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Singular perturbation of optimal control problems on multi-domains

1 Introduction In the present work, we investigate a class of singular perturbation problems for Hamilton-Jacobi-Bellman equations motivated by optimal control systems with different time scales on multi-domains. The multi-domains considered here is the following repartition of R 2 by two disjoint open subsets Ω 1 , Ω 2 with

R 2 = Ω 1 ∪ Ω 2 , Ω 1 ∩ Ω 2 = ∅.
Consider the nonlinear controlled systems of the following form: given the final time T > 0 and the initial data t ≥ 0, x ∈ R d , y ∈ R 2 , (1.1)    Ẋ(s) = f (X(s), Y (s), α(s)) for α(s) ∈ A, s ∈ (t, T ), Ẏ (s) = 1 ε g i (X(s), Y (s), α(s)) for Y (s) ∈ Ω i , i = 1, 2, α(s) ∈ A, s ∈ (t, T ), (X(t), Y (t)) = (x, y), where ε > 0, A is compact, f and g i are Lipschitz continuous in the state variables and continuous. The optimal control problem that we are interested in is of Mayer's type:

v ε (t, x, y) := inf α(•) {ϕ(X(T ), Y (T ))},
where ϕ is Lipschitz continuous.

The goal of this paper is to obtain a characterization of the limit of v ε as ε goes to zero. Singular perturbation problems for deterministic controlled systems have been studied by many authors; see e.g., the books by Kokotović, Khalil, and O'Reilly [START_REF] Kokotović | Singular Perturbation Methods in Control: Analysis and Design[END_REF], and Bensoussan [START_REF] Bensoussan | Perturbation Methods in Optimal control[END_REF], as well as the articles by Gaitsgory [START_REF] Gaitsgory | Suboptimization of singularly perturbed control systems[END_REF], Bagagiolo and Bardi [START_REF] Bagagiolo | Singular perturbation of a finite horizon problem with state-space constraints[END_REF], Alvarez and Bardi [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF][START_REF] Alvarez | Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result[END_REF], and the references therein.

However, up to our knowledge, there is no result for this kind of problem on multi-domains. In our setting, the dynamics of the fast state variable Y (•) switch to g i when Y (•) goes into Ω i . Then the definitions for the dynamical system (1.1) and the optimal control problem are not clear since the dynamics of Y (•) is not continuous on R 2 . The subject of optimal control problems on multi-domains is quite recent and we would like to refer to [START_REF] Achdou | Hamilton-Jacobi equations on networks[END_REF][START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF] Barnard | Flow invariance on stratified domains[END_REF][START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF][START_REF] Rao | Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Rao | Hamilton-Jacobi-Bellman equations on multi-domains[END_REF]. The main difficulty lies in finding out the proper junction condition between Ω 1 and Ω 2 to characterize the value function of optimal control problems. Thanks to the recent work [START_REF] Barnard | Flow invariance on stratified domains[END_REF] on optimal control problems on stratified domains and [START_REF] Rao | Hamilton-Jacobi-Bellman equations on multi-domains[END_REF] on the HJB equations on multi-domains, optimal control problems on multi-domains can be associated to HJB equations with discontinuity by introducing the concept of Essential Hamiltonians. The existence and uniqueness result for the solution of HJB equations with essential Hamiltonians has been established in [START_REF] Rao | Hamilton-Jacobi-Bellman equations on multi-domains[END_REF]. Roughly speaking, the idea of this essential Hamiltonians consists in selecting the useful dynamics on the interfaces between Ω 1 and Ω 2 that drive the trajectories either to go into the interior of Ω i or to travel on the interfaces between them. The value function v ε is then characterized as the unique solution of -∂ t v ε (t, x, y) + H E (x, y, D x v ε (t, x, y),

1 ε D y v ε (t, x, y)) = 0 on (0, T ) × R d × R 2 ,
where H E is the essential Hamiltonian (see Definition 2.1 below), with the final condition

v ε (T, x, y) = ϕ(x, y) on R d × R 2 .
We are interested in the limit behavior as ε → 0 of the solution for the above HJB equation. However, this essential Hamiltonian H E is not necessarily Lipschitz continuous, which is a significant difficulty. There are some works [START_REF] Amar | On the Finsler Metrics Obtained as Limits of Chessboard Structures[END_REF][START_REF] Oberman | Homogenization of metric Hamilton-Jacobi equations[END_REF] dealing with the homogenization of metric Hamilton-Jacobi equations where the Hamiltonians are continuous and coercive. But when the Hamiltonians become discontinuous, this problem remains a difficult issue. In [START_REF] Oberman | Homogenization of metric Hamilton-Jacobi equations[END_REF], an algorithm has been introduced to solve the piecewise-periodic problems numerically where the Hamiltonians are not continuous, but there is no general theoretical result for this method.

In this paper, we consider coercive Hamiltonians by assuming a controllability condition on the fast variable Y (•): ∃ r 0 > 0, B R 2 (0, r 0 ) ⊆ {g i (x, y, a), a ∈ A}, ∀ x ∈ R d , y ∈ R 2 , i = 1, 2.

We also assume that the multi-domains have a periodic structure so that the dynamics for Y (•) is bounded. Our main result states that the limit v(t, x), as ε → 0, of the value function v ε (t, x, y) is the unique solution of

-∂ t v(t, x) + H(x, D x v(t, x)) = 0 on (0, T ) × R d , and v(T, x) = inf y∈R 2 ϕ(x, y) on R d .
The Hamiltonian H is called the effective Hamiltonian and is classically determined by the following cell problem: for each fixed x ∈ R d , P ∈ R d , there exists a unique constant H(x, P ) such that the cell problem

H E (x, y, P, D y w(y)) = H(x, P )
has a periodic viscosity solution w.

To solve the cell problem, we classically introduce an approximated cell problem (see [START_REF] Lions | Homogenization of Hamilton-Jacobi equations[END_REF][START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF]). However, the essential Hamiltonian H E which appears in this approximating cell problem is not continuous. Thus, the construction of approximated corrector is a difficult issue. To solve this problem, we use the fact that the essential Hamiltonian is defined from an optimal control point of view and we show that approximated correctors can be constructed as the value functions of infinite horizon optimal control problems.

