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Abstract. We introduce the notions of preordered and heap-preordered forests, generalizing
the construction of ordered and heap-ordered forests. We prove that the algebras of preordered
and heap-preordered forests are Hopf for the cut coproduct, and we construct a Hopf morphism
to the Hopf algebra of packed words. Moreover, we define another coproduct on the preordered
forests given by the contraction of edges. Finally, we give a combinatorial description of morphims
defined on Hopf algebras of forests with values in the Hopf algebras of shuffes or quasi-shuffles.

Résumé. Nous introduisons les notions de foréts préordonnées et préordonnées en tas,
généralisant les constructions des foréts ordonnées et ordonnées en tas. On démontre que les
algébres des foréts préordonnées et préordonnées en tas sont des algeébres de Hopf pour le copro-
duit de coupes et on construit un morphisme d’algébres de Hopf dans I'algébre des mots tassés.
D’autre part, nous définissons un autre coproduit sur les foréts préordonnées donné par la con-
traction d’arétes. Enfin, nous donnons une description combinatoire de morphismes définis sur
des algébres de Hopf de foréts et a valeurs dans les algébres de Hopf de battages et de battages
contractants.
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Introduction

The Connes-Kreimer Hopf algebra of rooted forests Ho g is introduced and studied in [CK98,
Moe01]. This commutative, noncocommutative Hopf algebra is used to study a problem of
Renormalisation in Quantum Field Theory, as explained in [CK00, CK01]. The coproduct is
given by admissible cuts. We denote by HgK the Hopf algebra of rooted trees, where the
vertices are decorated by decorations belonging to the set D. A noncommutative version, the
Hopf algebra H ¢ i of planar rooted forests, is introduced in [Foi02a, Hol03]. When the vertices
are given a total order, we obtain the Hopf algebra of ordered forests H, and, adding an increasing
condition, we obtain the Hopf subalgebra of heap-ordered forests Hy,, (see [FU10, GL90]).

Moreover, the Hopf algebra FQSym of free quasi-symmetric functions is introduced in
[DHT02, MR95|. L. Foissy and J. Unterberger prove in [FU10] that there exists a Hopf al-
gebra morphism from H, to FQSym and that its restriction to Hyp, is an isomorphism of Hopf
algebras.

In this text, we introduce the notion of preordered forests. A preorder is a binary reflexive
and transitive relation. A preordered forest is a rooted forest with a total preorder on its vertices.
We prove that the algebra of preordered forests H,, is a Hopf algebra for the cut coproduct.
With an increasing condition, we define the algebra of heap-preordered trees Hp,,, and we prove
that Hy,, is a Hopf subalgebra of Hy,,.

In [NT06], J.-C. Novelli and J.-Y. Thibon construct a generalization of FQSym: the Hopf
algebra WQSym* of free packed words. We prove a result similar to that of L. Foissy and
J. Unterberger, by substituting the ordered forests by the preordered forests and the quasi-
symmetric functions by the packed words. More precisely, we prove that there exists a Hopf
algebra morphism from H,, to WQSym™. In addition, we prove that its restriction to Hy,y, is
an injection of Hopf algebras.

Afterwards, we study a another coproduct called in this paper the contraction coproduct. In
[CEFM11], D. Calaque, K. Ebrahimi-Fard and D. Manchon define this coproduct in a commu-
tative case, on a quotient Cox of Hog (see also [MS11]). We give a decorated version CZ,,
of Coi. We define two operations Y and > on the vector space TgK spanned by the trees of
CgK. We prove that (TgK, Y,>>) is a commutative prelie algebra, that is to say that (A, Y)
is a commutative algebra, (A,>>) is a prelie algebra and with the following relation: for all
T, Y, 2 € TgK,

x> (yYz)=(@>y Yz+(z>2) Yy.

We prove that (TgK, Y, >) is generated as commutative prelie algebra by the trees 14 | d € D.

We construct a noncommutative version of Cog. For this, we consider quotients of Hycx,
H,, H,, Hypo, Hy,, denoted respectively Cnok, Chros Co, Chpos Cpo, and we define on these
quotients a contraction coproduct. We prove that Cy,, C,, Cpypo, Cpo are Hopf algebras and that
Cnck is a left comodule of the Hopf algebra Cy,,.

Finally, we study the Hopf algebra morphisms from HgK or Cg x to the Hopf algebra Sh?”
of shuffles or the Hopf algebra Csh? of quasi-shuffles (see [Hof00]). We give a combinatorial
description of these morphisms in each case. In particular, we note that, in the description of
the morphism from HgK to Sh” or CshP, the contraction coproduct and the preordered forests
appear naturally.
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This text is organized as follows: the first section is devoted to recalls about the Hopf al-
gebras, for the cut coproduct, of rooted forests, planar forests and ordered and heap-ordered
forests. We give recalls on the Hopf algebras of words in the second section. We define the Hopf
algebra of permutations and packed words and we deduce the construction of Sh” and Csh?.
In section three, we define the algebras Hy,, and Hyp,,, of preordered and heap-preordered forests
and we prove that these are Hopf algebras. The contraction coproduct, is introduced in the
section four. We describe a commutative case and we study an insertion operation. We give a
noncommutative version using ordered and preordered forests. The last section deals with Hopf
algebra morphisms from ch)‘K or Cg i to Sh? or Csh”. We give a combinatorial description of
these morphisms in each case.

Acknowledgment. I would like to thank my advisor Loic Foissy for stimulating discussions
and his support during my research.

Notations.

1. We shall denote by K a commutative field of characteristic zero. Every vector space,
algebra, coalgebra, etc, will be taken over K. Given a set X, we denote by K (X) the
vector space spanned by X.

2. Let n be an integer. We denote X,, the symmetric group of order n (X9 = {1}) and ¥ the
disjoint union of ¥, for all n > 0.

3. Let (A, A,€) be a counitary coalgebra. Let 1 € A, non zero, such that A(1) =1® 1. We
then define the noncounitary coproduct:

~ | Ker(e) — Ker(e)® Ker(e),
A'{ 6a — A(a)e—a®1—€1®a.

1 Recalls on the Hopf algebras of forests

1.1 The Connes-Kreimer Hopf algebra of rooted trees

We briefly recall the construction of the Connes-Kreimer Hopf algebra of rooted trees [CK98|.
A rooted tree is a finite graph, connected, without loops, with a distinguished vertex called the
root [Sta02]. We denote by 1 the empty rooted tree. If T is a rooted tree, we denote by Rp
the root of T. A rooted forest is a finite graph F' such that any connected component of F'
is a rooted tree. The length of a forest F', denoted I[(F'), is the number of connected compo-
nents of F'. The set of vertices of the rooted forest F' is denoted by V(F'). The vertices degree
of a forest F', denoted |F|,, is the number of its vertices. The set of edges of the rooted for-
est F is denoted by E(F). The edges degree of a forest F, denoted |F|,, is the number of its edges.

Remark. Let F' be a rooted forest. Then |F|, = |F|, + I(F).

Examples.

1. Rooted trees of vertices degree < 5:

vaviv v vl v vl v v

2. Rooted forests of vertices degree < 4:

VTN SUUUUE DUV SUURUS DU & JUR VAN SUN /28 K/ Y,I .
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Let D be a nonempty set. A rooted forest with its vertices decorated by D is a couple (F,d)
with F' a rooted forest and d : V(F') — D a map.

Examples. Rooted trees with their vertices decorated by D of vertices degree smaller than
caya €D, 1%, (a,b) € D?, bVaC,IZ,(a,b,c)ED?’
c c d ¢ d g
A ,bkfad,b\)ac, YZ ,if’l ,(a,b,c,d) € D

Let Fy,, be the set of rooted forests and FECK the set of rooted forests with their vertices

decorated by D. We will denote by He g the K-vector space generated by Fy,, and by Hg K
the K-vector space generated by FECK. The set of nonempty rooted trees will be denoted TH,,,,

and the set of nonempty rooted trees with their vertices decorated by D will be denoted TECK.
Hex and HgK are algebras: the product is given by the concatenation of rooted forests.

Let F' be a nonempty rooted forest. A subtree T' of F' is a nonempty connected subgraph of
F. A subforest Ty ... Ty, of F is a product of disjoint subtrees T1,...,T; of F'. We can give the
same definition in the decorated case.

Examples. Consider the tree T' = L/ . Then:

e The subtrees of T are . (which appears 4 times), I (which appears 3 times), V', I and I\/
(which appear once).

e The subforests of T" are .., !. (which appear 6 times), ., ... (which appear 4 times), I, 1..

(which appear 3 times) and V', I, ceen, Vo, I . K/ (which appear once).

Let F be a rooted forest. The edges of F' are oriented downwards (from the leaves to the
roots). If v,w € V(F), we shall note v — w if there is an edge in F' from v to w and v — w if
there is an oriented path from v to w in F. By convention, v — v for any v € V(F).

Let v be a subset of V/(F'). We shall say that v is an admissible cut of F', and we shall write
v = V(F), if v is totally disconnected, that is to say that v 4% w for any couple (v, w) of two
different elements of v. If v |= V(F'), we denote by Lea,(F') the rooted subforest of F' obtained
by keeping only the vertices above v, that is to say {w € V(F'), Jv € v, w — v}, and the edges
between these vertices. Note that v C Lea,(F). We denote by Roo,(F') the rooted subforest
obtained by keeping the other vertices and the edges between these vertices.

In particular, if v = (), then Lea,(F) = 1 and Roo,(F) = F": this is the empty cut of F. If v
contains all the roots of F, then it contains only the roots of F', Lea,(F') = F' and Roo,(F) = 1:
this is the total cut of F. We shall write v |= V(F) if v is a nontotal, nonempty admissible cut
of F.

Connes and Kreimer proved in [CK98] that Hek is a Hopf algebra. The coproduct is the
cut coproduct defined for any rooted forest F' by:

Ao (F) = Y Leay(F) ® Rooy(F)=F®1+1®F+ Y  Leay(F)® Rooy(F).
vEV(F) vl=V(F)

For example:

AHCK(K/): Vertio Vo Vitotr.oltnaitt.o.
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In the same way, we can define a cut coproduct on HIC)K. With this coproduct, HgK is also a
Hopf algebra. For example:

c

AHé’K(bk/ad)ZbK&d®1+1®”K¢d+.c®b%d+15 D1+l 4@+ 1500,

H( is graded by the number of vertices. We give some values of the number fH¢x of rooted
forests of vertices degree n:

n |0]1]2]3]4|5]|6] 7| 8] 9] 10
Slex [1]1]2[4]9]20]48[ 115286 | 719 | 1842
These is the sequence A000081 in [Slo].

1.2 Hopf algebras of planar trees

We now recall the construction of the noncommutative generalization of the Connes-Kreimer
Hopf algebra [Foi02a, Hol03].

A planar forest is a rooted forest F' such that the set of the roots of F' is totally ordered and,
for any vertex v € V(F'), the set {w € V(F) | w — v} is totally ordered. Planar forests are
represented such that the total orders on the set of roots and the sets {w € V(F) | w — v} for
any v € V(F) is given from left to right. We denote by T, , the set of nonempty planar trees
and Fp, ., the set of planar forests.

Examples.

1. Planar rooted trees of vertices degree < 5:

vt b Yl b b s vy b v vyl

2. Planar rooted forests of vertices degree < 4:

{FRUUTUR SUPUUE SUNE SHL VAR SUPURNE SUUDE DEUUE SEL VNIV SUNE SR S OEN /) K/ \} Y,E .

If v = V(F), then Lea, (F') and Roo,(F') are naturally planar forests. It is proved in [Foi02a)
that the space Hycxi generated by planar forests is a Hopf algebra. Its product is given by the
concatenation of planar forests and its coproduct is defined for any rooted forest F' by:

Ayer(F)= Y Leay(F)® Rooy(F) =F @1+ 1@ F + Y Leay(F) ® Rooy(F).

vV (F) V|V (F)
For example:
AHNCK(K/) _ VertieVioviters.olinaitto.,
AHNCK(\}) _ VeirieVieVitett.oliottao.

As in the nonplanar case, there is a decorated version H%(JK of Hycog. Moreover, Hyox
is a Hopf algebra graded by the number of vertices. The number fI~Nck of planar forests of
vertices degree n (equal to the number of planar trees of vertices degree n + 1) is the n-Catalan
see sequence A000108 of [Slo]. We have:

1—+v1—4x 1—-+1—4x

2 ) FHNCK (x) = 2

number % ,

(1)

THycx (z) =
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This gives:

n |o|1]2]3]4]|5] 6] 7] 8 | 9 | 10
Javex [1]1[2[5]14]42 ] 132429 | 1430 | 4862 | 16796

1.3 Ordered and heap-ordered forests

Definition 1 An ordered forest F' is a rooted forest F' with a total order on V(F'). The set
of ordered forests is denoted by Fr, and the K-vector space generated by Fy, is denoted by H,.

