 1≤p≤k-1 ϕ(Cont e 1 (F )) . . . ϕ(Cont ep (F )) ⊗ϕ(Cont e p+1 (F )) . . . ϕ(Cont e k (F )). Therefore Φ(F ) = (e 1 ,...,e k )∈P(F ) ϕ(Cont e 1 (F )) . . . ϕ(Cont e k (F ))

  C D CK to Csh D Let ϕ : K T D C CK → K (D) be a K-linear map. We suppose that D is equipped with an associative and commutative product [•, •] : (a, b) ∈ D 2 → [ab] ∈ D. Theorem 32 There exists a unique Hopf algebra morphism Φ : C D CK → Csh D such that the following diagram

Proposition 34 )

 34 Let F be a nonempty forest ∈ C D CK . ThenΦ(F ) = (f 1 ,...,f l )∈Pc(F ) f i =(e i 1 ,...,e i k i ϕ(Cont e l 1 (F )) . . . ϕ(Cont e l k l (F )) (k l ) .(18)Proof. It suffices to resume the proof of proposition 30. Note that, if T is a rooted tree and e |= E(T ), Cont e (T ) is a tree and P art e (T ) is a forest. So there is possibly contractions for the product [•, •] to the left of (Φ ⊗ Φ) • ∆H D CK (T ). Remark that• the trees of P art e (T ) are disconnected components of T and they appear to the left of(Φ ⊗ Φ) • ∆H D CK (T ),• the edges of e between two disconnected components of P art e (T ) in T are edges of Cont e (T ) and thus they appear to the right of (Φ ⊗ Φ) • ∆H D CK (T ).

C N CK is freely generated by the trees, therefore These are the sequences A000108 and A088218 in [Slo].

Hopf algebra morphisms

Recall that the tensor algebra T (V ) over a K-vector space V is the tensor module

Dually, the tensor coalgebra T c (V ) over a K-vector space V is the tensor module (as above) equiped with the coassociative coproduct ∆ Ass called deconcatenation:

We will say that a bialgebra H is cofree if, as a coalgebra, it is isomorphic to T c (P rim(H)) (for more details, see [START_REF] Loday | On the structure of cofree hopf algebra[END_REF]).

We give the useful following lemma: Lemma 22 Let (A, ∆, ε) be a cofree Hopf algebra. Then

So a w 1 w 2 ,w 3 = a w 1 ,w 2 w 3 for all words w 1 , w 2 , w 3 different from the unit. We put b ww ′ = a w,w ′ . Then The coassociativity of ∆ implies the other inclusion. P