Another difficulty is to prove that approximated correctors converge toward a corrector of the cell problem. This uses a stability result which we prove in the framework of discontinuous hamiltonian (but only for Lipschitz continuous solutions).

1.1 Setting of the problem We are interested in the limit value of the optimal control problems of Mayer's type. Let T > 0 be a fixed final time and A be the set of controls given by

A := {α : (0, T ) → R m measurable functions, α(t) ∈ A a.e. in (0, T )}
with A being a compact subset of R m . In the sequel, all the periodic functions we consider have the period

S = (-1, 1) 2 ,
then "f is S-periodic" means:

∀ k ∈ Z 2 , ∀ x ∈ R 2 , f (x + 2k) = f (x).
We assume that the function f : R d × R 2 × A → R d satisfies the following: For i = 1, 2, we assume that the functions g i : R d ×R 2 ×A → R 2 satisfies the following assumption

(H1)      (i) ∀ x ∈ R d , y ∈ R 2 , {f (x,
(H2)          (i) ∀ x ∈ R d , y ∈ R 2 , {g i (x, y, a) : a ∈ A} is nonempty, convex, and compact; (ii) g i (x, y, a) is L-Lipschitz continuous w.r.t x, y, and continuous w.r.t a; (iii) ∃r 0 > 0 so that ∀ (x, y) ∈ R d × R 2 , B(0, r 0 ) ⊆ {g i (x, y, a) : a ∈ A}; (iv) ∀ x ∈ R d , a ∈ A, g i (x, •, a) is S-periodic.
We consider the following periodic chessboard structure (see also Figure 1.1)

S 1 := {(0, 1) × (0, 1) + kS, k ∈ Z 2 } ∪ {(-1, 0) × (-1, 0) + kS, k ∈ Z 2 }, Ω 1 := M∈S1 M, S 2 := {(-1, 0) × (0, 1) + kS, k ∈ Z 2 } ∪ {(0, 1) × (-1, 0) + kS, k ∈ Z 2 }. Ω 2 := M∈S2 M. 0 1 1 -1 -1 Ω Ω Ω Ω 1 1 2 2 Fig. 1.1.
The periodic chessboard structure.

Remark 1.1. The structure of multi-domains we considered here is the type of chessboard structure. In fact, due to the work [START_REF] Barnard | Flow invariance on stratified domains[END_REF][START_REF] Rao | Hamilton-Jacobi-Bellman equations on multi-domains[END_REF] our results can be generalized on any periodic structure of multi-domains (M i ) i=1,...,n , n ∈ N satisfying the following:

each M i is a C 2 open embedded 2-manifold in R 2
, each M i is proximally smooth and wedged, and

S = n i=1 M i , M i ∩ M j = ∅ for i = j, i, j = 1, . . . , n.
The concepts of proximally smooth and wedged are introduced in [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]. For any set M ⊆ R d , we recall that M is proximally smooth means that the signed distance function to M is differentiable on a tubular neighborhood of M. M is said to be wedged means that the interior of T M (x) is nonempty for each x ∈ M. Here T M (x) is the tangent cone of M at x defined by

T M (x) = {ζ ∈ R 2 : lim inf t→0 + d M (x + tζ) t = 0},
where d M (•) is the distance function to M. Now in order to well define a dynamical system on the whole R 2 for Y (•), we need to determine the dynamics on the interfaces between the sets of S 1 and S 2 . The idea is to consider the approach of Filippov regularization of the dynamics around the interfaces, i.e. consider the multifunction Φ :

R d × R 2 R 2 defined by Φ(x, y) := Φ i (x, y) if y ∈ Ω i , co(Φ 1 (x, y), Φ 2 (x, y)) otherwise,
where

Φ i (x, y) := f (x, y, a) g i (x, y, a) , a ∈ A , ∀ (x, y) ∈ R d × R 2 , i = 1, 2,
and co(Φ 1 (x, y), Φ 2 (x, y)) is defined as the set

(1 -θ) f (x, y, a 1 ) g 1 (x, y, a 1 ) + θ f (x, y, a 2 ) g 2 (x, y, a 2 ) | θ ∈ [0, 1], a 1 , a 2 ∈ A .
Now we are ready to introduce the optimal control problem. Given the initial time t ∈ [0, T ] and the initial state

(x, y) ∈ R d × R 2 , we consider the controlled trajectories (X, Y )(•) : [0, T ] → R d × R 2 satisfying (1.2)    Ẋ(s) ε Ẏ (s) ∈ Φ(X(s), Y (s)) for s ∈ (t, T ), X(t) = x, Y (t) = y.
We denote by S ε [t,T ] (x, y) the set of absolutely continuous trajectories satisfying (1.2). Let ϕ : R d × R 2 → R be a bounded Lipschitz continuous function. Consider the following Mayer's problem: for any ε > 0,

(1.3) v ε (t, x, y) := inf ϕ(X(T ), Y (T )) : (X(•), Y (•)) ∈ S ε [t,T ] (x, y) .
Note that Φ is upper semi-continuous and convex valued, but Φ is not necessarily Lipschitz continuous. The characterization of the value function via the Hamilton-Jacobi-Bellman approach is a difficult issue and we refer to [START_REF] Rao | Hamilton-Jacobi-Bellman equations on multi-domains[END_REF] in order to prove that v ε is the unique solution of (1.4)

-∂ t v ε (t, x, y) + H E (x, y, D x v ε (t, x, y), 1 ε D y v ε (t, x, y)) = 0 on (0, T ) × R d × R 2 , v ε (T, x, y) = ϕ(x, y) on R d × R 2 ,
where H E is the essential Hamiltonian which is discontinuous in general and will be defined in Section 2.

Main results

We now want to characterize the limit v of v ε as the velocity of the fast variable goes to infinity (i.e. ε → 0). The main results are the following. Theorem 1.2 (Definition of the effective Hamiltonian). For each fixed x ∈ R d , P ∈ R d , there exists a unique λ := H(x, P ) ∈ R such that the cell problem 

(1.
-∂ t v(t, x) + H(x, D x v(t, x)) = 0 for t ∈ (0, T ), x ∈ R d , v(T, x) = inf y∈R 2 ϕ(x, y) for x ∈ R d .
Note the fact that the limiting equation does not depend on the fast variable, (1.6) can be understood by looking at the controllability assumptions which implies that at the limit, the fast variable can travel over all the space R 2 with infinite velocity (this also explains the terminal condition).