Remarks and notations. If F' is an ordered forest, then there exits a unique increasing
bijection o : V(F') = {1,...,|F|,} for the total order on V(F).

Reciprocally, if F' is a rooted forest and if o : V(F') — {1,...,|F|,} is a bijection, then o
defines a total order on V' (F') and F' is an ordered forest.

Depending on the case, we shall denote an ordered forest by F' or (F, o).

Examples. Ordered forests of vertices degree < 3:

3 92 93 o1 42 o1
2 1 3 2 ¢3 1 2 1 2873 1373 1872 {9 3 1 I3 Il IQ
1,01,0102,Il,IQ,-I-QOS,OIIQ,-IIS,1102,-213,1103,12-3,\/1,\/’2,\/3, 1,41 ,82,i2,13,13.

Let (F,o") and (G, 0%) be two ordered forests. Then the rooted forest FG is also an ordered
forest (FG,o"'%) where

VIe)UVI(G) — AL... |F[,+]G],}
of'¢ =o' 20" : ac€V(F) — of(a) (2)
ac€V(G) — o%a)+|F|,.

In other terms, we keep the initial order on the vertices of F' and G and we assume that the
vertices of I’ are smaller than the vertices of G. This defines a noncommutative product on the
set of ordered forests. For example, the product of .; and 1% gives ., 13 = 13.,, whereas the
product of 17 and ., gives 13.3 = .31%. This product is linearly extended to H,, which in this
way becomes an algebra.

H, is graded by the number of vertices and there is (n + 1)"~! ordered forests in vertices
degree n, see sequence A000272 of [Slo|.

If F' is an ordered forest, then any subforest G of F' is also ordered: the total order on V(G)
is the restriction of the total order of V(F'). So we can define a coproduct Ay, : H, - H, @ H,
on H, in the following way: for all ' € Fg,,

Ag,(F) = Z Leay(F) @ Rooy(F).
vV (F)

For example,

1

1 1 1
AHO(4R/23)=4K/23®1+1®4K/23 Y AR IR E I R - SN £ R T BT S S

With this coproduct, H, is a Hopf algebra.

Definition 2 [GL9I0] A heap-ordered forest is an ordered forest F' such that if a,b € V(F),
a # b and a — b, then a is greater than b for the total order on V(F'). The set of heap-ordered
forests is denoted by Fy, .
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Examples. Heap-ordered forests of vertices degree < 3:

3
2 3 3 2 2973 {2
Loetyetea, 8301000, 0108, 0008, 0513, "V 12,

Definition 3 A linear order on a nonempty rooted forest F' is a bijective map o : V(F) —
{1,...,|F|,} such that if a,b € V(F) and a — b, then o(a) > o(b). We denote by O(F) the set

of linear orders on the nonempty rooted forest F.

Remarks. If (F,o) is a heap-ordered forest, then the increasing bijection o : V(F) —
{1,...,]F|,} is a linear order on F. Reciprocally, if F' is a rooted forest and o € O(F'), then o
defines a total order on V' (F') such that (F, o) is a heap-ordered forest.

If F and G are two heap-ordered forests, then F'G is an ordered forest with (2) and also a
heap-ordered forest. Moreover, any subforest G of a heap-ordered forest F' is also a heap-ordered
forest by restriction on V(G) of the total order of V(F'). So the subspace Hy, of H, generated
by the heap-ordered forests is a graded Hopf subalgebra of H,.

The number of heap-ordered forests of vertices degree n is n!, see sequence A000142 of [Slo].

Remarks.

1. A planar forest can be considered as an ordered forest by ordering its vertices in the "north-
west" direction (this is the order defined in [Foi02a] or given by the Depth First Search
algorithm). This defines an algebra morphism ¢ : Hyox — H,. For example:

3 3

EEIGEVA ! {2 v % e

. 4 6 (3)
3

—

Y
v i QVISSKE Vi sl Y e :%5Y§

2. Reciprocally, an ordered forest is also planar, by restriction of the total order to the subsets
of vertices formed by the roots or {w € V(F) | w — v}. This defines an algebra morphism
Y : H, - Hycog. For example:

2,
2,

4
a1z Y L1 . LY IRPENL R, "
3 .6 1 44,7
il v wilndewe 2 v e e 2 Yy

Note that ¢ o ¢ = Idp,., therefore 1 is surjective and ¢ is injective. 1 and ¢ are not
bijective (by considering the dimensions).
Moreover ¢ is a Hopf algebra morphism and its image is included in Hp,. % is not a Hopf

2
algebra morphism: in the expression of (1) ® ) o AHO(.SI}; ) we have the tensor !. ® . and in
2

the expression of Afryq, © 'lp(.;g{zll ) we have the different tensor .! ® .. By cons, the restriction
of ¥ of Hy, is a Hopf algebra morphism.

In the following, we consider Hycx as a Hopf subalgebra of Hp, and H,.

2 Recalls on the Hopf algebras of words

2.1 Hopf algebra of permutations and shuffles

Notations.
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1. Let k,l be integers. A (k,l)-shuffle is a permutation ¢ of {1,...,k + [}, such that {(1) <
. < ((k)and ((k+1) < ... < ((k+1). The set of (k,l)-shuffles will be denoted by
Sh(k,1).

2. We represent a permutation o € ¥,, by the word (¢(1)...0(n)). For example, Sh(2,1) =
{(123), (132), (231)}.

Remark. For any integer k,l, any permutation ¢ € ¥j4; can be uniquely written as € o
(01 ® 03), where 01 € X, 09 € ¥, and € € Sh(k,l). Similarly, considering the inverses, any
permutation 7 € ¥ ; can be uniquely written as (11 ® 72) o (7!, where 71 € ¥y, 7 € ¥, and
¢ € Sh(k,l). Note that, whereas e renames the numbers of each lists (o(1),...,0(k)), (o(k +
1),...,0(k +1)) without changing their orderings, (~! shuffles the lists (7(1),...,7(k)), ((k +
1),...,7(k +1)). For instance, if k = 4, | = 3 and o = (5172436) then

e 0 =co (0] ®0y), with e = (1257346) € Sh(4,3), o1 = (3142) € ¥4 and oy = (213) € X3,

e 0= (11 ®m)o( L, with 7 = (1243) € 5y, 7 = (132) € U3 and ¢ = (2456137) € Sh(4,3).

We here briefly recall the construction of the Hopf algebra FQSym of free quasi-symmetric
functions, also called the Malvenuto-Reutenauer Hopf algebra [DHT02, MR95]. As a vector
space, a basis of FQSym is given by the disjoint union of the symmetric groups >, for all
n > 0. By convention, the unique element of ¥y is denoted by 1. The product of FQSym is
given, for o € X, 7 € ¥, by:

o.T = Z (c@7)o¢h

ceSh(k,l)

In other words, the product of o and 7 is given by shifting the letters of the word representing
7 by k, and then summing all the possible shufflings of this word and of the word representing
o. For example:

(123)(21) = (12354) + (12534) + (15234) + (51234) + (12543)
+(15243) + (51243) + (15423) + (51423) + (54123).

Let 0 € X,,. For all 0 < k < n, there exists a unique triple (O‘§k),0'§k),€k> € Xk X Yp—k X
Sh(k,n — k) such that o = ¢ o <O‘§k) ® O'ék)). The coproduct of FQSym is then defined by:

n

Arqsym(o) = Z UYC) ® O'ék) = Z Z o1 ® os.
k=0

k=0 o=eo(01®02)
€€Sh(k,n7k),0'1€2k,Jgezn,k

Note that ng) and aék) are obtained by cutting the word representing o between the k-th and
the (k+1)-th letter, and then standardizing the two obtained words by the following process. If v
is a words of length n whose the letters are distinct integers, then the standardizing of v, denoted
Std(v), is the word obtained by applying to the letters of v the unique increasing bijection to
{1,...,n}. For example:

ArqQsym((41325)) = 1@ (41325) + Std(4) © Std(1325) + Std(41) © Std(325)
+Std(413) ® Std(25) + Std(4132) ® Std(5) + (41325) ® 1
= 1®(41325) + (1) ® (1324) + (21) ® (213)
+(312) @ (12) + (4132) @ (1) + (41325) @ 1.

Then FQSym is a Hopf algebra. It is graded, with FQSym(n) = Vect(3,) for all n > 0.



PREORDERED FORESTS, PACKED WORDS AND CONTRACTION ALGEBRAS 9

It is also possible to give a decorated version of FQSym. Let D be a nonempty set. A
D-decorated permutation is a couple (o,d), where o € ¥, and d is a map from {1,...,n} to D.
A D-decorated permutation is represented by two superposed words (15"), where (aq ... ay) is
the word representing ¢ and for all i, v; = d(a;). The vector space FQSymP generated by the

set of D-decorated permutations is a Hopf algebra. For example, if x,y, z,t € D:

(). = G2+ GHY) + GHY + (59,
Arqsyne () = (ER) o1+ () &0+ @) e () + (o (5 +16 (5.

In other words, if (o,d) and (1,d’) are decorated permutations of respective degrees k and

(o,d).(r,d)= ) (c@7)o¢ dad),
¢eSh(k,l)
where d ® d’ is defined by (d®@ d')(i) =d(i) if 1 <i<kand (dod)(k+j)=d()if1<j<lLl
If (0,d) is a decorated permutation of degree n:

n

AFQSym'D((O-’ d)) = Z Z (0-1? d/) ® (0-2’ d//)a
k=0 o=co(01®02)
e€Sh(k,l),01€XK,02€%,;

where d = (d' @ d") o e~ L.
In some sense, a D-decorated permutation can be seen as a word with a total order on the
set of its letters.

We can now define the shuffie Hopf algebra ShP (see [Hof00, Reu93|). A D-word is a finite
sequence of elements taken in D. It is graded by the degree of words, that is to say the number
of their letters. As a vector space, Sh? is generated by the set of D-words.

The surjective linear map from FQSym?P to Sh?, sending the decorated permutation (orom)

to the D-word (vy ... v,), define a Hopf algebra structure on Sh?:
e The product W of Sh? is given in the following way: if (v1...vx) is a D-word of degree k,
(Vk41 - .- Vgtq) is a D-word of degree [, then

(’Ul . Uk;)l_u (’Uk-+1 e ’Uk;_H) = Z ’Uc—l(l) e ’Uc—l(k+l).
CeSh(k,l)

e The coproduct Agyp of Sh? is given on any D-word w = (v1...v,) by

n

Agpp (W) =Y (v1...0;) ® (Vig1 - vn).
=0

Examples.
1. If (v1vovs) and (vqvs) are two D-words,

(v1voug) W (v4vs) = (v1V2v3v4V5) + (V1V2V4V3V5) + (V1V2V4V5V3) + (V1V4V2V3V5)
+(v1v4v205V3) 4 (V1V4V5V203) + (V4V1V2V3V5) + (V4V1VLVEV3)
+(v4v1050203) + (V4U5V1V2V3).

2. If (vyveu3vy) is a D-word,

Agpp((v1vavzvs)) = (viv2vsvy) @ 1+ (vivgv3) ® (va) + (v1v2) @ (v3v4)
+(vl) ® (U21)3’L)4) +1® (U1U2U3’U4).
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There is a link between the algebras H,, Hp, and FQSym given by the following result (see
[FU10]):

Proposition 4 1. Let n > 0. For all (F,0) € Fy,, let Sp be the set of permutations
0 € ©,, such that for all a,b € V(F), (a — b) = (07 (o (a)) < 67 1(a(b))). Let us define:

H, — FQSym
©:4 FeFu, —» > 0.
0eSEp

Then © : H, — FQSym is a Hopf algebra morphism, homogeneous of degree 0.

2. The restriction of © to Hy, is an isomorphism of graded Hopf algebras.

2.2 Hopf algebra of packed words and quasi-shuffles
Recall the construction of the Hopf algebra WQSym* of free packed words (see [NT06]).

Notations.

1. Let n > 0. We denote by Surj, the set of maps o : {1,...,n} — N* such that
o({1,...,n}) = {1,...,k} for a certain k¥ € N. In this case, k is the maximum of o

and is denoted by max(o) and n is the length of 0. We represent the element o of Surj,
by the packed word (o(1)...o(n)).

