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MULTI-SCALE ACOUSTICS OF PARTIALLY OPEN CELL POROELASTIC FOAMS 

Minh Tan Hoang, Guy Bonnet and Camille Perrot 

I. INTRODUCTION 

Foams and cellular materials are very useful in the fields of building and transportation industries for sound 
proofing applications. 1 Those containing both an interconnected fluid phase and a deformable solid phase are highly 
desirable from the standpoint of pore accessibility (visco-thermal dissipations) and structural isolation (decoupling 
effect). Although semi-phenomenological approaches of modeling this type of materials have dominated the 
landscape, 2-4 multi-scale methods 5-9 have received attention due to the need to improve their acoustical properties 
using a synthetic control of their microstructure.  Partially open-cell solid foams are an interesting class of cellular 
solids that are versatile precursors to advanced poroelastic materials with well-defined pore structures, sizes, and 
interface functionality. 10-11 However, there are three key issues that currently limit the utility of partially open-cell 
foams in sound proofing application. The straightforward calculation of elastic properties with a well-defined pore 
structure has only been achieved in a few cases. 12-15 Modeling the closure rate of membranes at the junction 
between interconnected pores has been challenging due to the non-homogeneity of the membrane closure rate itself. 
16-17 In addition, fluid and solid mechanics at the cell size level that determine macroscopic transport and mechanical 
responses of foam are generally considered separately. Here, we present a new solid foams membrane-based 
strategy for the performance prediction of advanced poroelastic materials that simultaneously address all three of 
these issues.  Our main objective is to perform numerical homogenization simulations of linear elastic properties by 
the finite element technique in solid foams containing membranes with prescribed closure rates, in order to derive 
Young’s modulus and Poisson ratio for real foam samples with various reticulation rates. Assuming scale separation, 
such a numerical estimate enables us to derive elastic coefficients for describing acoustic wave propagation in 
poroelastic materials on a microstructural basis. 8  At first, we used fluid-flow induced cellular morphology. 
Secondly, linear elastic properties were simulated by applying a version of periodic homogenization method 18 from 
the standpoint of the polyhedral unit cells previously determined having cubic symmetry (namely non-elongated 
Kelvin cell models). Importantly, this second step is decoupled from the first one and corresponds to a quasi-static 
situation where the fluid is ignored. In a third step, acoustical properties of the poroelastic materials under study are 
simulated using either the analytical formulas derived by Biot, or a Biot axisymmetric finite-element formulation 
when the boundary conditions at the peripheral of the real porous samples have a significant influence on the overall 
result. 

II. MATERIALS AND METHODS 

2.1 Regular Solid Foam Structure with a Specified Closure Rate of Membranes 

The spatial structure of the solid foam models proposed here is derived from routinely available laboratory 
measurements (permeability, porosity, ligament length) and transport processes simulation inside porous media. A 
general view on the representation of solid foams and on the generation processes can be found in the studies of 
Perrot et al. 19 and Hoang and Perrot 20-21. The solid foam models which are going to be used are spatially periodic in 
all directions of space. Hence, the unit cell provides the basic structure from which the whole medium can be 
derived by translation along three coordinate axes. Two different samples of solid foams were studied; let us 
consider them more precisely in Fig. 1 which summarizes their more important geometrical characteristics. The 
ordered networks, analyzed in this article and shown in Fig. 1, are truncated octahedron networks with tetrahedral 
vertices; the ligaments of circular cross-section shape connect the spherical center of a regular tetrahedron, with 
plates partially opened or not forming the faces of this polyhedron. This regular foam structure of cubic symmetry 
follows this geometry from an initially open-cell structure, whose close rate of solid films or membranes is allowed 
to grow. This implies that the length of the ligaments of the model becomes compatible with measurements on 
scanning electron micrographs (see Ref. 20 for further details). 

 



 
 

FIGURE 1. Geometrical characteristics of two different solid foam samples, H1 (top) and H2 (bottom). 
 