We also want to point out that the effective Hamiltonian H is Lipschitz continuous in x and so the perturbed test function (introduced by Evans [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF]) can be adapted to our case.

The paper is organized as follows. In section 2, we give some preliminary results including the notion of essential Hamiltonians. Section 3 discusses the cell problem while Section 4 is devoted to the properties of the effective Hamiltonian H. The proof of the convergence result is given in Section 5.

Preliminary results

We now state the definition of the essential Hamiltonian. Note that we have two types of interfaces according to their dimensions, we set

I := {(k, k + 1) × {m}, (k, m) ∈ Z 2 } ∪ {{k} × (m, m + 1), (k, m) ∈ Z 2 } ∪ Z 2
as the union of all the 1-dimensional interfaces and 0-dimensional interfaces.

For any M ∈ S 1 ∪ S 2 ∪ I, we denote by

Φ M : R d × R 2 R d × R 2 defined by Φ M (x, y) := Φ i (x, y) if M ∈ S i , i = 1, 2, Φ(x, y) if M ∈ I.
Consider the essential multifunction Φ E (introduced in [START_REF] Barnard | Flow invariance on stratified domains[END_REF][START_REF] Rao | Hamilton-Jacobi-Bellman equations on multi-domains[END_REF]) defined as follows. Definition 2.1. [Essential dynamics and essential Hamiltonian] Let

Φ E : R d × R 2 R d × R 2 be a multifunction defined for any (x, y) ∈ R d × R 2 by Φ E (x, y) := M∈S1∪S2∪I, y∈M Φ M (x, y) ∩ (R d × T M (y)) .
We also denote by H E : R × R → R the essential Hamiltonian defined by

H E (x, y, ξ, ζ) := sup (p,q)∈Φ E (x,y) {-p • ξ -q • ζ}. Example 1.
Here we give a precise example to see more clearly the elements in Φ E . We ignore the variable X since there is no singularity in the structure of the dynamics of X. Consider g 1 ≡ (1, 1) and g 2 ≡ (-1, 1), Figure 2.1 shows the differences between Φ and Φ E on the interfaces (elements in I. In fact, on the interfaces Φ contains

0 g 1 g 1 g 2 g 2 g 1 g 1 g 2 g 2 0 Fig. 2.1. Φ and Φ E .
all the possible directions (the whole triangles) in which some of them may be useless.

While the definition of Φ E allows to select only the useful dynamics for the trajectories in S ε [t,T ] (x, y): the directions g i which are inward for Ω i and the tangent directions for the interfaces. We refer to [START_REF] Barnard | Flow invariance on stratified domains[END_REF][START_REF] Rao | Hamilton-Jacobi-Bellman equations on multi-domains[END_REF] for more details. Remark 2.2. Φ E (x, y) is Lipschitz continuous in x since Φ(•, y) is Lipschitz continuous. However, Φ E (x, y) is not necessarily continuous in y because of the geometrical singularity of the dynamical structure for the variable y. Therefore, the essential Hamiltonian

H E (x, y, ξ, ζ) is Lipschitz continuous in x, but not necessarily continu- ous in y.
Then here is the characterization result ([21, Theorem 2.4]) for the value function. Lemma 2.3 (Characterization of the value function). The value function v ε is unique Lipschitz continuous viscosity solution of (1.4) in the sense of Definition 2.5.

Before giving the definition of viscosity solution, we need the following notion of extended differentials.

Definition 2.4 (Extended differential). Let φ : (0, T ) × R d × R 2 → R be a continuous function and M ∈ S 1 ∪ S 2 ∪ I. Suppose that φ ∈ C 1 ((0, T ) × R d × M), then for any t ∈ (0, T ), x ∈ R d , y ∈ M, the extended differential of φ on (t, x, y) is defined by D M φ(t, x, y) := lim z→y,z∈M

Dφ(t, x, z).

Note that since Dφ(t, x, •) is continuous on M, the extended differential is nothing but the extension of Dφ(t, x, •) to the whole M.

We now state the definition of viscosity solution for (1.4). Definition 2.5 (Viscosity solution for (1.4)). Let u : (0, T ] × R d × R 2 → R be a bounded Lipschitz continuous function.

(i) We say that u is a supersolution of (1.4) if for any

(t 0 , x 0 , y 0 ) ∈ (0, T )×R d ×R 2 , φ ∈ C 1 ((0, T ) × R d × R 2
) such that u -φ attains a local minimum on (t 0 , x 0 , y 0 ), we have

-φ t (t 0 , x 0 , y 0 ) + H E (x 0 , y 0 , D x φ(t 0 , x 0 , y 0 ), 1 ε D y φ(t 0 , x 0 , y 0 )) ≥ 0.
(ii) We say that u is a subsolution of (1.4) if for any

(t 0 , x 0 , y 0 ) ∈ (0, T ) × R d × R 2 , any continuous φ : (0, T ) × R d × R 2 → R with φ| (0,T )×R d ×M being C 1 for each M ∈ S 1 ∪ S 2 ∪ I with y 0 ∈ M such that u -φ attains a local maximum at (t 0 , x 0 , y 0 ), we have -φ t (t 0 , x 0 , y 0 ) + sup (p,q)∈Φ M (x0,y0)∩(R d ×T M (y0)) {-p • D x φ(t 0 , x 0 , y 0 ) - 1 ε q • D M φ(t 0 , x 0 , y 0 )} ≤ 0.
(iii) We say that u is a viscosity solution of (1.4) if u is both a supersolution and a subsolution, and u satisfies the final condition

u(T, x, y) = ϕ(x, y), ∀ (x, y) ∈ R d × R 2 .
In the following, we will also use different equations (in particular for the cell problem and for the approximated cell problem). We then give the definition of viscosity solution for a more general equation of the form (i) We say that u is a supersolution of (2.1) if for any

y 0 ∈ ×R 2 , φ ∈ C 1 (R 2
) such that u -φ attains a local minimum on y 0 , we have

H 1 (u(y 0 )) + H E (x, y 0 , P, Dφ(y 0 )) ≥ 0. (ii) We say that u is a subsolution o (2.1) if for any y 0 ∈ R 2 , any continuous φ : R 2 → R with φ| M being C 1 for each M ∈ S 1 ∪ S 2 ∪ I with y 0 ∈ M such that u -φ attains a local maximum at y 0 , we have H 1 (u(y 0 )) + sup (p,q)∈Φ M (x,y0)∩(R d ×T M (y0)) {-p • P -q • D M φ(y 0 ))} ≤ 0.
(iii) We say that u is a viscosity solution of (2.1) if u is both a supersolution and a subsolution.