2. Let k,l be two integers. A (k,l)-surjective shuffle is an element € of Surjii; such that
€(l) <...<e(k)and e(k+1) < ... < e(k+1). The set of (k,I)-surjective shuffles will be
denoted by SjSh(k,l). For example, SjSh(2,1) = {(121), (122), (123), (132), (231)}.

Let v be a word such that the letters occuring in v are integers a; < ag < ... < ag. The
packing of v, denoted by pack(v), is the image of letters of v by the application a; — i. For
example, pack((22539)) = (11324), pack((831535)) = (421323).

Remark. Let k,1 be two integers and o € Surjg;. We set pp = max(pack((o(1)...0(k))))
and g = max(pack((o(k+1)...0(k=+1)))). Then o can be uniquely written as eo(o1®02), where
o1 € Surjy, o9 € Surj;, and € € SjSh(pg,qx). For instance, if k =4, ] = 3 and o = (2311223)
then py = 3, g4 = 2 and 0 = €0 (01 ® 02) with € = (12323) € SjSh(3,2), o1 = (2311) € Surjy
and o9 = (112) € Surjs.

As a vector space, a basis of WQSym?* is given by the disjoint union of the sets Surj,, for all
n > 0. By convention, the unique element of Surjy is denoted by 1. The product of WQSym*
is given, for o € Surji and T € Surj;, by:

oT = Z (c®T)o (¢t
ceSh(k,l)

In other words, as in the FQSym case, the product of ¢ and 7 is given by shifting the letters
of the word representing 7 by k, and summing all the possible shuffings of this word and of the
word representing o. For example:

(112)(21) = (11243) + (11423) + (14123) + (41123) + (11432) + (14132)
+(41132) + (14312) + (41312) + (43112)

Let 0 € Surj,. For all 0 < k < n, there exists a unique triple (agk),aék),ek) € Surjp x

Surjp—k X SjSh(pg, qr) such that o = ¢ o (ng) ® aék)>. The coproduct of WQSym* is then
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given by:

n n

AWQSym"(O') :Zagk)(gggk) = Z 01 ® o9.

k=0 k=0 o=co(01®032)
€€SjSh(pk,qr),01 ESUTjK,02E€SUTjn i

Note that UYC) and O'ék) are obtained by cutting the word representing o between the k-th and

the (k 4 1)-th letter, and then packing the two obtained words. For example:

Awqsym+((21132)) = 1® (21132) + pack((2)) ® pack((1132)) + pack((21)) ® pack((132))
+pack((211)) ® pack((32)) 4+ pack((2113)) @ pack((2)) + (21132) ® 1
= 1®(21132) + (1) ® (1132) + (21) ® (132) + (211) ® (21)
+(2113) @ (1) + (21132) @ 1.

Then WQSym* is a graded Hopf algebra, with WQSym*(n) = Surj, for all n > 0. We give
WQSym*

some numerical values: if f, is the number of packed words of length n, then
n |o[1][2]3]4]5] 6 | 7

vasymT T 3113 ] 75 | 541 | 4683 | 47293
These is the sequence A000670 in [Slo].

WQSym* is the gradued dual of WQSym, described as follows. A basis of WQSym is
given by the disjoint union of the sets Surj,. The product of WQSym is given, for o € Surjy,
T € Surj; by:

o.T = Z vy

V=YLV
pack(y1..v,)=0, pack(Yg11-Yet1)=T

In other terms, the product of o and 7 is given by shifting certain letters of the words representing
o and 7 and then summing all concatenations of obtained words. For example:

(112)(21) = (11221) + (11321) + (22321) + (33421) + (11231) + (22331) + (22431)
+(11232) + (11332) + (11432) + (22341) + (11342) + (11243)

If o € Surj,, then the coproduct of WQSym is given by:

AVVQSym(O') = Z O|[1,k] ® paCk(UHk-l—l,mam(U)])a
0<k<maz(o)

where o 4 is the subword obtained by tacking in o the letters from the subset A of [1, max(o)].
For example:

Awqsym((21312245)) = 1® (21312245) + (11) ® pack((232245)) + (21122) ® pack((345))
+(213122) ® pack((45)) + (2131224) ® pack((5)) + (21312245) @ 1
= 1®(21312245) + (11) ® (121134) + (21122) ® (123)
+(213122) ® (12) + (2131224) ® (1) + (21312245) ® 1.

Then WQSym is a Hopf algebra.

We give a decorated version of WQSym. Let D be a nonempty set. A D-decorated surjection
is a couple (o,d), where o € Surj, and d is a map from {1,...,n} to D. As in the FQSym?”

case, we represent a D-decorated surjection by two superposed words (1 5"), where (a ... a,) is
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the packed word representing o and for all ¢, v; = d(a;). The vector space WQSym? generated
by the set of D-decorated surjections is a Hopf algebra. For example, if z,y, z,t € D:

G0~ G+ () + G+ G2+ ).
Awasym? () = Gazt) @1+ GH® () + (a2) © (D + 1@ (azt) -
In other words, if (o,d) and (7,d) are decorated surjections of respective degrees k and [:

(0,d).(,d) = > (v.ded),

VY=Y Vk+1
pack(y1...7k)=0, pack(Yg+1--Ve+1)=T

where d ® d’ is defined by (d® d')(i) =d(i) if 1 <i<kand (dod)(k+j)=d(j)if1<j<I.

If (0,d) is a decorated surjection of degree n:

AWQSymD ((O-’ d)) = Z (O-Hl,k}, d/) ® (U|[k+1,max(o)} ) d//)-
0<k<max(o)
where d’ and d take the same values on o¢~'({1,...,k}) and d” and d take the same values on

o 1({k+1,... max(c)}).
In some sense, a D-decorated surjection can be seen as a packed word with a preorder on the
set, of its letters.

Suppose that D is equipped with an associative and commutative product [-,-] : (a,b) €
D? — [ab] € D. We define by induction [-,-]*:

[.7.](0) = Id, [.7.](1) =[] and [.’_](k) _ [_7 [.’_](lc—l)] .

We can now define the quasi-shuffle Hopf algebra Csh? (see [Hof00]). Csh? is, as a vector
space, generated by the set of D-words.

Let ¢ be the surjective linear map from WQSym? to Csh” defined, for (0,d) a decorated
surjection of maximum k, by ¢((o,d)) = (w; ... w) where w; = [d(i1) . .. d(ip)](p) with o71(j) =
{i1,...,1p}. For instance,

# ((gastvan) ) = (2] [yw] v [tu])

Notations. Let k,l be integers. A (k,l)-quasi-shuffle of type r is a surjective map ( :
{1,...,k+1} - {1,...,k+1—r} such that

{ ¢(1) < ... < C(k),
C(k+1)<...<(k+1).

Remark that (~!(j) contains 1 or 2 elements for all 1 < j < k +1 —r. The set of (k,l)-quasi-
shuffles of type r is denoted by Csh(p,q,r). Remark that C'sh(k,l,0) = Sh(k,).

¢ define a Hopf algebra structure on Csh?:

e The product ¥ of Csh? is given in the following way: if (v1...vE) is a D-word of degree
k, (Vgg1-..vgyr) is a D-word of degree [, then

(V1) H (Vg1 -+ V) = Z Z (w1 .. W),

r>0 ¢€Csh(k,l,r)

where w; = v; if (71(j) = {i} and w; = [v;,v3,] if (1) = {i1,i2}.
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e The coproduct Ay » of Csh? is given on any D-word v = (v1...vy) by

n

Acenp () = (v1...0:) ® (Vi1 ... vn).
=0

This is the same coproduct as for Sh”.

Example. If (v1v2) and (vsvy) are two D-words,

(vive)WH (v3v4) = (v1vav3v4) + (V1V3V2Vs) + (V3VIV2V4) + (VIV3V4V2)
+(v3v1v4v2) + (v304v102) 4 (V1 [V203] v4) + ([V1v3] Vov4)

+(v1v3 [av4]) + (v3 [V1v4] V2) + ([V1V3] [V2V4])

3 Preordered forests

3.1 Preordered and heap-preordered forests

A preorder is a binary, reflexive and transitive relation. In particular, an antisymmetric preorder
is an order. A preorder is total if two elements are always comparable. We introduce another
version of ordered forests, the preordered forests.

Definition 5 A preordered forest F is a rooted forest F' with a total preorder on V(F'). The
set of preordered forests is denoted by Fy,, and the K-vector space generated by Fy,, is denoted
by Hy,.

Remarks and notations.

1. Let F be a preordered forest. We denote by < the total preorder on V(F'). Remark that
the antisymmetric relation "z < y and y < z" is an equivalence relation denoted by R
and the quotient set V(F')/R is totally ordered. We denote by ¢ the cardinality of this
quotient set. Let @ be the unique increasing map from V(F')/R to {1,...,q}. There exists
a unique surjection o : V(F) — {1,...,q}, compatible with the equivalence R, such that
the induced map on V(F)/R is 7. In the sequel, we shall note ¢ = max(F) (and we have
always ¢ < |F|,).

Reciprocally, if F' is a rooted forest and if o : V(F') — {1,...,q} is a surjection, ¢ < |F,,
then o define a total preorder on V(F') and F' is a preordered forest.

As in the ordered case, we shall denote a preordered forest by F' or (F, o).

2. An ordered forest is also a preordered forest. Conversely, a preordered forest (F, o) is an
ordered forest if |F|, = max(F).

Examples. Preordered forests of vertices degree < 3:

1 2 1 1 2 1 2 3 2
1,.1,.1.1,.1.2, Il, Il, Ig,.1.1.1,.1.1.2,.1.2.2,.1.2.3,.1Il,.1Il,.lIQ,.lIg,.lIQ,.lIg,

1 2
1 9 1 3 1 9 111121122122313121I1
PSS TUPS L EUPS ERUPS SIS NS & TS £ IV AV VA VA VAN VA VA S0 £
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Let (F, o) and (G, 0%) be two preordered forests with o : V(F) — {1,...,q}, 0% : V(G) —
{1,...,7}, ¢ = maz(F) and r = max(G). Then FG is also a preordered forest (FG, o¥'%) where

VIF)UV(G) — {1,...,q+7}
of'd =0l © 0% acV(F) — UF(a) (5)
ac€V(G) — o%a)+q.

In other terms, we keep the initial preorder on the vertices of F' and G and we assume that
the vertices of F' are smaller than the vertices of G. In this way, we define a noncommuta-
tive product on the set of preordered forests. For example, the product of 13., and "Vi* gives
13.,"Vi°, whereas the product of 'Vi* and 1%., gives 'Vi* 15.,. Remark that, if F and G are
two preordered forests, max(FG) = max(F') + max(G). This product is linearly extended to
H,,,, which in this way becomes an algebra, gradued by the number of vertices.

Remark. The formula (5) on the preordered forests extends the formula (2) on the ordered
forests.

We give some numerical values: if fyfl P¢ is the number of preordered forests of vertices degree
n?
n |0]1]2]3]| 4] 5
A [ 1] 1] 5] 38424 | 6284

If F' is a preordered forest, then any subforest G of F' is also preordered: the total preorder
on V(G) is the restriction of the total preorder of V(F'). So we can define a coproduct Ag,, :
Hy, — Hp, ® Hy, on Hy, in the following way: for all F' € Fy,,,

Ay, (F Z Leav ) ® Rooy(F).
vE=V(F

For example,

> 2 2 2 1
AHPO(RGS): Ve etr1eM oW +non+aol +uaen + 1 ®.0.

With this coproduct, Hy, is a Hopf algebra. Remark that H, is a Hopf subalgebra of Hp,.

Definition 6 A heap-preordered forest is a preordered forest F such that if a,b € V(F),
a # b and a — b, then a is strictly greater than b for the total preorder on V(F'). The set of
heap-preordered forests is denoted by Fa, ,

Examples. Heap-preordered forests of vertices degree < 3:

2 2 3 2 3 2 2 2973 IQ
1,.1,.1.1,.1.2,Il,.1.1.1,.1.1.2,.1.2.2,.1.2.3,.111,.112,.211,.211,.3I1, \/1 5 \/1 g1 -

Definition 7 Let F' be a nonempty rooted forest and q an integer < |F|,. A linear preorder
is a surjection o : V(F) — {1,...,q} such that ifa,b € V(F), a # b and a — b then o(a) > o(b).
We denote by Op(F') the set of linear preorders on the nonempty rooted forest F.
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Remarks. If (F,0) is a heap-preordered forest, the surjection o : V(F) — {1,..., max(F)}
is a linear preorder on F. Reciprocally, if F' is a rooted forest and o € Op(F), then o define a
total preorder on V' (F') such that (F,o) is a heap-preordered forest.