2.2 Purely Geometrical Macroscopic Properties 

The two samples, namely H1 and H2 were generated with the following measured porosity 22, ϕ = 0.93 ± 0.01 and ϕ 
= 0.97 ± 0.01 respectively. The characteristic ligament length (thickness 2r) L of the first sample H1 is smaller than 
the characteristic length (thickness) of the second sample H2 (See Fig. 1. of this paper and Eq. (1) of Ref. 19). The 
pore solid surface S and pore volume Vp were systematically calculated for each solid foam sample with elementary 
spatial integration. These two quantities can be combined in order to define the length scale Λ’ = 2Vp/S, a 
generalized hydraulic radius also named thermal characteristic length in the context of sound absorbing material. 4 

2.3 Transport Parameters 

The macroscopic permeability k0 of each solid foam sample was measured 23 and computed on a unit cell by 
solving the Stokes equations by a finite element method. 19-20 The size of the cell is adapted in order to recover the 

measured permeability. The viscous characteristic length Λ  can be used to characterize the throat size ST  of a 

porous media. 21 Λ  was introduced by Johnson et al.. 3 It is essentially a volume-to-surface pore ratio with a 
measure weighted by the local value of the electric field (X)E  in a conduction process, 
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The tortuosity α∞  can be calculated when the electric field is known, 
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where   denotes a fluid phase average. This quantity was also obtained from our computation on the unit cell. 
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FIGURE 2. Numerical experiments allowing to identify the elastic constants C11, C22 and C44 (in contracted notations) of 
the elasticity matrix for a solid foam model having cubic symmetry; illustrated with foam sample H2. (A) Tensile strain 
numerical experiment. A uniform strain vector 

11 1 1E E ⊗= e e  is applied (along the principal coordinate direction [100]) in 
the equivalent homogeneous material with E11 = 0.01 showing (a) the displacement field (μm), (b) the stress field σ11 
(N/m2) and (c) the stress field σ22 (N/m2). The data are then averaged over the periodic unit cell as follows: Σ11 =< σ11 
>, Σ22 =< σ22 >, and Σ33 =< σ33 >. Elastic constants C11 and C12 are computed using the relations Σ11 = C11E11 and Σ22 = 
C12E11 (or Σ33 = C12E11). With a transversely isotropic configuration, the effective Young’s modulus was found to be 
unchanged; ETI = EL and νTI = νL. Contrary to the transversely isotropic configuration, the effective Young’s modulus and 
Poisson ratio for an isotropic material configuration were modified; EI differs from EL. and vTI from νL. (B) Shear strain 
numerical experiment. A uniform strain vector ( )12 1 2 2 1E E ⊗ ⊗= +e e e e  is applied in the equivalent homogeneous 

material with E12 = 0.01, showing (a) the displacement field (μm) and (b) the stress field σ12 (N/m2). The data are then 
averaged over the periodic unit cell as follows: Σ12 =< σ12 >. The last elastic constant C44 is computed using the relation 
Σ12 = C44E12. 

2.4 Effective Mechanical Properties 

The effective mechanical properties were obtained for the two different solid foam models either from both finite 
element calculations or from experiments on real samples, namely H1 and H2. The effective linear-elastic properties 
of the solid networks are determined by a finite element scheme operating on discretized representations of the 
structure. The material is assumed to be locally isotropic and linear-elastic; the fluid phase is modeled as a vacuum. 

The effective elastic longitudinal modulus EL and Poisson ratio νL are obtained by applying two macroscopic 
external strains on the cube that bounds the solid foam model: a tensile strain and a shear strain related to the 
principal coordinate directions. Since the solid foam models have cubic symmetry, three independent elastic 
constants C11, C22 and C44 (in contracted notations) exist in the elasticity matrix, whose identification requires two 
numerical experiments using periodic boundary conditions, to express EL and νL. The effective elastic longitudinal 
modulus EL and Poisson ratio νL are obtained by applying the relations EL = (C11 

2 + C11C12 – 2C12 
2) / (C11 + C12) and 

νL = C12 / (C11 + C12) which are valid for the effective elastic properties along the principal coordinate directions, 
[100], [010] or [001] of materials with cubic symmetry. 

The effective elastic properties (lower bounds) of an effective transversely isotropic material and of an effective 
isotropic material correspond to an average of the properties obtained by random orientation of the unit cell obtained 
by arbitrary rotation around a given axis or for any arbitrary rotation in space. In particular, the detailed expression 
obtained by this angular averaging procedure yields for the isotropic case : EI = [5(C11 – C12)(C11 + 2C12) C44] / [C44 

A
a b

B
a b

c



(3C11 + C12) + 2(C11 – C12)(C11 + 2C12)], and νI = [- (C11 - 3C12) C44 + (C11 - C12) (C11 + 2C12)] / [C44 (3C11 + C12) + 
2(C11 – C12) (C11 + 2C12)]. 