We now state a comparison principle for the equation (1.4) on bounded domain Theorem 2.7 (Comparison principle in bounded domain). For any open bounded

Ω ⊆ (0, T ) × R d , let u 1 , u 2 : (0, T ) × R d × R 2 → R be Lipschitz continuous. If u 1 is a subsolution of (1.4) and u 2 is a supersolution of (1.4) on Ω × R 2 , then we have max (t,x,y)∈Ω×R 2 {u 1 (t, x, y) -u 2 (t, x, y)} ≤ max (t,x,y)∈∂Ω×R 2 {u 1 (t, x, y) -u 2 (t, x, y)}.
Before we start the proof, we have the following lemma which is direct consequence of [21, Theorem 3.7, Theorem 3.11]. Lemma 2.8 (Dynamics programming principle). Let u : (0, T ) × R d × R 2 be Lipschitz continuous.

• If u is a supersolution of (1.4), then for any (t, x, y)

∈ [0, T ] × R d × R 2 there exists (X, Y ) ∈ S ε [t,T ] (x, y) such that u(t, x, y) ≥ u(t + h, X(t + h), Y (t + h)), for 0 ≤ h ≤ T -t.
• If u is a subsolution of (1.4), then for any

(t, x, y) ∈ [0, T ] × R d × R 2 and any (X, Y ) ∈ S ε [t,T ] (x, y) u(t, x, y) ≤ u(t + h, X(t + h), Y (t + h)), for 0 ≤ h ≤ T -t.
Proof. [Proof of Theorem 2.7] For any (t 0 , x 0 , y 0 ) ∈ Ω×R 2 , u 2 is a supersolution on Ω implies that there exists an absolutely continuous function

(X, Y ) ∈ S ε [t0,T ] (x 0 , y 0 ) such that u 2 (t 0 , x 0 , y 0 ) ≥ u 2 (t 0 + h, X(t 0 + h), Y (t 0 + h)), for 0 ≤ h ≤ h 0 ,
where

h 0 := inf{h > 0 : (t 0 + h, X(t 0 + h)) ∈ Ω}. u 1 is a subsolution on Ω implies that u 1 (t 0 , x 0 , y 0 ) ≤ u 1 (t 0 + h, X(t 0 + h), Y (t 0 + h)), for 0 ≤ h ≤ h 0 .
We then deduce that

(u 1 -u 2 )(t 0 , x 0 , y 0 ) ≤ (u 1 -u 2 )(t 0 + h 0 , X(t 0 + h), Y (t 0 + h)).
The definition of h 0 implies that (t 0 + h 0 , X(t 0 + h)) ∈ ∂Ω, then we obtain u 1 (t 0 , x 0 , y 0 ) -u 2 (t 0 , x 0 , y 0 ) ≤ max (t,x,y)∈∂Ω×R 2 {u 1 (t, x, y) -u 2 (t, x, y)}, which leads to the desired result.

3 The cell problem In this section, we focus on the the cell problem: βv β (y) + H E (x, y, P, Dv β (y)) = 0, y ∈ R 2 .

given x ∈ R d , P ∈ R d , find λ ∈ R
Then we investigate the limit of the approximating equation (3.1) as β → 0 by proving that v β → v and βv β → -λ with v solution of (1.5) Since H E is not Lipschitz continuous in y, the existence and uniqueness of the solution for (3.1) need to be carrefully studied. A simple idea is to link the HJB equation (3.1) with an optimal control problem. For any y ∈ R 2 , we denote the set of absolutely continuous trajectories by

S[x, y] := {(X, Y ), ( Ẋ(s), Ẏ (s)) ∈ Φ(x, Y (s)), X(0) = x, Y (0) = y}.
Given P ∈ R 2 , consider the value function w β of the following infinite horizon optimal control problem:

w β (y) := min (X,Y )∈S[x,y] +∞ 0 e -βs P • Ẋ(s)ds.
The main result of this subsection is the following characterization of the value function w β : Theorem 3.1 (Characterization of the value function w β ). The value function w β is the unique viscosity solution of (3.1) in the sense of Definition 2.6.

We begin by the existence part. As in the classical case (see [9, Proposition III.2.5]), w β satisfies a Dynamical programming principle (DPP). Proposition 3.2 (Dynamic programming principle). Assume that (H1) hold. Then for any y ∈ R 2 , h ≥ 0, the following holds. Proof. We first prove that w β is a supersolution. For any

y 0 ∈ R 2 , let φ ∈ C 1 (R 2
) such that u -φ attains a local minimum on y 0 . By the super-optimality satisfied by w

β , ∃ (X, Y ) ∈ S[y 0 ] such that (3.3) w β (y 0 ) ≥ h 0 e -βs P • Ẋ(s)ds + e -βh w β (Y (h)).
By definition of φ, we have

(3.4) w β (y 0 ) -φ(y 0 ) ≤ w β (Y (h)) -φ(Y (h)), ∀ h > 0.
Then, (3.3) and (3.4) imply that

(3.5) w β (y 0 ) ≥ h 0 e -βs P • Ẋ(s)ds + e -βh (w β (y 0 ) + φ(Y (h)) -φ(y 0 )), i.e. (3.6) 1 -e -βh h w β (y 0 ) - 1 h h 0 e -βs P • Ẋ(s)ds - e -βh h h 0 Dφ(Y (s)) • Ẏ (s)ds ≥ 0.
By [21, Lemma 3.6], there exists h n → 0 such that (X(hn),Y (hn))-(x,y0) hn → (p 0 , q 0 ) for some (p 0 , q 0 ) ∈ coΦ E (x, y 0 ). We then get