If F and G are two heap-preordered forests, then F'G is also heap-preordered. Moreover, any
subforest G of a heap-preordered forest F' is also a heap-preordered forest by restriction on V(G)
of the total preorder of V(F'). So the subspace Hpy, of H,, generated by the heap-preordered
forests is a graded Hopf subalgebra of H,,,.

hpo

We give some numerical values: if f, "*° is the number of preordered forests of vertices degree

n?
n |0]1|2[3]4]5
farre 1)1 3] 12 64 | 428

We have the following diagram

Hyek© Hj,S Hr (6)
thoc—> Hpo

where the arrows < are injective morphisms of Hopf algebras (for the cut coproduct).

3.2 A morphism from H,, to WQSym"*

In this section, we give a similar result of proposition 4 in the preordered case.

Definition 8 Let (F,0) be a nonempty preordered forest of vertices degree n and T € Surjy,.
Then we denote by S(TFJ) the set of bijective maps ¢ : V(F) — {1,...,n} such that:

1. if v € V(F), then o(v) = 7(p(v)),
2. if v, € V(F), v — v, then p(v) > ¢(V').
Remark.

1. If max(F') # max(7), then Slre) = 0.

2. Let F,G € Fn,,, |F|, =k, |G|, =1 If o1 : V(F) = {1,...,k} and 2 : V(G) — {1,...,1}
are two bijective maps and ¢ € Sh(k,1), then (o(p1®y2) : V(FG) — {1,...,k+1}, where
©1 ® o is defined in formula (2), is also a bijective map. Similary, considering a bijective
map ¢ : V(FG) — {1,...,k+ 1} and ¢ € Sh(k,l). Then ¢ can be uniquely written as
Co(¢1 ® pa), where 1 : V(F) — {1,...,k} and 9 : V(G) — {1,...,1} are two bijective
maps.

Theorem 9 Let us define:

H,, - WQSym*
©:q (Fo)eFu, — Y cad(Sf,) T (7)

TESurj‘F‘v
Then ® : Hy, — WQSym* is a Hopf algebra morphism, homogeneous of degree 0.

Examples.
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e In vertices degree 1: ®(.;) = (1).

e In vertices degree 2:

D(erar) =2(11),  ®(eren) = (12) + (21),  ®(18) = (ab).

e In vertices degree 3:

B(re1e1) = 6(111) D(13.,) (212) + 2(221)
(V') = (122) 4 (212)  ®(.o1) = (213) 4 (123) + (132)
at) = (231) O, 13) = (123) + (213) + (231)
d(*\Vi*) 2(221) D(ereres) 2[(112) + (121) + (211)]

Proof. Obviously, ® is homogeneous of degree 0. Let (F,o%),(G,0%) € Fu,,, |F|, = k,
|G|, =l and 7 € Surjx4;. T can be uniquely written as 7 = (11 ® 72) o (7! with 71 € Surj,
To € Suryj; and ¢ € Sh(k,1).

Let ¢ € S(FG oFGY- Then ¢ can be uniquely written as ¢ o (p1 ® o) with 1 : V(F) —
{1,...,k} and 2 : V(G) — {1,...,1} two bijective maps.

1. (a) If ve V(F), then

o' (v) = "% (v) = 7(p(v)) = (M@ 72) 0 oo (p1® P2)(v) = T1(p1 (V).

Note that with this equality, we also have that max(F') = max(ry).
(b) If v € V(G), then

o () +max(F) = ") =71(p(v)) = (@) 0 ¢ 0 (o (p1 ® 2)(v)
= 72(p2(v)) + max(m).

As max(F) = max(71), 0% (v) = (g2 (v)).

2. (a) If v - v in F, then v/ — v in FG, so:

pv) = (V)
(o(p1®p2)(v) = Colp1®pa)(V)
Clp1(v) = Cea()
p1(v) > @i(v),
as ( is increasing on {1,...,k}.
(b) If " — v in G, then v — v in FG, so:
pv) > (V)
(o(p1®p2)(v) = (olp1®pa)(V)
Ck+p2(v) = ((k+p2())
pa(v) = (),

as ( is increasing on {k +1,...,k+(}.
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So 1 € S(F r) and @9 € S(G Gy

Conversely, if ¢ = (o (¢1 ® p2), with @1 € SZ}, oF) and @9 € S(TQG,JG), the same computations

(m1®m2)o¢ ™!

shows that ¢ € S(FG7O'FG)

So

card(S(FG aFG)) card(S7L, ) x card(S7?

(Fio®) (@, G))

and

O(FG,0"%) = Y card(S{pg re)) T

TESurij

— Z Z Z card( SE;}?TQ;ZC) ) (1 ®7)o¢™?

¢eSh(k,l) T1ESurj, T2€Sury;

= Z Z Z card( SZF r) ) X Card(S(é G)) (11 @) 01

CeSh(k,l) T1ESurj, T2€Sury;

= Z Card(S(} F)) Z card(S(Té G))

T1ESUrjE T ESuUrj;

= (b((F? UF))(I)((Gv UG))'

So ® is an algebra morphism.

Let (F,0) € Fn,, be a preordered forest such that [F'|, = n and let v be an admissible cut of
F. We obtain two preordered forests (Leay(F'),01) and (Rooy(F'),02). We set k = |Leay(F')],
and | = |Rooy,(F)|,.

Let 71 € Surjy, 7 € Surj; and ¢ € Sz}/eav(F),Ul)7 Yo € S&O%(F),JQ). We set ¢ = 1 @ 2

1

and we define 7 by 7 = 0o~ ". 7 € Surj, and max(7) = max(F). Let us show that ¢ € S(TF’U).

1. By definition, 7 = 0 0o ™. So o(v) = 7(p(v)) for all v € V(F).
2. If v/ — v in F, then three cases are possible:

(a) v and v’ belong to V(Leay(F)). As @1 € S(T};eav(F)m) , p1(v) > @1(v'). Then
p(v) = (P1 @ p2)(v) = 1 (v) 2 Pr1(V) = (p1 @ P2) (V) = (V).

(b) v and v" belong to V(Rooy(F)). As ¢o € S(Leav(F) o2) @2(v) > p2(v'). Then
p(v) = (P1 @ 92)(v) = 2(v) + k= p2(V) + k= (p1 ® p2) (V) = p(V/).

(c) v belong to V(Leay(F)) and v belong to V(Roo,(F)). Then p(v') = (p1 @ ¢2)(v') =
o) € {1, k) and (v) = (1 ® @2)(v) = @o(v) + k € (k+1,....k+1}. So
p(v) > (V).

In any case, p(v) > p(v').

Conversely, let (F,o) € Fu,, be a preordered forest of vertices degree n, 7 € Surj, and
¢ €S, Let k € {0,...,n} be an integer.

We set Tl(k) and TQ(k) the words obtained by cutting the word representing 7 between the k-th
and the (k + 1)-th letter, and then packing the two obtained words.

Moreover, we define v a subset of o~ '({1,...,k}) such that v 4 w for any couple (v,w)
of two different elements of v. Then v = V(F') and we considere the two preordered forests
(Leay (F), agk)) and (Rooy(F), aék)). Remark that, with the second point of definition 8, V(Lea,(F)) =
e 1({1,...,k}) and V(Roou(F)) = o~ *({k +1,...,n}).

We set gpgk) cv € V(Leay(F)) = ¢(v) €{1,...,k} and gogk) :v € V(Rooy(F)) = p(v) —k €
{1,...,n—k}. Thus ¢ = go(k) ®gog ),
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Let us prove that gp(k) € STl(k) and gp(k) ok
LT (Leaw(P)0f") 2

1. (a) If v e V(Leay(F)), p(v) = gpgk)(v) € {1,...,k} and then

O'gk) (v) = pack o o(v) = pack o T o p(v) = Tl(k) o Sogk) (v).

(b) If v € V(Rooy(F)), ¢(v) = @ék)(v) +ke{k+1,...,n} and then

aék) (v) = pack o o(v) = pack o T o p(v) = TQ(k) o (pgk) (v).

2. (a) If v/ > v in Leay(F), then v/ — v in F and gpgk) (v) =p(v) > pH) = gogk) (V).
(b) If v/ — v in Rooy,(F'), then v" — v in F and gpgk) () =)=k > ) —k= gogk) (V).
Hence, there is a bijection:

(k)

(k)
STn v x{0,...,|F|,} — | | s x S™
(F,o) et eay (F).0P 00y (F).0F)
oV (F) (Leay(F),017)  (Roow(F),057")

(o, k) (wﬁk),wék))-
Finally,
Awqsym* © ®((F,0))
= Y Y cad(Sp,) 1Y on?

TGS“TJ\F\U 0<k<n

= ¥ > > (S} (ryo)) OIS G ) o)

vV (F) TESUT]| Leay (F)|, T2E5UT|Rooy (F)],,
= (‘I> X (13) o AHpO'

So @ is a coalgebra morphism. O

Theorem 10 The restriction of ® defined in formula (7) to Hy,, is an injection of graded
Hopf algebras.

Proof. We introduce a lexicographic order on the words with letters € N*. Let u = (uy ... uy)
and v = (v ...v;) be two words. Then

o ifup = vg, Up—1 = Vg—1,...,Ui+1 = Vi1 and u; > v; (resp. u; < v;) with¢ € {1,..., min(k,1)},
then u > v (resp. u < v),

o ifu; =v; foralli € {1,... ,min(k,!)} and if k£ > [ (resp. k <) then u > v (resp. u < v).

For example,
(541) < (22), (433) < (533), (5362) < (72), (8225) < (1327), (215) < (1215).

If u and v are two words, we denote by uv the concatenation of u and v.

In this proof, if (F, o) is a preordered forest, we consider F' as a decorated forest where the
vertices are decorated by integers. Consider

F={(F,d) | FeFu..,d:V(F)— N such that if v — w then d(v) > d(w)}

the set of forests with their vertices decorated by nonzero integers and with an increasing condi-

tion.

Let (F,d) € F be a forest of vertices degree n and if u = (uj...uy) is a word of length n
with u; € N*. In the same way that definition 8, we define SQ(LF q) 38 the set of bijective maps
v : V(F)—{1,...,n} such that:
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L. if v € V(F), then d(v) = uy(,

2. if v,0" € V(F), v/ — v, then p(v) > o(v').

For example,

7
o if (F,d) = 3&/24 € F, then the words w such that S{y, ;) # () are (7342), (7432), (4732).
e if (F,d) ="V," 1§ € F, then the words u such that Stra) 7 0 are

(43163), (43613), (46313), (64313), (43631), (46331), (64331), (63431),
(34163), (34613), (36413), (63413), (34631), (36431), (36341), (63341).

Let (F,d) be a forest of F. Then we set

m((F.d)) = max ({u | Spg) # 0}

7
For example, for (F,d) = Sk/f e F, m((F,d)) = (7342) and for (F,d) ="\Vi" 1§ € F, m((F,d)) =
(34163).

If (F,d) € I is the empty tree, m((F,o)) = 1. Let (F,d) € F be a nonempty tree of vertices
degree n. We denote by (G,d) the forest of F obtained by deleting the root of F. Then, if
m((F,d)) = (u1...uy), we have m((G,d")) = (u1...un—1) and u, = d(Rp) the decoration
of the root of F. Let (F,d) be a forest of vertices degree n, (F,d) is the disjoint union of
trees with their vertices decorated by nonzero integers (Fy,dy),...,(Fy,dy) ordered such that
m((F1,dy)) < ... <m((Fy,dg)). Then m((F,d)) = m((F1,dy))...m((Fy,dy)):

e By definition, S( ((F”d) # () and if p; € S ((F')’d ) then ¢ : V(F) = {1,...,n}, defined

forall1 <i<k and v € V(F;) by ¢(v) = ¢i(v), is an element of S| ((I;I’dl)) m(Fidr)) ang

S(Fgff;l,dl))--' m((Fr,dk)) £ 0. So m((F,d)) > m((Fy,dy))...m((Fg,dg)).

o If SELF d) # (), u is the shuffle of uq,...,u; such that SE‘}Z ) # () (see the proof of theorem
9). In particular, u; < m((Fj,d;)), so u < m((Fi,d1))...m((Fg,dg)) and m((F,d)) <
m((F1,dy)) ... m((Fg,dk)).