Fig. 2 shows the displacement and stress fields of the solid foam model corresponding to the real sample H1 
during the shear strain and the tensile strain numerical experiments. 

III. RESULTS AND DISCUSSION 

3.1 Geometrical and Transport Properties 

Before looking at the mechanical results, it is of interest to consider the purely geometrical macroscopic 
properties (ϕ, Λ’) and transport parameters (k0, Λ, α∞) which were obtained on the cubic cell. 

The experimental data (ϕ, k0, Λ, Λ’ α∞)) were obtained at the Groupe d’Acoustique de l’Université de 
Sherbrooke (GAUS) laboratory (Québec, Canada). Three of these parameters were characterized using direct 
experimental techniques; ϕ  

22, k0 
23 and α∞ 25. Then, the determination of the missing parameters, Λ’ and Λ, is based 

on an inverse procedure using a cost function minimization algorithm. The principle of the method consists in 
minimizing the differences between measured and modeled sound absorption curves, from a standing wave tube 
setup and Johnson-Champoux-Allard 3-4 model respectively (FoamX software 26). 

The purely geometrical macroscopic properties (Λ’) and transport parameters (Λ, α∞) computed from the course of 
this multi-scale approach are in a good agreement with independently obtained experimental data, especially when 
standard deviations are taken into account as seen in  Table 1. This means that the identified microstructures presented in 
Fig. 1 are representative of the macroscopic properties of the real porous materials under study from both purely 
geometrical macroscopic quantities and transport processes point of views within experimental uncertainties. We shall 
now try to examine the representativity of these microstructures in terms of their effective linear poroelastic properties. 

 
TABLE 1. Macroscopic geometrical and transport parameters, experiments vs numerical results. 

Foam Method ϕ (-) Λ’ (μm) k0 (×10-10 m2) Λ (μm) α∞ (-)
 

H1 

Computation  139 ± 26  44 ± 5 1.58 ± 0.33 

Direct characterization 0.93 ± 0.01  3.87 ± 0.32  2.44 ± 0.57 

Inverse characterization 0.93 ± 0.01 136 ± 36 3.87 ± 0.32 45 ± 16 2.44 ± 0.57 

Measurements      

       

H2 

Computation  171 ± 48  41 ± 6 2.79 ± 0.61 

Direct characterization 0.97 ± 0.01  1.59 ± 0.31  1.24 ± 0.05 

Inverse characterization 0.96 ± 0.01 103 ± 108 1.85 ± 0.71 48 ± 19 4.45 ±1.48 
Measurements      

 

3.2 Linear Elastic Properties 

The basic ingredients of flexible urethane foams of the type considered in this study are ester resin (or polyol), 
diisocyanate, water, catalysts and surfactants. 29  The samples represent cylindrical subsections of large panels (of 
diameter equal to 44.5 mm; and height equal to 10 mm, 15 mm, and 20 mm for H2; 25 mm for H1). 

Accurate literature values for the microscopic Young’s modulus Eμ and Poisson ratio νμ are not available because 
these values are depending on processing strategy.  The values obtained in the literature are scattered within a range 
of more than one order of magnitude, lying between 2 and 30 MPa 30.  As mentioned by Gong et al. 12, some foam 
chemists believe that the polymer flow resulting from the foaming process may cause preferential alignment of the 
long molecules of the material along the ligaments. Since these characteristics may not be easily achievable in bulk 
material, they recommend that the mechanical properties of the polymer be measured directly from foam ligaments. 
To do so, a modified microscopic testing stage was used by Gong et al., to test ligaments of a 3 ppi foam sample (EL 
= 4.5 ± 0.3 MPa).  However, the main conclusion which can be drawn is that specific measurements must be made 
on the material. Without these measurements at the present time, the range 2-30 MPa will be kept in the following. 

Due to the strong dependence of the foam properties, all results of the computations performed along the lines of 
the previous section were given by values of relative Young’s moduli E/Epu , where Eμ=Epu is the Young’s modulus 
of the polyurethane, in Table 2 (superscript ‘a’ corresponds to non-dimensional values). 



 
TABLE 2. Computed relative elastic properties E/Epu of foam samples H1 and H2. 