βw β (y 0 ) -p 0 • P -q 0 • Dφ(y 0 ) ≥ 0, which leads to βw β (y 0 ) + sup (p,q)∈coΦ E (x,y0) {-p • P -q • Dφ(y 0 )} ≥ 0.
Since (p, q) → -p • P -q • Dφ(y 0 ) is linear, we have

sup (p,q)∈coΦ E (x,y0) {-p • P -q • Dφ(y 0 )} = sup (p,q)∈Φ E (x,y0) {-p • P -q • Dφ(y 0 )}. Thus βw β (y 0 ) + sup (p,q)∈Φ E (x,y0) {-p • P -q • Dφ(y 0 )} ≥ 0,
which ends the proof for the supersolution property. Now we prove that w β is a subsolution. Let φ ∈ C(R 2 ) such that u -φ attains a local maximum at y 0 with φ ∈ C 1 (M) for every M ∈ S 1 ∪ S 2 ∪ I such that y 0 ∈ M. If y 0 ∈ M with M ∈ S 1 ∪ S 2 , since g 1 and g 2 are Lipschitz continuous, then the proof is classical (see [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications[END_REF]) and we skip it. We then assume that y 0 lies in an element of I.

For each M ∈ S 1 ∪ S 2 ∪ I with y 0 ∈ M, any (p, q) ∈ Φ M (x, y 0 ) ∩ (R d × T M (y 0 )), by [21, Lemma 3.9] there exists h > 0 and a solution (X, Y ) ∈ S[x, y 0 ] which is C 1 on [0, h] with ( Ẋ(0), Ẏ (0)) = (p, q) and Y (s) ∈ M, ∀ s ∈ [0, h]. By the sub-optimality of w β , w β (y 0 ) ≤ h 0 e -βs P • Ẋ(s)ds + e -βh w β (Y (h)).
We have also

w β (y 0 ) -φ(y 0 ) ≥ w β (Y (h)) -φ(Y (h)), ∀ h > 0.
By a similar argument as in the supersolution property case, we can deduce that

1 -e -βh h w β (y 0 ) - 1 h h 0 e -βs P • Ẏ (s)ds - e -βh h h 0 Dφ(Y (s)) Ẏ (s)ds ≤ 0.
Taking h → 0 leads to

βw β (y 0 ) -(p • P + q • D M φ(y 0 )) ≤ 0.
The point (p, q) being arbitrary in Φ M (x, y 0 ) ∩ (R d × T M (y 0 )), we deduce that

βw β (y 0 ) + sup (p,q)∈Φ M (x,y0)∩(R d ×T M (x,y0)) {-p • P -q • D M φ(x 0 )} ≤ 0,
which ends the proof. Before we prove the uniqueness result, we state the following results dealing with the relation between supersolution (resp. subsolution) and super-optimality (resp. sub-optimality). Theorem 3.5 (Supersolution implies super-optimality). Let u : R 2 → R be a supersolution of (3.1), then u satisfies the super-optimality.

Proof. We want to prove that there exists (X, Y ) ∈ S[x, y] such that u(y) ≥ For any y ∈ R 2 , consider the following viability problem:

(3.7)        ( Ẋ(h), Ẏ (h) ∈ Φ(x, Y (h)) for h ∈ (0, ∞), ξ(h) = βξ(h) -P • Ẋ(h)
for h ∈ (0, ∞), (X(0), Y (0), ξ(0)) = (x, y, u(y)), (Y (h), ξ(h)) ∈ epi (u).

For any (y, ξ) ∈ epi (u), we have u(y) ≤ ξ. We claim that for any 

(ζ, σ) ∈ [T epi (u) (y, u(y))] - * , (3.8) inf (p,q)∈Φ(x,y) (q, βξ -P • p), (ζ, σ) ≤ 0. Indeed, let (ζ, σ) ∈ [T epi (u) (y, u(y))] -. Since (0, 1) ∈ T epi (u) (y, u ( 
(q, βξ -P • p), (ζ, -1) = -βξ + inf (p,q)∈Φ(x,y) {Dφ(y) • q + P • p} ≤ -βu(y) + inf (p,q)∈Φ(x,y) {Dφ(y) • q + P • p} ≤ -βu(y) + inf (p,q)∈Φ E (x,y) {Dφ(y) • q + P • p} ≤ 0.
Case 2 : σ < 0 In that case, (ζ/|σ|, -1) ∈ [T epi (u) (y, u(y))] -. We deduce using the previous case, that inf (p,q)∈Φ(x,y)

(q, βξ -P • p), ( ζ |σ| , -1) ≤ 0, which implies inf (p,q)∈Φ(x,y) (q, βξ -P • p), (ζ, σ) ≤ 0.
Case 3 : σ = 0 By [14, Lemma 4.2] there exists

y n → y, (ζ n , σ n ) → (ζ, 0) such that (ζ n , σ n ) ∈ [T epi (u) (y n , u(y n ))] -, σ n < 0.
Using Case 2, we get that inf (p,q)∈Φ(x,yn)

(q, βξ -P • p), (ζ n , σ n ) ≤ 0. * [T epi (u) (y, u(y))
] -is the negative polar cone of T epi (u) (y, u(y)), i.e. p ∈ [T epi (u) (y, u(y))] -if and only if p, q ≤ 0 for any q ∈ T epi (u) (y, u(y)).

Since Φ is upper semicontinuous, we deduce that inf (p,q)∈Φ(x,y) (q, βξ -P • p), (ζ, 0) ≤ 0.

which ends the proof of (3.8).

Note that

Ẏ (h) ξ(h) ∈ 0 βξ(h) + 0 1 -P 0 Φ(x, Y (h)) := Ψ(Y (h), ξ(h)),
where Ψ is upper semicontinuous since Φ is upper semicontinuous. Equation (3.8) can be rewritten as inf (p,q)∈Φ(x,y)

0 βξ + 0 1 -P 0 p q , ζ σ ≤ 0,
which is equivalent to, by the definition of Ψ, inf (p ,q )∈Ψ(x,y) (p , q ), (ζ, σ) ≤ 0.