Let (F,d) € F be a forest of vertices degree n and m((F,d)) = (u1...uy). Let i; be the
smallest index such that wy,...,u;;—1 > wu;; and, for all j > i1, u;; < u;. By construction, there
exists a connected component (Fi,d;) of (F,d) such that m((F1,d1)) = (u1...u;, ). Consider
the word (wj;41...up). Let io > i1 be the smallest index such that w;, +1,...,u;,—1 > u;, and,
for all j > d2, u;, < wuj. Then there exists a connected component (Fh,ds) (different from
(Fy,dy)) such that m((Fa,d2)) = (4i;41---Ui,). In the same way, we construct is,...,7; and
(F3,ds3), ..., (Fi,dg). Then we have m((F,d)) = m((F1,d1)) ... m((Fk,dx))

Let us prove that m is injective on F by induction on the vertices degree. If (F,d) is the
empty tree, it is obvious. Let (F,d) be a nonempty forest of F of vertices degree n.

o If (F,d) is a tree, m((F,d)) = (uy...up—1uy) with u, = d(Rp) the decoration of the
root of F. Let (G,d") be the forest of F obtained by deleting the root of F. Then
m((G,d)) = (u1...up—1). By induction hypothesis, (G,d’) is the unique forest of F
such that m((G,d")) = (uy...up—1). So (F,d) is also the unique forest of F such that
m((F,0)) = (ur .. tn_1d(R)).



20 ANTHONY MANSUY

e If (F,d) is not a tree, then (F,d) is the product of trees (Fi,dy),. .., (Fk,di) of F ordered
such that m((F1,dy)) < ... <m((Fk,dg)). So m((F,d)) = m((F1,d1))...m((Fg,dg)). By
the induction hypothesis, for all 1 < i < k, (Fj,d;) is the unique tree of F such that its
image by m is m((F;,d;)). So the product (F,d) of (F;,d;)’s is the unique forest of F such
that its image by m is m((F,d)).

So m is injective on F. By triangularity, m is injective on Fgy, , and we deduce that the
restriction of ® to Hy,, is an injection of graded Hopf algebras. O

4 Hopf algebras of contractions

4.1 Commutative case

In [CEFM11], D. Calaque, K. Ebrahimi-Fard and D. Manchon introduce a new coproduct, called
in this paper the contraction coproduct, on the augmentation ideal of Ho i (see also [MS11]).

Definition 11 Let F' be a nonempty rooted forest and e a subset of E(F). Then we denote
by

1. Parte(F) the subforest of F' obtained by keeping all the vertices of F' and the edges of e,

2. Conte(F) the subforest of F' obtained by contracting each edge of e and identifying the two
extremities of each edge of e.

We shall say that e is a contraction of F, Parte(F) is the partition of F by e and Conte(F) is
the contracted of F by e. Each vertex of Conte(F) can be identified to a connected component
of Parte(F).

Remarks.

e If e =0, then Parte(F) =, .... and Conte(F) = F: this is the empty contraction of F.

o If e= E(F), then Parte(F) = F and Conte(F') = .: this is the total contraction of F.

Notations. We shall write e = E(F) if e is a contraction of F' and e | E(F) if e is a
nonempty, nontotal contraction of F'.

Example. Let T = K/ be a rooted tree. Then

ontrmctone] ¥ [V | ¥ [0 % [ L] %[ %

Parte(T) Vil v ||
Conte(T) | . |t |t |t |1 |V]V v

where, in the first line, the edges not belonging to e are striked out.

Remarks. Let F' be a nonempty rooted forest and e = E(F).

1. We have the following relation on the vertices degrees:

|F'|, = |Conte(F)|, + |Parte(F)|, — l(Parte(F)).
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2. Note € the complementary to e in E(F'). Then E(Parte(F)) = e and E(Conte(F)) =€
and

[Fle = |Conte(F)|, + |Parte(F)], - (8)

Let Cj be the (nonunitary) K-algebra spanned by the rooted forests and Ccx the quotient
algebra Cl, . /Ick where Iok is the ideal spanned by . — 1. In others terms, one identifies the
unit 1 (for the concatenation) with the tree .. We denote in the same way a rooted forest and
his class in Cog. Then we define on Coi a contraction coproduct on each forest F' € Cog:

Acy, (F) = Z Parte(F) @ Conte(F),
B (F)
= FQ.+.®@F+ Y  Parte(F)® Conte(F).

el=E(F)

In particular, Ac,, (.) =. ® ..

Example.

ACCK(K/):.@)K/%—K/®.+21®V+I®1+I®I+V®I+II®I.

We define an algebra morphism e:

. CCK — K
€\ Fforest OF.. .

Then (Cok, Acyy,€) is a commutative Hopf algebra graded by the number of edges. Cox

is non cocommutative (see for example the coproduct of K/ ).

Remark. We define inductively:

= ACCK? A(k) = (ACCK ® Id®(k_1)) o A(ki )'

CC‘K CC‘K

— 1d, AW

Ceok

A(O)

Cok

For all £k € N, A((];éK : Cokx — C%%H). If F is a rooted forest with n edges, there are (k + 1)"

terms in the expression of A((];)CK (F):
e If kK = 0, this is obvious.

e If k > 0, we have (7) tensors F() @ F() in Ag,, (F) such that the left term F() have
| edges. By the induction hypothesis, there are k! terms in Ag;;) (F(l)). So there are

Zoglgn (1) k= (k4 1)™ terms in the expression of A(k) (F).

Cok

We give the first numbers of trees t$¢% and forests fCOK:

n 0|1(2|3|4 5| 6 7 8 9 10
tSCK 1(1]12(4]9 20| 48 | 115|286 | 719 | 1842
fCex [1[1]3]7]19[47]127 330|889 2378 | 6450

The first sequence is the sequence A000081 in [Slo].

We recall a combinatorial description of the antipode Sc,, : Cox — Ccok (see [CEFM11]):
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Proposition 12 The antipode Sc., : Ccx — Ccr of the Hopf algebra (Cor, Acqk,€)
is given (recursively with respect to number of edges) by the following formulas: for all forest
F e Ceg,

Scox(F) = —F— Y Scey(Parte(F))Conte(F)
el=E(F)
= —F-— Z Parte(F)Scqx (Conte(F)).
el=E(F)
Examples.
SCC‘K(‘) =
SCCK(I) = -1 —.,
Scer (V) = =V 4211 421,
Scon(h) = —t42r1 421,
SCCK(K/) = —K/+31 VooV b+l osrrr -6 -1

We now give a decorated version of Cog. Let D be a nonempty set. A rooted forest with
their edges decorated by D is a couple (F,d) where F' is a forest of Cox and d : E(F) — D is
a map. We denote by CgK the K-vector space spanned by rooted forests with edges decorated
by D.

Examples.

1. Rooted trees decorated by D with edges degree smaller than 3:
vaen, B @nenr, MO b W% B neens

2. Rooted forests decorated by D with edges degree smaller than 3:

boaeD, v, I (ab)eD?

IR VAR (N Za VIRV [” ,(a,b,c) € D3.

If F € CE, e = E(F), then Parte(F) and Conte(F) are naturally rooted forests with their
edges decorated by D: we keep the decoration of each edges. The vector space CgK is a Hopf
algebra. Its product is given by the concatenation and its coproduct is the contraction coproduct.
For example: if (a,b,c) € D3,

Acp (Cc&/b) = cc&/b ®.+.®cak/b oM+ oM 4+ el L1 p @t

CK

1A @ 1 op .

Notation. The set of nonempty trees of Cox (that is to say with at least one edge) will be
denoted by Tc,,. The set of nonempty trees with their edges decorated by D of Cg x will be
denoted by TgCK.
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4.2 Insertion operations
Let TgK be the K-vector space having for basis ']I'gCK. In this section, we prove that TgK is

equiped with two operations Y and > such that (TgK, Y, >) is a commutative prelie algebra.

Definition 13 1. A commutative prelie algebra is a K-vector space A together with two
K-linear maps Y,i>: AQ A — A such that x Y y =y Y x for all x,y € A (that is to say Y
is commutative) and satisfying the following relations : for all x,y,z € A,

(zYy)Yz=zY (yY 2),
x> (y>z)—(z>y)>z=y>(z>z)— (y>x)> 2, 9)
x> (yYz)=(@>y Yz+(z>2) Yy

In other words, (A, Y,r>) is a commutative prelie algebra if (A, Y) is a commutative algebra
and (A,>) is a left prelie algebra with a relationship between Y and t>.

2. The commutative prelie operad, denoted ComPreLie, is the operad such that ComPreLie-
algebras are commutative prelie algebras.

Remark. From this definition, it is clear that the operad ComPreLie is binary and quadratic
(see [LV12] for a definition).

Notations.

1. Let T € T, be a tree with at least one edge. We denote by V*(T') = V(T') \ {Rr} the
set of vertices of T' different from the root of 7.

2. Let T, Ty € Tc., and v € V(T3). Then T} o, T3 is the tree obtained by identifying the
root Ry, of T and the vertex v of T5.

We define two K-linear maps Y : TgK ® TgK — TgK and > : TgK ® TgK — TgK as
follow: if Ty, T € TZ

Ceox’
Iy YTy = Tiogy 1o,

Ti>1Ty, = Z 11 o T5.
seV*(Tz)

Examples.

. mD D D .
1. For the map Y : Ty @ Top — Tag -

[
2
==

YR = &b oy I o
c\/d
la Y bVC — e a\/’b Y e — e CY? Y Ib = &

2. For the map > : TgK ® TgK — TgK :

lo > Ve = C;»K/chb\}: N >l = aYb

Wb o= I
o = IZ o> = %JJ: Mo > Ma :a\C@i-i-C{}f

Proposition 14 (T2, v,>) is a ComPreLie-algebra.
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Proof. Let T1,T5,T3 € T@,,, . Then
Ty YTy, =T °Rr, T =15 ORp, Ty =15 Y T.
Moreover,

(Tl Y T2) Y T3 = (Tl ORT2 T2) ORT3 T3 = T1 OR( T2 ORT3 Tg) = T1 Y (T2 Y Tg)

TQORTS T3) (

Therefore (T2, Y) is a commutative algebra.

T > (T2 > Tg) = Z 11 oy (TQ Ov T3)
UGV*(TS)
weV*(Te)UV*(T3)
= Z Ty oy (Th 0y T3) + Z Ty oy (T5 0, T3)
veV*(T3),weV*(Ts) v,weV*(T3)
= Z (T1 0y To) 0, T3 + Z Ty oy (T3 0, T3)
veV*(T3),weV*(T) v,weV*(T3)
= (>T)>T3+ Z Ty oy (T3 0, T3).
v,weV*(T3)
So
Ty (T>T5) — (Ti>To) Ty = Y Tioy (Tho,Th)
v,weV*(T3)
= Z Ty o, (Tl Ow T3)
v,weV*(T3)

= Th > (Tl > Tg) — (T2 > T1) > T3.
Therefore, (TZ,,1>) is a left prelie algebra.

It remains to prove the last relation of (9):

T > (T2 Y T3) = Z Th oy (T2 ORr, T3)
veV*(T2ory, T3)

= Z T o, (T2 ORr, Tg) + Z T oy (TQ ORr, T3)
veV*(T3) veV*(T3)

= > Tioy(Thopry, T)+ > Tioy (Tsopy, To)
veV*(T2) veV*(T3)

= Z Ty oy Ty | opy, T3+ Z Th oy T3 | oRry, 12
vEV*(Ty) VeV *(T3)
= (T1DT2)YT3+(T1DT3)YT2.

Theorem 15 (TgK, Y, ) is generated as ComPreLie-algebra by 14, d € D.

Notation. To prove the previous proposition, we introduce a notation. Let T7i,...,T} are
trees (possibly empty) of CE, and dy,...,d; € D. Then Byg. ga, (T1 @ ... @ T}) is the tree
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obtained by grafting each 7; on a common root with an edge decorated by d;. For examples, if
a,b,c,d €D,

Ba(.) = I Bagp(- ®.) = &b Bu(v) = I
B,y = f Busy(F ©.) = N | Bu(eor) = ab
Ba®b®c('®' ®.) = ab c Ba(b\[c ) = b\{g Ba@b(c\/d ®0) - &

Proof. Let us prove that (Tg > Y,0>) is generated as ComPreLie-algebra by 14, d € D by
induction on the edges degree n. If n = 1, this is obvious. Let T € TgK be a tree of edges
degree n > 2. Let k be an integer such that T = By, g g4, (11 ® ... ® T}) with dy,...,d, € D
and T1, ..., T trees (possibly empty) of CZ.. Then:

1.If k =1, T = By, (T1) with |T1|, = n — 1 > 1. By induction hypothesis, 77 can be
constructed from trees l¢ | d € D, with the operations Y and >. So T" = T} > !4 can be
also constructed from trees 14 , d € D, with the operations Y and r>.