Foam Method 11
aΣ  

(×10-3) 

 

(×10-3) 
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(×10-3)

 

(×10-3)

a
LE  

(×10-3)

νL 
(-) 

a
IE  

(×10-3) 

νΙ 
(-) 

H1 

Without 
membranes

0.12 0.09 0.03 12.44 9.04 2.91 4.83 0.42 4.4 0.43 

±0.02 ±0.01 ±0.01 ±2.30 ±1.25 ±0.86 ±1.44 ±0.01 ±1.29 ±0.01 

With  

membranes

0.40 0.15 0.17 39.51 15.09 17.12 31.17 0.28 25.60 0.32 

±0.03 ±0.01 ±0.02 ±2.63 ±1.04 ±1.90 ±2.14 ±0.01 ±2.19 ±0.01 

H2 

Without  
membranes

0.044 0.038 0.005 4.39 3.84 0.50 0.81 0.47 0.76 0.47 

±0.019 ±0.015 ±0.004 ±1.89 ±1.46 ±0.38 ±0.63 ±0.01 ±0.59 ±0.01 

With  

membranes

0.30 0.13 0.17 30.21 12.64 16.74 22.75 0.30 22.18 0.30 

±0.07 ±0.02 ±0.03 ±6.81 ±2.21 ±3.00 ±5.81 ±0.01 ±4.61 ±0.00 

 
These values were first computed with membranes. However, a parameter which has a strong effect on the 

results is the membrane thickness. This one was obtained by optical microscopy, but the thickness is probably not 
constant and the observation of thickness can also be overestimated through microscopic observation. So, two 
results are given in Table 2: the one with the geometry of membranes as given by observation, and the one without 
membrane. 

The experimental values of Young’s modulus are given in Table 3. They are obtained by uniaxial compression 
experiments 27-28  on polyurethane foam samples, namely H1 and H2; see Fig. 1.  For comparison with the computed 
results, the relative Young’s moduli of both foams are given for both ultimate values of Epu (2-30MPa). These 
values can be compared on the same table with relative Young’s moduli coming from the computations.  

Obviously, the range of experimental relative moduli follows the one of polyurethane modulus. However, some 
conclusions can still be drawn. It can be seen for H1 that the estimation of the relative modulus with membranes 
does not lie between the values given by experiment, as the relative modulus without membranes is compatible with 
these values. It means that the membrane thickness used for this foam is probably overestimated when constructing 
the periodic cell. On the contrary, the value of relative Young’s modulus obtained for H2 without membranes is 
clearly outside the admissible range of relative moduli. It means that the membranes must be taken into account in 
estimating the Young’s modulus of the foam. This last result confirms the need to take into account the membranes 
when estimating the elastic properties of such foams. 3.4 Acoustical properties 

Let us go further to one of the major purpose of this study, namely the determination of the acoustical properties 
of the poroelastic medium.  The multi-scale determination of purely geometrical parameters, transport, and elastic 
properties was studied for the regular packing of partially open cell structures for two samples of solid foams. The 
numerical and experimental data relative to these macroscopic parameters are gathered in Tables 1 and 3. These 
results can be used as input parameters of approximate but robust semi-phenomenological models 3-4 (“universal 
curves”) as summarized in Appendix B of Ref. 19.  We shall focus the presentation on the sound absorption α(ω) 
and sound transmission STL (ω) properties relative to the reconstructed poroelastic media (and we shall point out 
the features specific to each of these solid foams, H1 and H2). 

 
 
 

TABLE 3. Computed relative elastic properties E/Epu of foam samples H1 and H2. 

Foam 
1000Eexp 

(MPa) 
1000Eexp /Epu(min) 

 
1000Eexp/Epu(max) 

 
1000Ecomp/Epu 

(with membranes) 
1000Ecomp/Epu 

(without membranes) 

H1 18 9 0.6 25.6 4.4 
H2 111 55 3.7 22.2 0.76 
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FIGURE 3. Acoustical properties of two different poroelastic foam samples, H1 (A) and H2 (B). 