Then we deduce that

Ψ(y, ξ) ∩ T epi (u) (y, u(y)) = ∅, for (y, ξ) ∈ epi (u).
For any (y, ξ) ∈ epi (u), if ξ = u(y), i.e. ξ > u(y), then (y, ξ) ∈ int epi (u), we have

T epi (u) (y, ξ) = R 3 ⊇ T epi (u) (y, u(y)).
Thus, Ψ(y, ξ) ∩ T epi (u) (y, ξ) = ∅, for (y, ξ) ∈ epi (u).

Since (y, u(y)) ∈ epi (u) and Ψ are usc, the viability theorem [3, pp. 180] yields that problem (3.7) has a viable solution (X(•), Y (•), ξ(•)), i.e.

(Y (h), ξ(h)) ∈ epi (u), ∀ h ≥ 0, which leads to u(Y (h)) ≤ ξ(h), ∀ h ≥ 0. Theorem 3.6 (Subsolution implies sub-optimality). Let u : R 2 → R be a subsolution of (3.1), then u satisfies the sub-optimality.

To do the proof, we need the following result Proposition 3.7. Let u be a subsolution of (3.1). Suppose M ∈ S 1 ∪ S 2 ∪ I and Ω is a finite union of sets contained in S 1 ∪ S 2 ∪ I with M ⊆ Ω. Assume Ω has the following property: for any 0 ≤ a ≤ b and any trajectory (X, Y ) ∈ S[x, y] with Y (•) ⊂ Ω, we have where the intervals are disjoint. For a fixed p ∈ N, we set

J p := p n=1 (a n , b n )
as the union of the first p intervals which, without loss of generality, after reindexing can be assumed to satisfy

a 1 < b 1 ≤ a 2 < b 2 ≤ • • • ≤ a p < b p .
We set b 0 := a and a p+1 := b. Then a ≤ a 1 and b p ≤ b. We now calculate how far

For n = 1, . . . , p, Y (s) ∈ Ω for s ∈ (a n , b n ). Let η > 0 small enough such that [a n + η, b n -η] ⊂ (a n , b n ), then by (3.9) u(Y (a n + η)) ≤ bn-η an+η e -β(s-an-η) P • Ẋ(s)ds + e -β(bn-an-2η) u(Y (b n -η)).
(X(•), Y (•)) is from a trajectory lying in R d × M with dynamics Φ(X(•), Y (•)) ∩ (R d × T M (Y (•))) by δ n := an+1 bn dist ( Ẋ(s), Ẏ (s)), Φ(X(s), Y (s)) ∩ (R d × T M (Y (s))) ds ≤ 2M ε η n ,
where ε is given in (1.2). By the Filippov approximation theorem (see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]Theorem 3.1.6]) and also [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]Proposition 3.2]), there exists a trajectory

(X n , Z n )(•) of Φ(x, Z n (•)) ∩ (R d × T M (Z n (•))) defined on the interval [b n , a n+1 ] that lies in R d × M with Z n (b n ) = Y (b n ) and satisfies for any , s ∈ [b n , a n+1 ] (3.10) (X n , Z n )(s) -(X, Y )(s) ≤ e L(s-bn)/ε δ n ≤ 2M ε e L(s-bn)/ε η n ≤ 2M ε e L(an+1-bn)/ε η n . Since (X n , Z n )(•) lies in R d × M and is driven by Φ(x, Z n (•)) ∩ (R d × T M (Z n (•)))
which is Lipschitz continuous, the subsolution property of u implies that

u(Z n (b n )) ≤
an+1 bn e -β(s-bn) P • Ẋn (s)ds + e -β(an+1-bn) u(Z n (a n+1 )).

Then by (3.10) we have

u(Y (b n )) = u(Z n (b n )) ≤ an+1 bn e -β(s-bn) P • Ẋ(s)ds + an+1 bn e -β(s-bn) ds P L 2M ε e L(an+1-bn)/ε η n +e -β(an+1-bn) u(Y (a n+1 )) + e -β(an+1-bn) L u • 2M ε e L(an+1-bn)/ε η n ≤ an+1 bn
e -β(s-bn) P • Ẋ(s)ds + e -β(an+1-bn) u(Y (a n+1 )) We set

+( P L + L u ) 2M ε e L(an+1-bn)/ε η n , ( 3 
Ω = {M ∈ S 1 ∪ S 2 ∪ I | ∃ s ∈ [a, b] such that Y (s) ∈ M} . Note that Ω is connected since Y (•) is continuous.
Let d Ω be the minimal dimension of the manifolds contained in Ω. Case 2.2: Ω contains more than one manifold Let M 1 , . . . , M p be all the manifolds contained in Ω with dimension 1. Then Ω := Ω\ (∪ p k=1 M k ) contains only manifolds of dimension 2. For any (X, Y ) ∈ S[x, y] with Y (•) ⊂ Ω , (3.9) is satisfied (see Case 1). Then using Proposition 3.7, we get that (3.9) holds true for every trajectory (X,

Case 1: d Ω = 2. Then Ω ⊂ Ω 1 ∪ Ω 2 . Since Y (•) is continuous, then Y | [a,b] lies entirely in Ω 1 or Ω 2 . Since the dynamics g i of Y (•) is Lipschitz continuous,
Y ) ∈ S[x, y] with Y (•) ⊂ Ω ∪ M 1 because M 1 ⊂ Ω . By induction, (3.9) holds true for every (X, Y ) ∈ S[x, y] with Y (•) ⊂ Ω ∪ M 1 ∪ • • • ∪ M p = Ω. Case 3: d Ω = 1.
The arguments are quite similar to the ones of Case 2.

Finally, to complete the proof, we remark that the sub-optimality of u is proved by taking a = 0, b = h in (3.9).