2. Suppose that & > 2. Then, for all 4, 1 < [Bg,(T;)|, < n — 1. By induction hypothesis,
the trees By, (T;) can be constructed from trees 14, d € D, with the operations Y and >>.
So T = Bg,(T1) Y ... Y Bg, (T}) can be also constructed from trees 14 , d € D, with the
operations Y and .

We conclude with the induction principle. O

Remarks.

1. (Tg i+ Y, D>) is not the free ComPreLie-algebra generated by ¢ , d € D. For example,

a\/b

oo (p ook )= +I’é =l Y P Dk + (I > )DL,
2. A description of the free ComPreLie-algebra is given in [Foil3].

4.3 Noncommutative case

We give a noncommutative version of Cog. To do this, we work on the augmentation ideal of
H,,.

Definition 16 Let (F, o) be a nonempty preordered forest. In particular, F is a nonempty
rooted forest. Let e be a contraction of F', Parte(F') the partition of F by e and Conte(F') the
contracted of F' by e (see definition 11). Then:

1. Parte(F) is a preordered forest (Parte(F),a”) where o : v € V(Parte(F)) — o (v). In
other words, we keep the initial preorder of the vertices of F' in Parte(F).

2. Conte(F) is also a preordered forest (Conte(F), o) where o€ : V(Conte(F)) — {1,...,p}
is the surjection (p < |Conte(F')|,) such that if A,B are two connected components of
Parte(F), if a (resp. b) is the vertex obtained by contracting A (resp. B) in F, then

of'(Ry) < oF(Rg) = 0% ) < O'C(b)
o (Ra) = oF'(Rg) = 0% a) =% (b), (10)
o (Ra) > oF'(Rg) = 0%(a) > a“(b).

In other words, we contract each connected component of Parte(F') to its root and we keep
the initial preorder of the roots.
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1
Example. Let T = Skés be a preordered tree. Then

1 1 1 1 1 1 1 1

. SK/ 3 SAI\S/ 3 3T§/ 3 31\7LS 3% 3 3 3 ?TK?LS 3 3
contraction e 2 2 b 2 2 V2 2 -72

1

1
3&/3 391 373 Is 3 1 3
2 12 IS tl\/Q 2 3 ~112~3 chSIS 0112.3 e]e2e3e3

2
1
12 1 12 { 2\/12 1V23 3K/23

Parte(T)

DO

Conte(T) .1

where, in the first line, the edges not belonging to e are striked out.

Let C;O be the K-algebra spanned by nonempty preordered forests. Let I, be the ideal of
C,,, generated by the elements F.; — F with F., € C,, and F the forest contructed from F.,
by deleting the vertex .; and keeping the same preorder on V(F'). For example,

o if ., ='"\4*., then F ="\,

2 2
L] lfF.Z ZIR/Qa.Q thenﬁ’zlkﬁ;’.

Let Cy, be the quotient algebra Cj,,/I5,. So one identifies the unit 1 (for the concatenation)
with the tree .,. Cy, is a graded algebra by the number of edges. We denote in the same way a
forest and his class in C,,. We define on C,, a contraction coproduct on each preordered forest
F e Cy:

Ac,,(F) = Y Parte(F)® Conte(F),
e=E(F)
= FRu+.0F+ Z Parte(F') @ Conte(F).
el=E(F)
Examples.

Ac,,(1) = 1 ®a

Ac,,(13) = L®@a+.®13
Ac,,('\V2") "V ®at+a W+l +1l el
Ac,,(131%) BEQa+alil+1I el +15 @17

1

1 1 1

N o oW e N e 11 o412 ol
+1 eV + 120"V

VP Ra+a P+l + 12131 +11 @'\

BRI+ 91l

1
Remark. Ac,, is non cocommutative (see for example the coproduct of SK/QS ). In particular,
if T is a preordered tree and e = E(T), Conte(T) is a preordered tree and Parte(T') can be
disconnected. The second component of the coproduct is linear: a tree instead of a polynomial
in trees. This is a right combinatorial Hopf algebra (see [LR10]).

Proposition 17 1. Ag,, is a graded algebra morphism.

2. Ac,, 1s coassociative.

Proof.
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1. Let F,G be two preordered forests. Then

Ac,,(FG) = )  Parts(FG)® Conte(FG)
e=FE(FG)
= Z (Parte(F)Party(G)) ® (Conte(F)Cont(G))
e=E(F), fFEE(G)

= Z Parte(F) @ Conte(F) Z Parts(G) ® Cont¢(G)
e=E(F) FEE(G)

and Ac,, is an algebra morphism. It is a graded algebra morphism with (8).
2. Let F' be a nonempty preordered forest. Then

(Ac,, ® Id) o Ag,,(F)

= Z Ac,,(Parte(F)) ® Conte(F)
e=E(F)

= Z Z Partg(Parte(F)) ® Contg(Parte(F')) @ Conte(F)
e=E(F) f=E(Parte(F))

= Z Parts(F) @ Contg(Parte(F)) ® Conte(F),
fCeCE(F)

and

(Id® Ag,,) © ACPO(F)
= Z Party(F) ® Ag,,(Contg(F))
FEEF)
= Z Z Party(F') @ Parte(Contg(F)) @ Conte(Conts(F))
FEE(F) e=E(Conts(F))
= Z Party(F) @ Parte(Contg(F)) ® Conteup(F),
FEE(F).eCf

where to the last equality we use that E(Conts(F)) = f the complement of f in E(F)
and Conte(Conty(F')) = Conteyg(F).

Remark that {(e,f) | fCeCFE
{(e,f) | FC QEZF)

Moreover,

e in Conts(Parte(F)) with f C e C E(F): the edges belong to e N f = e\ f; the
vertices are the connected components of Parteng(F) = Partg(F). The preorder
on the vertices is given by the preorder on the roots of the connected components of
Party(F).

e in Parte(Conts(F)) with f = E(F),e C f: the edges belong to fne=e\ f =e;
the vertices are the connected components of Party(F'). As in the precedent case,
the preorder on the vertices is given by the preorder on the roots of the connected
components of Part¢(F).
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So Contg(Parte(F)) and Parte(Conty(F)) are the same forests with the same preorder
on the vertices.

Therefore (Ag,, ® Id) 0 Ac,,(F) = (Id® Ac,,) 0 Ac,,(F).

We now define

- Cp — K
" | F forest — Ip.,.

€ is an algebra morphism.
Proposition 18 ¢ is a counit for the coproduct Ac,, -

Proof. Let F be a forest € C,,. We use the Sweedler notation:

Ac,,(F)=F@.+.@F+Y FUgF®.
F

Then

(e®Id)oAc,,(F) = e(F)a+e(.)F+> e(FV)eF® =F,
F
(Id®e) o Ac,,(F) = Fe(a1)+ae(F)+> FUe(F®)=F.
F
Therefore € is a counit for the coproduct Ac,, . 0

As (Cpo, Ac,,,€) is gradued (by the number of edges) and connected, we have the following
theorem:

Theorem 19 (C,,, Ac,,, <) is a Hopf algebra.

We denote the antipode of the Hopf algebra C,, by Sc,,. We have the same combinatorial
description of Sc,, as the commutative case (see proposition 12). We give some values of Sc,,:

e In edges degree 0, Sc,,(«1) = 1.

e In edges degree 1, Sc,,(11) = =11 —.1, Sc,,(17) = =11 —.1 and Sc,,(13) = -1 — ...
e In edges degree 2,
Sc,,("Vi*) = VT 421314 + 213,
Sc,, (V') = —"\oT 4 1btd 413 413 1,
Sa,,(12) I SO T
Sc,,(1313) = —1315 + 1318 + 1314 + 15 + 13
e In edges degree 3,
. .
scpo(?’{/f) B R R TR T IRTRY RSN E RN TR SNEVERY
Cotprdg — 21313 4 Hird - rhrd1s — 1304 — 131318 — 141
TN BT TR ST L VARV A
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Let C/hpo be the K-algebra spanned by nonempty heap-preordered forests, C, be the K-
algebra spanned by nonempty ordered forests, C}  be the K-algebra spanned by nonempty
heap-ordered forests and C'yj be the K-algebra spanned by nonempty planar forests. We
consider the quotients Cppo = Cj, ./ (Ipo N Cj,), Co = C /(1o N Cy), Cho = Cj,,/(1po N Cy,)
and Cnorx = Clyog/(Ipo N Clyeg)- We have in this case a similar diagram to (6):

Cnck®© CJbo( C,

Ch]ooc—> Cpo

where the arrows < are injective morphisms of algebras. But they are not always morphisms of
Hopf algebras (for the contraction coproduct):

Theorem 20 1. Cppo is a Hopf subalgebra of the Hopf algebra Cp,.
2. C, is a Hopf subalgebra of the Hopf algebra Cp,.
3. Cpyo is a Hopf subalgebra of the Hopf algebra C, and of the Hopf algebra Cpy,.

4. Cnok is a left comodule of the Hopf algebra Cp,.
Notations. We denote by Ac,,,, Ac,, Ag,, the restrictions of Ac,, to Cppo, Co, Cho-

3
Remark. Cycg is not a Hopf subalgebra of the Hopf algebra Cj,. For example, 2{/14 c
Cncoxk and
3 3 3 s
Acho(QL/fl) = Mg e etV e 1211 W
3

el i en.
Then 1113 ® 1?7 ¢ Cnorx @ Cyeok-

Proof.

1. Cppo is a subalgebra of Cp,. Let us prove that if (F,o!") € Cpp, and e = E(F) then
(Conte(F),0¢) and (Parte(F), o) € Chpo.
If a,b € V(Parte(F)), a # b, such that a — b then a,b are the vertices of a sub-
tree of (F o) € Cpp and of'(a) > ol (b). With definition 16, o (a) > o (b). So
(Parte(F),0t) € Chpo.
If a,b € V(Conte(F)), a # b, such that a — b, then a and b are the vertices obtained
by contracting two connected components A and B of Parte(F). As a - b, R4 — Rp
and as (F,0%") € Cppo, o' (Ra) > of'(Rp). Then, by definition 16, 0 (a) > o“(b). So
(Conte(F),0%) € Chpo
Therefore if (F, o) € Chypo, Ac,,(F) € Chpo® Chypo and Cpy, is a Hopf subalgebra of C,,.

2. C, is asubalgebra of Cp,. Let (F,o!) € C, and e = E(F). Let us show that (Cont(F),o%)
and (Parte(F),o”) € C,, that is to say that ¢ and o are bijective.
By definition 16, ¥ is bijective because we keep the initial order of the vertices of F' in
Parte(F). By definition, ¢ is a surjection. Let a,b € V(Conte(F)) such that ¢ (a) =
o%(b) and A and B be the two connected components of Part.(F) associated with a and
b. With (10), o¥'(R4) = 0¥ (Rp) and R4 = Rp because o is bijective. So A= B, a ="b
and o is injective.

Therefore o€ and o are bijective and C,, is a Hopf subalgebra of Cp,.
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3. As Cy,, is a Hopf subalgebra of the Hopf algebra C,, and C, is a Hopf subalgebra of the
Hopf algebra C,,, Cp, = Cppo N C,, is a Hopf subalgebra of Cp,,, and C,.

4. Let us prove that if (F,o%) € Cyck and e = E(F) then (Conto(F),0%) € Cnok. As
C), is a Hopf algebra, (Conte(F),c) € Che. So, if a,b € V(Cont(F)), such that a — b
then 0% (a) > o (b).

Moreover, if a,b,c € V(Conte(F)) three distinct vertices such that a — ¢, b — ¢ and a is on
the left of b. The vertices a,b and ¢ are obtained by contracting of connected components
A, Band Cin F. Asa — ¢, b — c and a is on the left of b, R4 - Rc, Rg — Rc and Ry
is on the left of Rp. As (F,o!") € Cyck, of (Ra) < o' (RB). So 0% (a) < o (b).

Therefore if (F,0") € Cycr and e = E(F) then (Conte(F),0%) € Cycog. Consequently,
Ac,,(Cnck) € Cho ® Cnek.

4.4 Formal series
The algebras C,,, Cppo, Co, Cp and Cycg are graded by the number of edges.

In the ordered case, we give some values in a small degrees :

n |1]2[3]4| 5 | 6 | 7 | 8
fS 2976|805 | 10626 | 167839 | 3091768 | 65127465

These is the sequence A105785 in [Slo].