 
Some results relative to α(ω) and STL (ω) are displayed in Fig. 3. It is seen from this figure that most of the 

sound absorbing behavior of these foams is captured from the multi-scale approach, with practically no need to 
introduce the elastic properties of the real foam samples. In Fig. 3A(a), it is seen that the acoustical behavior of foam 
sample H1 (of density ρH1 = 68 kg/m3, whereas ρH2 = 25 kg/m3) is well described by a limp model 32 [foam sample of 
Fig 1(top)]. It is possible to verify this property with the sound transmission loss measured from a standing wave 

tube, since 0lim ( ) 0STLω ω→  , see Fig. 3A(b). In other words, the rigid vibrational mode of the foam sample H1 

is excited at 0 Hz, and STL(ω=0) = 0.  Therefore, the elastic properties of the porous material are practically useless. 
For sample H2, because of the low permeability of the membrane-based porous material [the foam sample of 
Fig. 1(down)], the corresponding Frame Acoustical Excitability (FAE) 31 is high, and the skeleton is significantly 
excited by the acoustic wave. Accordingly, a loss in the sound absorption spectrum is observed around the skeleton 
resonances, and especially around the first one; Fig. 3B(a). Furthermore, the sound transmission loss behavior 
around 0 Hz depends on the boundary conditions type at the peripheral of the material (sliding or bounded) 
according to the compressional rate exerted by the tube on the porous sample. In the bounded case, the STL starts at 
a value differing from zero because the stiffness effect is significant. Here, one can see on Fig. 3B(b) that the STL 
starts at 10 dB at zero Hertz, and that a drastic loss is observed corresponding to the first resonance frequency. A 2D 
elastic model is therefore the more adapted for this configuration. Alternatively, if one wants to use an equivalent-
fluid model, a rigid model is required in the low frequency range (frequency domain governed by the stiffness) and a 
limp one after the first resonance (frequency domain governed by the mass). It is seen that the elastic properties 
affect the frequency-dependent functions α(ω)  and STL (ω). 

These results show indirectly the usefulness of including the membranes in the estimation of Young’s modulus. 
Indeed, without membranes, the estimation of Young’s modulus would lead to reject the assumption of rigid 
skeleton, while this one is perfectly predicted by taking into account the membranes in the computation of the 
foam’s Young’s modulus. 
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The acoustic properties of the elastic foam samples were investigated by combination of this multi-scale 
approach and engineering measurements, Fig. 3 (and Table 1 and Table 3). Using measured densities of H1 and H2, 
the sound absorbing behavior of the low-density foam was estimated using a limp model 32, in a good agreement 
with the measurements in the impedance tube. The additional sound absorption generated using a limp model for the 
low density foam was determined to be due to an added rigid body motion of the overall sample. The sound 
transmission loss that dropped in the low frequency range with the resonance frequency were more elastically 
sensitive compared with sound absorbing properties whose essential behavior can be captured with a limp model. 

CONCLUSION 

Let us have an overall view of the results that were derived from this multi-scale approach with the poroelastic 
foam samples used in this paper (Fig. 1). For the sake of clarity, let us recall the procedure. The porosity ϕ, 
permeability k0 and ligament length L are assumed to be known from measurements. In the multi-scale approach, the 
extension of the solid film was implemented at growing rates, while the unit cell was rescaled to account for the film 
frictional forces, until ligament length L is converged. Macroscopic parameters are then computed from numerical 
homogenization and compared to the values that were measured at macro-scale and gathered in Table 1 and 3. These 
later values serve in a sense as bridges between microstructure and acoustical macro-behavior with microphysical 
and micromechanical foundations. The numerical simulations are generally in good agreement with the standing 
wave tube measured values. The comparison for elastic properties is less impressive here since accurate values for 
the microscopic Young’s modulus and Poisson ratio of the matrix were not yet available in the timeline of this 
study, while the estimation of the membrane thickness is rather rough at this stage. So, an important further step will 
be to refine the observation of membrane thickness from suitable observation means and to give a precise estimation 
of polyurethane Young’s modulus by using means such as Mercury Intrusion Porosimetry (MIP) or nanoindentation 
techniques.  Results for the sound absorption and transmission look much better when the circumferential constraint 
effect of the tube is taken into account through an axisymmetric FE code (Fig. 3). Therefore, the proposed multi-scale 
and multi-physics modeling approach of the acoustics of poroelastic foams provides a suitable strategy to characterize 
and optimize this class of materials. Note that this method provides new and complementary information when 
compared to inverse estimates of anisotropic open-cell foams.33  Considering the utility of cellular solids and foam 
structures in various applications, the versatility of periodic unit cell identification, and the chemical tunability of foam 
microstructures and mechanical functionality, this strategy can find ever broader application (biomedical and 
biomechanics, food industry, catalysis, etc.) because of added advantages of simple microstructure generation and 
parameterization, macroscopic properties estimation, and processability. 
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