We are now ready to prove the following comparison principle Lemma 3.8 (Comparison principle for (3.1)). Let u, w : R 2 → R be Lipschitz continuous functions. Suppose that u is a subsolution of (3.1) and w is a supersolution of (3.1). Then we have

u(y) ≤ w(y), ∀ y ∈ R 2 .
Proof. By contradiction, suppose that (3.13) sup

y∈R 2 {u(y) -w(y)} := M > 0.
Then there exists y 0 ∈ R 2 such that

(3.14) u(y 0 ) -w(y 0 ) > M 2 .
Since w is a supersolution, by Theorem 3.5, w satisfies the super-optimality, i.e. ∃( X, Ȳ ) ∈ S[y 0 ] such that

(3.15) w(y 0 ) ≥ e -βh w( Ȳ (h)) + h 0 e -βs P • Ẋ(s)ds, ∀ h ≥ 0.
Since u is a subsolution, by Theorem 3.6, u satisfies the sub-optimality, i.e. 

u(y 0 ) -w(y 0 ) ≤ e -βh (u( Ȳ (h)) -w( Ȳ (h))), ∀ h ≥ 0.
If there exists h 0 > 0 such that Ȳ (h) = y 0 , then we deduce that u(y 0 ) -w(y 0 ) ≤ 0, which contradicts (3.14). Otherwise, we set z h = Ȳ (h) with z h = y 0 and h = log 2/β. We then have

u(z h ) -w(z h ) ≥ e βh (u(y 0 ) -w(y 0 )) > e βh M 2 = M,
which is a contradiction to (3.13). Thus M ≤ 0 and the desired result holds. We now give the proof of Theorem 3.1.

Proof. [Proof of Theorem 3.1] The fact that w β is a viscosity solution of (3.1) is a consequence of Proposition 3.4. The uniqueness is deduced from Lemma 3.8.

Proof of Theorem 1.2

Before we start the proof, we need the following stability result. Lemma 3.9. Let v β be the viscosity solution of (3.17) βv β (y) + a β + H E (x, y, P, Dv β (y)) = 0 with a β ∈ R. Assume that there exist λ ∈ R and v : R 2 → R such that βv β + a β → -λ uniformly and v β → v uniformly when β → 0.

Then v is a viscosity solution of (1.5).

Proof. We first prove that v is a subsolution. Let y 0 ∈ R 2 , φ ∈ C(R 2 ) and φ ∈ C 1 (M) for each M ∈ S 1 ∪ S 2 ∪ I with y 0 ∈ M such that v(x) -φ(x) attains a strict maximum at y 0 . We want to prove that

-λ + sup (p,q)∈Φ M (x,y0)∩(R d ×T M (y0)) {-p • P -q • D M φ(y 0 )} ≤ 0. Let M ∈ S 1 ∪ S 2 ∪ I such that y 0 ∈ M.
For any y ∈ R 2 , let P M (y) be the projection of y on M, and dist(y, M) be the distance function to M. Consider the penalized function Ψ(y) := v(y) -φ(y) -Cdist(y, M) with

C > Dv β -Dφ .
We have v(y) -φ(y) -Cdist(y, M) ≤ v(y) -φ(y) < v(y 0 ) -φ(y 0 ), ∀ y = y 0 , which implies that v(y) -φ(y) -Cdist(y, M) attains a strict maximum at y 0 . Since v β → v uniformly, v β -φ + Cdist(y, M) attains a local maximum at some y β with y β → y 0 . For any y ∈ M, we have

v β (y) -φ(y) -Cdist(y, M) ≤ v β (P M (y)) -φ(P M (y)) + Dv β -Dφ • y -P M (y) < v β (P M (y)) -φ(P M (y)).
Then we deduce that the maximum y β ∈ M.

v β is the subsolution of (3.17), thus

(3.18) βv β (y β ) + α β + sup (p,q)∈Φ M (x,y β )∩(R d ×T M (y β )) {-p • P -q • Dφ(y β )} ≤ 0.
We claim that

(3.19) T M (y 0 ) ⊆ T M (y β ).
If y 0 ∈ r-int M (the relative interior of M), then y β ∈ r-int M for β small enough. Therefore,

T M (y β ) = T M (y β ) = T M (y 0 ) = T M (y 0 ).
If y 0 ∈ r-bdry M (the relative boundary of M), note that y β → y 0 and

y β ∈ M, then y β ∈ r-bdry M or y β ∈ r-int M. If y β ∈ r-bdry M, then T M (y β ) = T M (y 0 ). Otherwise y β ∈ r-int M, then T M (y 0 ) ⊂ T M (y β ) = T M (y β ).
Finally, we conclude that (3.19) {-p • P -q • Dφ(y β )} ≤ 0.

By letting β → 0, we obtain

-λ + sup (p,q)∈Φ M (x,y0)∩(R d ×T M (y0)) {-p • P -q • D M φ(y 0 ))} ≤ 0. Now we prove that v is a supersolution. Let φ ∈ C 1 (R 2
) such that v -φ attains a strict minimum at y 0 . Since v β → v uniformly, v β -φ attains a minimum at some y β such that y β → y 0 . Then we have

βv β (y β ) + a β + sup (p,q)∈Φ E (x,y β ) {-p • P -q • Dφ(y β ))} ≥ 0.
Since Φ E (•) ⊆ Φ(•), we have

βv β (y β ) + a β + sup (p,q)∈Φ(x,y β ) {-p • P -q • Dφ(y β ))} ≥ 0.
By sending β → 0 and the upper semi-continuity of Φ, we get -λ + sup (p,q)∈Φ(x,y0)

{-p • P -q • Dφ(y 0 ))} ≥ 0, which, by [21, Proposition 3.5, Theorem 3.7], is equivalent to

-λ + sup (p,q)∈Φ E (x,y0) {-p • P -q • Dφ(y 0 ))} ≥ 0.
Now we state the proof of Theorem 1.2.

Proof. [Proof of Theorem 1.2] By Theorem 3.1, given x ∈ R d , P ∈ R d , for each β > 0, we know that the approximating problem βw β (y) + H E (x, y, P, Dw β (y)) = 0, for y ∈ R 2 has a unique bounded Lipschitz continuous viscosity solution w β .