Let us now study the heap-ordered case. We denote by fy?lh" the forests of Cp, of edges

degree n and of length [, and by fCre the forests of Cp, of edges degree n. In small degree, we
have the following values:

Cho — Cho —

00 —Ji1 =5
ol = for all I > 1,
fi/°=0 for all [ # 1,
f;f(’)w:() for all n # 1.

Let n and [ be two integers > 1. To obtain a forest F' € Cy, of edges degree n and of length [
(so |F|, =n+1), we have two cases :

1. We consider a forest G € Cy,, of edges degree n — 1 and of length [ and we graft the vertex
n + [ on the vertex ¢ of G. For each forest G, we have n 4+ [ — 1 possibilities.

2. We consider a forest G € Cp, of edges degree n — 1 and of length [ — 1. Then, for all
i €{l,...,n+1— 1}, the forest G1r+lof edges degree n and of vertices degree  is an
element of Cp, (where G is the same forest of G with for all j > i the vertex j in G is the
vertex 7 + 1 in é) For each forest GG, we have n + [ — 1 possibilities.

So
foge = (L= D2 4+ (L= )12

n n n

We give some values of ff ° in a small degrees and in a small lengths :
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n\l|O] 1| 2] 3 4 | 5
o1 o007 o 0 | 0
T (o] 107 0 0 | 0
2 ol 2 [ 3] o 0 | 0
3ol 6 [20] 15 0 [0
4 (0] 24 [130] 210 | 105 | ©
5 | 0120 | 924 | 2380 | 2520 | 945

Note that f,Sf" = n! for all n > 1. With the formula fChre = Z fy?f", we obtain the number

>0
of forests of edges degree n. This gives:

n |0]1]2]3 | 4] 5 | 6
S [0 1541469 | 6889 | 123605
This is the sequence A032188 in [Slo].

Remark. Consider the map ¢ : Fy,, — X defined by induction as follows. If F' = 1,
o(F) =1and if FF = .1, o(F) = (1). Let F' € Hy, be a forest of vertices degree n and v the
vertex indexed by n. As F'is a heap-ordered forest, two cases are possible:

e The vertex v is an isolated vertex. We denote by G the heap-ordered forest obtained by
deleting the vertex v of F. Thus ¢(G) = 7’ is well defined by induction. Then ¢(F') is the
permutation 7 defined by

{ i) = () ifi#n

T(n) = n.

e The vertex v is a leaf and we denote by k the indexe of v' with v — ¢’. Similarly, we
denote by G the heap-ordered forest obtained by deleting the vertex v of F. ¢(G) =7’ is
well defined by induction and ¢(F) is the permutation 7 defined by

(1) = 7)) ifi#k
(k) = n
T(n) = 7'(k).

Then ¢ : Fy,, — ¥ is a bijective map. Remark that, if F' € Fy, , each connected component of
F corresponds to one cycle in the writing of ¢(F') in product of disjoint cycles. Moreover, the
restriction of ¢ to the forests of Cp, is a bijective map with values in the set of permutations
without fixed point.

In the planar case, we can obtain the formal series. Let tS¥Ck be the number of trees
€ Cncrk of edges degree n and fENOK be the number of forests € C oy of edges degree n. We

put Teyex (z) = Zt,?NCK:Ck and Fco o (2) = Zf]fNCka. Then:
k>0 k>0

Proposition 21 The formal series Tc o, and Foyey, are given by:

T (x):1—2$—\/1—4$ o (x): 2x
Cnox 2 : Cnox Ar —1++/1— 4z

Proof. With formula (1), we deduce that:

1—-+v1—4x 1_1—2$—\/1—4$

2z 2x

Tenex (z) =
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Cnck is freely generated by the trees, therefore

1 2z
F X = e
Cor (2) 1—Teyer(®) 4z —1++1— 4z

a

2n) is the n-Catalan number, fCV¢x = (27-1) and this

Then for all n > 1 tCvex = n%rl (

gives:

n 1121341 5 6 7 8 9 10
tCner [ 112 5 [14 ] 42 | 132] 429 | 1430 | 4862 | 16796
fOner 11131035126 | 462 | 1716 | 6435 | 24310 | 92378

These are the sequences A000108 and A088218 in [Slo|.

5 Hopf algebra morphisms

Recall that the tensor algebra T'(V') over a K-vector space V' is the tensor module
TV)=KoVoV®o..0V®a...

equipped with the concatenation.

Dually, the tensor coalgebra T°(V') over a K-vector space V' is the tensor module (as above)
equiped with the coassociative coproduct A 44 called deconcatenation:

Asss((01-.v0)) =) (1. 01) @ (Vig1 ... vn).
=0

We will say that a bialgebra H is cofree if, as a coalgebra, it is isomorphic to T¢(Prim(H)) (for
more details, see [LRO06]).

We give the useful following lemma:

Lemma 22 Let (A, A,e) be a cofree Hopf algebra. Then
Ker(A® Idy —Idy ® A) = Im(A).

Proof. Indeed, if 2 = 3 ayww @ w' € Ker(A® Ids —Ids @A),

/ / /
Z Qo ' W1 R Wy QW = Z Aoy ' W X wy X Wa.

wWW2=w wiwh=w’

SO Quwo,ws = Oy wews fOr all words wi, we, w3 different from the unit. We put by = @y -
Then

x:wa< Z_ w1®w2> :A(waw) e Im(A).

The coassociativity of A implies the other inclusion. O
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5.1 From HZ, to Sh”

Let @:K(TD

ch) — K (D) be a K-linear map.
Theorem 23 There exists a unique Hopf algebra morphism @ : HgK — ShP such that the
following diagram

K <']I‘D

Hex

)“"_>K(D) (11)

18 commutative.

Proof. Existence: We define ® by induction on the number of vertices. We put ®(1) =1®1
and ®(.a) = ¢(.) for all a € D. Suppose that @ is defined for all forest I of vertices degree
< n and satisfies the condition (¢ ® ®) o AHgK(F) = Ag,p 0 ®(F). Let F € HE. be a forest

of vertices degree n. If F' = I1F, we put ®(F) = ®(F;)®(F2). Suppose that F is a tree. By
induction hypothesis, (? ® ®) o AHEK(F) is well defined. Moreover,

(Agpr @ Idgp — Idg,p © Agyp) o (@ © ) 0 Agp (F)
= (2022 ®)o(Ayp ®Idyp —Idyn ®Ayp )oAyp (F)
using induction hypothesis in the first equality and the coassociativity in the second equality.
So (P® <1>)~o AHgK (F) € K?T’(AShD ®Idgyp —Idg,p @ Ag,p). As Sh” is cofree, i)vith lemma
2~2, (P®®)o AHgK(F) € Im(Ag;,p) and there exists w € Sh” such that (® ® ®) o AHEK (F) =
Agpo(w). We put ®(F) = w — m(w) + ¢(F). Then

Tod(F) = m(w)—mom(w)+op(F) = p(F),

Agpp 0 ®(F) = Agp(w) — Ay (m(w)) + Mgy (o(F))
= Agpr(w)
= (@@@)OA (F).

CK

By induction, the result is established.

Uniqueness: Let ®; and ®2 be two Hopf algebra morphisms such that the diagram (11) is
commutative. Let us prove that ®1(T) = ®5(T) for all tree T € HZ, by induction on the

vertices degree of T'. If n = 0, ®1(1) = ®9(1) = 1. If n =1, for i = 1,2, Agp 0 ®i(..) =
(P; @ D;) OAHgK(.a) =0. So ®;(..) € Vect(D). As the diagram (11) is commutative, ®1(..) =
D9(.a) = p(+a). Suppose that the result is true in vertices degree < n and let T be a tree of
vertices degree n. Using induction hypothesis in the second equality,
Agpp 0 @i(T) = (21 ®P1)oAyp (T)
= (P2®®y) 0 Agp (T)
== AShD 9] ‘I)Q(T)

So @1(T)—Do(T) € Vect(']I‘gCK) and ®1(T)—Po(T) = (91 (T)—P2(T)) = p(T)—(T) = 0. O
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Notation. We consider F' € Heog, e = E(F) and 0 € O(Conte(F)) a linear order on
Conte(F) (see definition 3). For all i € {1,...,|Contc(F)|,}, c71() is the connected component
of Parte(F') such that her image by o is equal to i.

The following proposition give a combinatorial description of the morphism @ defined in
theorem 23 :

Proposition 24 Let T be a nonempty tree € HgK, Then

o(T)= ) Yo wloH D). oo (|Conte(F)],)) | - (12)

eE=E(T) \oc€O(Conte(T))

Proof. We use the following lemma:

Lemma 25 Let T be a rooted tree of vertices degree n. We define :

E(T) = {(v,01,02) | v|EV(T),01 € O(Leay(T)),02 € O(Roo,(T))},
F(T) = {(o,p) | c€OT),pe{l,....,n—1}}.

Then E(T) and F(T') are in bijection.

Proof. We define two maps f and g.
Let f be the map defined by

o E@ - FT)
d { (

%
v,01,02) — (0,|Roo,(T)]|,)
where o : V(T) — {1,...,n} is defined by o(v) = o3(v) for all v € V(Roo,(T)) and o(v) =
o1(v) + [Rooy(T')|, for all v € V(Lea,(T')). By definition, o € O(T).
Let g be the map defined by

— E(T)
(o,p) — (v,01,02)

where

o 01 : V(Leay(T)) — {1,...,|Leay,(T)|,} is defined by o1(v) = o(v) — |Roo,(T)|, for all
v € V(Leay(T)). Then o1 € O(Leay(T))

e 03 : V(Roou(T)) = {1,...,|Roo,(T)]|,} is defined by o2(v) = o(v) for all v € V(Roo,(T)).
Then o3 € O(Ro0y(T))

e v is the subset {ve o ({k,...,n}) | ifwe o *({k,...,n}) and v — w then v =w} of
V(T). We have v |= V(T).

So f and g are well defined. Then we show easily that f o g = Idpi7) and go f = Idgr). O
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Let us show formula (12) by induction on the number n of vertices. If n = 1, T' = ., with

a € D. Then ®(..) = ¢(.a) and formula (12) is true. If n > 2,

Agpr 0 &(T)
(®®®)oAyp (T)

> ®(Leay(T)) ® ®(Rooy(T))

u|=V(T)
v|EV(T) (eE(Leav(T)) (01€O(Conte(Leav(T)))

ploy (1))

D

FEE(Rooy(T)) \02€0(Conts(Rooy(T)))

> > plop (1)

e=E(T) (v,01,02)€E(Conte(T))

IS

e=E(T) (o,p)€F(Conte(T))

®p(o3 (1))
Pl (1)

p(03 ' (|Rooy(Conte(T))],))
0 ) @po p+1) ..ol

plor (1)) .. @(Ull(COHte(Leav(T))v))) )

w(Uzl(Contf(ROOv(T))v))) )

Lp(al_l(]Leav(Conte(T))\v))

(IConte(T)],))-

So
oT)= ) ( > so(o1(1))---s0(01(Conte(F)v)))
e=E(T) \o€O(Conte(T))
and by induction, we have the result. O
Examples.
e In vertices degree 1, ®(.o) = ¢(.a).
e In vertices degree 2,
P(1a) = wlv)plea) + (1)
Peaes) = @(ea)plen) +0(e)p(ea)
e In vertices degree 3,
(VL) = 0()@(ce)p(ea) +0(e)(es)p(ea) + () p(16) + (e )p(18) + o("V.°)
o(l2) = @l )p()e(a) + ol )e(1t) + 9(15)e(-a) + o(i2)
‘1>(bkfad) = (ec)pes)pca)p(ea) + @ )p(ca)p(en)p(ea) + @(ca)p(ec)p(en)p(ea)
Fo()p(en)p(1e) + (e )e(ea)o(te) + e(ca)p(ec)p(la) + o(18)e(ca)e(ea)

Particular case. If ¢(..) = a for all a € D and o(T') = 0 if |T'|, > 1, then this is the

particular case of arborification (see [EV04]). For example :

P(.a)

e("V.)

() =

a(th)

q)(.a.b)
o)

bca + cba cba

ab + ba

cbda + cdba + dcba.
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5.2 From HZ, to Csh”

Let ¢ : K <TECK> — K(D) be a K-linear map. We suppose that D is equipped with an
associative and commutative product [-,-] : (a,b) € D? — [ab] € D.

Theorem 26 There exists a unique Hopf algebra morphism @ : HgK — Csh? such that the
following diagram

K <TgCK) £ K (D) (13)

.

HZ, —2 - Csh?

18 commutative.

Proof. Noting that Csh? is cofree, this is the same proof as for theorem 23. |

Notation. Let F' € Hog be a nonempty rooted forest, e = E(F) and o € Op(Conte(F)) a
lineair preorder on Conte(F') (see definition 7), o : V(Conte(F)) — {1,...,q} surjective. For all
i€{l,...,q}, 071(i) is the forest T} ... T, of all connected components T} such that o(T}) = i

for all k € {1,...,n}. In this case, p(c1(i)) is the element [p(T}) ... o(Tp)]™.
Now, we give a combinatorial description of the morphism ® defined in theorem 26:
Proposition 27 Let T be a nonempty tree € HgK, Then

()= ( > 90(01(1))---90(01((1)))- (14)
) \o€O0,(

e=E(T Conte(T))
Im(o)={1,...,q}

Proof. It suffices to resume the proof of proposition 24. Note that, if T is a rooted tree and
v |= V(T), Rooy(T) is a tree and Leay(T') is a forest. So there is possibly contractions for the
product [-, -] to the left of (& ® @) o AHEK (T'). We deduce formula (14). O

Examples.

e In vertices degree 1, ®(.o) = ¢(ea).

e In vertices degree 2,

e In vertices degree 3,

(V7)) = pl)e(s

[SESallel
SN—
I
S
—
)
SN—
S
—~
o
~—
S
—
S
-
+
S
—~
)
~—
S
—
—
oo
~—
+
S
—~
—
>0
SN—
S
—~
S
-
+
S
—~
—s
Qo0
SN—
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5.3 From CZj to Sh”

Let @:K(TD

Cok

) — K (D) be a K-linear map.

Theorem 28 There exists a unique Hopf algebra morphism @ : CgK — ShP such that the
following diagram

K (T@CK> 2 _K(D) (15)

T

CB, —2—shn?

1s commutative.

Proof. This is the same proof as for theorem 23. O

As in the sections 5.1 and 5.2, we give a combinatorial description of the morphism ® defined
in theorem 28. We need the following definition:

Definition 29 Let F' be a nonempty rooted forest of Cox. A generalized partition of F' is a
k-uplet (e1,...,ex) of subsets of E(F), 1 < k < |F|,, such that:

1. e #0,e,nej=01ifi#j and Uje; = E(F),
2. the edges € e; are the edges of the same connected component of F,

3. if v and w are two vertices of Parte,(F) and if the shortest path in F' between v and w
contains an edge € e;, then j < i.

We shall denote by P(F') the set of generalized partitions of F'.

Remark. If F is a nonempty rooted forest and if (eq,...,ex) € P(F), Conte(F) =
Part,(F) is a tree for all ¢ (with the second point of the definition 29).

Proposition 30 Let F' be a nonempty forest € CgK. Then
P(F) = > p(Conter(F))... o(Conter(F)). (16)
(61,...,ek)€P(F)

Proof. We use the following lemma:

Lemma 31 If F € CgK s a nonempty tree, then the sets

E(F) = {((ex,---,er).p) | (e1,...,ex) €P(F),1<p<k—1}
F(F) = {(e’(‘fl""’fq)’(gl""agr)) | eH:E(F)’(fla"'afq)GP(PaTte(F)),
(gl" < agr) € P(Conte(F))}

are in bijections.

Proof. Consider the following two maps:
o B(F) — F(F)
|l ((e1,-..,ex),p) = (Ui<i<pei, (e1,....€p), (épt1,---,€L))
and
o F(F) — E(F)
. (e’(fla""fq)?(gl""’gr)) = ((fl""’fqagl?"'?gr)?Q)'

f is well defined :
Let ((e1,...,ex),p) € E(F). Then e = Uj<i<p€; is a nonempty nontotal contraction of F.
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1. (a) (e1,...,ep) is a p-uplet of subsets of E(Parte(F')) = e. By hypothesis, (e1,...,ex) €
P(F) So e; # @, e, Ne; = ¢ and Ui<i<p€i = E(Parte(F)).
(b) The edges € e;, 1 < i < p, are the edges of the same connected component of F
therefore of Parte(F') because e; C e.

(c) Let v and w be two vertices of Parte,(Parte(F')) = Parte,(F) (because e; C e). If the
shortest path in Parte(F') between v and w contains an edge € e;, then the shortest
path in F' between v and w contains also an edge € e;. As (eq,...,e;) € P(F), we
have j < 1.

So (e1,...,ep) € P(Parte(F)).

2. (a) (epy1,...,ex) is a (k — p)-uplet of subsets of E(Conte(F)) = €. By hypothesis,
(e1,...,ex) € P(F). Soe; #0, e;Ne; =0 and Upy1<i<pe; = E(Conte(F)).
(b) The edges € e;, p+ 1 < i < k, are the edges of the same connected component of F’
therefore of Conte(F') (we contract in F' some connected components).

(c) Let i be an integer € {p+1,...,k} and v and w two vertices of Parte,(Conte(F)) =
Parte,(F) (because e; Ne = (). If the shortest path in Conte(F) between v and w
contains an edge € e; then the shortest path in F' between v and w contains also an
edge € e;. As (eq,...,ex) € P(F), we have j < i.

Thus (ept1,...,ex) € P(Conte(F)).
So f(((e1,...,ex),p)) € F(F).
g is well defined :
Let (e, (f1,-- 5 Fo) (gl,...,gr)) € F(F). Let us show that (fy,...,f,,91,-..,9,) € P(F).

1. As (fl" . 'afq) € P(Parte(F)) and (gl,' . agr) € P(Conte(F)), f@ 7é 07 g; 75 (Da fsz] =
0, g,Ng; =0 and (Ui f;) U (Uig;) = E(Parte(F))J E(Conte(F)) = E(F). In addition,
as f; C E(Parte(F)) = e and g; C E(Conte(F)) =€, f;ng; = 0.

2. The edges € f; are the edges of the same connected component of Parte(F'). As all the
trees of the forest Parte(F') are subtrees of F, the edges € f, are the edges of the same
connected component of F'. Moreover if the edges € g, are the edges of the same connected
component of Conte(F'), it is also true in F.

3. (a) Let i be an integer € {1,...,q} and v and w two vertices of Party (F). We have
fi € e therefore Party (F') = Party, (Parte(F)). If the shortest path in F' between
v and w contains:
i. anedge € f;. As (fy,..., f,) € P(Parte(F)), j <.
ii. an edge € g;. Then the connected component of Parte(F) containing v and

w has an edge € g;. This is impossible because E(Parte(F)) = e and g; C
E(Conte(F)) =e.

(b) Let i be an integer € {1,...,r} and v and w two vertices of Partg, (F). g;Ne =0
therefore Partg, (F') = Partg (Conte(F')). If the shortest path in F' between v and w
contains:

i. an edge € g;. As (gy,...,9,) € P(Conte(F)), j <.
ii. an edge € f;. It is good because f; is before g;.

Thus (fq,...,f;91,---,9,) € P(F).
SOg((ea(fl""’fq)’(gla"'agr))) GE(F)

Finally, we easily see that f o g = Idpp) and go f = Idgp). O
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We now prove proposition 30. By induction on the edges degree n of F' € CgK. Ifn=1,
F = 1o with a € D. Then ®(l+ ) = ¢(le ) and formula (16) is true. Suppose that n > 2 and
that the property is true in degrees k£ < n. Then

AShD od(F) = (Pod) OACgK(F)

= Z O (Parte(F)) ® ® (Conte(F))
elEE(F)

_ Z ( Z (p(COTLth(F))..-(P(Contfq(F)))
(Firsfq)

el|=E(F) Q) EP(Parte (F))

(glv"'vgr)ep(cgnte (F))

® ( > p(Contg-(F))... go(C’ontgr(F)))

using induction hypothesis in the last equality. So, with lemma 31,

Agp 0 ®(F) = 3 p(Contzo(F)) ... p(Contz(F))
(e(f1f )i (g159,) ) EF(F)
Rp(Contg (F))...p(Contg(F))
- Z o(Conter(F)) ... o(Conte; (F))
((e1,...ex),p)EE(F)
®p(Contez(F)) . .. o(Conter(F))
- Z Z @(Conter(F)) ... o(Conte, (F))
(e1,...,ex)EP(F) 1<p<k—1
Rp(Conte, 1 (F)) ... p(Conte(F)).

Therefore
O(F) = > o(Conte(F)) ... p(Conte(F))
(e1,...,ex)EP(F)
and by induction, we have the result. O

Examples. We introduce a notation. If w = wy ... w, is a D-word, we denote Perm(w) the
sum of all D-words whose letters are wy, ..., w,. For example, Perm(abc) = abc 4+ acb + bac +
bca + cab + cba.

e In edges degree 1, (1o ) = p(1a ).
e In edges degree 2,

B(No ) = (M )+ p(la )p(P )+ (P )p(le)

ots) = odh)+o(e )e(r ) + (v )o(r).

e In edges degree 3,
() = (02 ) (1 )p( Ve )+ (Ve Jp(1e ) + (B )p
(e Jp( Vo) + (M Jp(te ) + Perm(p(le (1
() = ()t (Ve )+ oV Yo ) + (1

sy = oM ) ote oW )+ o(n Yok >+so<13 Yo ) + (e Yo( A )
(N )p(le ) + Perm(p(le )o( )p(l ).



40 ANTHONY MANSUY

c\/d
e Finally, in edges degree 4, with the tree Xﬁw,
d

o) = o(58) o 1oAY 4 o0 1oV ) 4 o o(m ) + ot Jo(h )
ol e

(k) + (0 ) R/ (N Yo ) + (A Yol )
(N )p( M) + ot )p( A ) + ot )p( A ) + Perm(o( M (e (1))
+Perm(p( Vo (1 )ip(b >>+Perm< (e ) )
+Perm(p(Fe )o(1 )p(1)) + @1 Jp( Ve Yp(10 ) + (1 (1 )p(Ve )
(1 )t )p( N )

(1 )t )p( Ve ) +p(1 (Vi Jp(te ) + ¢
+o( )p(1= )p(Na ) + Perm(p(1a )p(P )p(te )p(1))
5.4 From CZ, to Csh”

Let ¢ : K (TgCK) — K (D) be a K-linear map. We suppose that D is equipped with an

associative and commutative product [, -] : (a,b) € D? — [ab] € D.

Theorem 32 There exists a unique Hopf algebra morphism ® : CgK — Csh? such that the
following diagram

%)
K <T20K> £ K (D) (17)
I
CB, —2 -~ Csh?
15 commutative.
Proof. This is the same proof as for theorem 23. |

We give a combinatorial description of the morphism & defined in theorem 32. For this, we
give the following definition:

Definition 33 Let ' be a nonempty rooted forest of Cox. A generalized and contracted
partition of F is a l-uplet (f1,..., f1) such that:

1. forall1 <i<lI, f; = (e},.. .,ef%) is a k;i-uplet of subsets of E(F),
2. (e%,...,eil,e%,...,ekl) € P(F),

3. af Parte; (F) and Parteé (F) are two disconnected components of F' and if the shortest path
m F between Parte; (F) and Parteé (F) contains an edge € el then j > i.

We shall denote by P.(F) the set of generalized and contracted partitions of F'.
Proposition 34 Let F' be a nonempty forest € CgK. Then
(k1)
O(F) = > [go(come}(p)) (Contk(F))]
(flv 7fl)€Pc(F) !

fi= (elv 7ek) (18)

(k1)
. [@(Contell(F)) (Cont(F))] ) .

ky
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Proof. It suffices to resume the proof of proposition 30. Note that, if T is a rooted tree and
e = E(T), Conte(T) is a tree and Parte(T) is a forest. So there is possibly contractions for the
product [-, -] to the left of (& ® @) o AHEK (T'). Remark that

e the trees of Parte(T) are disconnected components of T and they appear to the left of
(q) ® (p) © AHgK (T)7

e the edges of € between two disconnected components of Parte(T) in T are edges of
Conte(T) and thus they appear to the right of (& ® ®) o AHEK (T).

We deduce formula (18). O

Remark. In the expression of ®(F) (formula (18)), we find the terms of (16) and other
terms with contractions for the product [-,-]. Taking [-, ] = 0, we obtain (16) again.

Examples. From the examples at the end of section 5.3, we give the other terms with
contractions for the product [-,-].

e There are no terms with contractions for the following trees: la , &/% ,{2 ,M , CYS )

e For the tree ak/b ,

B(88) = oot Lo e ) + [ e ) + (8 ()] ()
(1) [p(P )1 )] ol ) + [p(P )1 )] @(le )p(le)
+ o )e(1 )] (e )p(le ) + [e(P )1 )] @(le )p(1)
+ o )t )] (1 )p(le ) + (1) [p(P )e(1e )] (1)
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