Step 1: Estimate on w β . We now prove that w β is S-periodic. For k ∈ Z 2 , we set w β (y) := w β (y + k). It is then easy to check that w β is still a solution of (3.1). Thus, by uniqueness, we get

w β = w β , which implies that w β is S-periodic.
Since w β is uniformly Lipschitz continuous (see Propositon3. Let v β = w β -min S w β . Since w β is continuous and periodic, there exists y 0 ∈ S such that v β = w β -w β (x 0 ). Then

(3.21) v β ≤ 2 √ 2 Dw β ≤ 2 √ 2C 1 , Dv β = Dw β .
Using the fact that w β is a viscosity solution of (3.1), we get that v β is a viscosity solution of

βv β (y) + H E (x, y, P, Dv β (y)) = -min S (βw β ), ∀ y ∈ R 2 .
Step 2: Passing to the limit Using (3.20), (3.21) and Arzela-Ascoli Theorem, up to a subsequence, we get Then by Lemma 3.9, we deduce that H E (x, y, P, Dv(y)) = λ.

v β → v uniformly on R
Step 3: Uniqueness of λ Suppose that there exists (v 1 , λ 1 ) and (v 2 , λ 2 ) solutions of the cell problem (1.5) with λ 1 = λ 2 . Assume without lost of generality that λ 1 < λ 2 . Note that v 1 , v 2 are both continuous and periodic, thus they are bounded. By adding a suitable constant to v 1 , we may assume that

v 1 > v 2 . Since λ 1 < λ1+λ2 2 < λ 2 , v 1 , v 2
are bounded, we deduce that for ε small enough, v 1 , v 2 are respectively subsolution and supersolution of

εv + H E (x, y, P, Dv) = λ 1 + λ 2 2 .
Using the comparison principle for the equation (3.1), we obtain v 1 ≤ v 2 which is a contradiction.

4 Properties of the effective Hamiltonian For every

x ∈ R d , P ∈ R d , we denote by H(x, P ) the unique constant such that there exists a periodic solution of (1.5). Proposition 4.1.

H(•, •) is Lipschitz continuous. Proof. Let x 1 , x 2 ∈ R d and P 1 , P 2 ∈ R 2 . For each β > 0, suppose that w β i , i = 1, 2 is a solution of βw β i (y) + H E (x i , y, P i , Dw β i ) = 0,
For any y ∈ R 2 , q ∈ R 2 , by the Lipschitz continuity of H E (•, y, •, q), there exists C > 0 such that H E (x 2 , y, P 2 , q) ≤ H E (x 1 , y, P 1 , q) + C( x 1 -x 2 + P 1 -P 2 ).

Then we deduce that w β 1 -C β ( x 1 -x 2 + P 1 -P 2 ) is a subsolution of

βw β + H E (x 2 , y, P 2 , Dw β ) = 0.
By the comparison principle for (3.1), we get

w β 1 - C β ( x 1 -x 2 + P 1 -P 2 ) ≤ w β 2 ,
i.e.

βw β 1 -βw β 2 ≤ C( x 1 -x 2 + P 1 -P 2 ).
Letting β → 0 leads to

H(x 1 , P 1 ) -H(x 2 , P 2 ) ≤ C( x 1 -x 2 + P 1 -P 2 ).
Exchanging the role of (x 1 , P 1 ) and (x 2 , P 2 ), we conclude that

|H(x 1 , P 1 ) -H(x 2 , P 2 )| ≤ C( x 1 -x 2 + P 1 -P 2 ),
which implies the Lipschitz continuity of H(•, •).

As studied in [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications[END_REF][START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF], the effective Hamiltonian H can be evaluated as the optimal average cost of an ergodic control problem in the y variable.

Proposition 4.2. Given x ∈ R d , P ∈ R d , (4.1) H(x, P ) = lim t→+∞ sup (X,Y )∈S[x,y] - 1 t P • (X(t) -x) , for any y ∈ R 2 .
Proof. This result is quite similar to the formula (10) obtained in [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF]. Here we give a sketch of the proof. Consider the value function

v(t, y) = inf (X,Y )∈S[x,y] {P • (X(t) -x)} .
Then v solves the HJB equation

∂ t v(t, y) + H E (x, y, P, D y v(t, y)) = 0 on (0, +∞) × R 2 ,
where x, P are fixed, and the initial condition v(0, •) ≡ 0. Let w(•) be a solution of the cell problem (1.5) with λ = H(x, P ), then w(y) -tH(x, P ) is a solution of the same Cauchy problem but with a different initial condition. Note that the HJB equation above is the same type as (1.4), the comparison result Theorem 2.7 implies that v(t, y) -w(y) + tH(x, P ) is bounded by w ∞ . Since w is bounded, -v(t, y)/t → H(x, P ) as t → +∞, uniformly in y. Remark 4.3. If we consider the same case as in [START_REF] Bagagiolo | Singular perturbation of a finite horizon problem with state-space constraints[END_REF] where the controls acting on the slow variable X and and fast variable Y are separated, more precisely given A, B two independent control sets, Then the effective Hamiltonian satisfies the following formula:

f = f (x, y, a), a ∈ A, g i = g i (x, y, b), b ∈ B, i = 1, 2. Let H 1 : R 2 × R 2 × R d → R defined by
H(x, P ) = max y∈R 2 H 1 (x, y, P ), ∀ x ∈ R d , P ∈ R d .
This is the same formula (12) obtained in [START_REF] Alvarez | Viscosity solutions methods for singular perturbations in deterministic and stochastic control[END_REF]. It is proved through the formula (4.1) and the controllability assumption on the fast variable Y .

5 Proof of Theorem 1.3 We define

u(t, x) = lim sup t,x,ε sup y∈R 2 u ε (t, x, y) and u(t, x) = lim inf t,x,ε inf y∈R 2 u ε (t, x, y).
The proof is divided into several steps.

Step 1 : u is subsolution of (1.6). Let φ ∈ C 1 ((0, T ) × R d ) such that u -φ has a strict local maximum at (t 0 , x 0 ). We want to prove that -φ t (t 0 , x 0 , y 0 ) + H(x 0 , Dφ(t 0 , x 0 )) ≤ 0.

We assume by contradiction that (5.1) -φ t (t 0 , x 0 ) + H(x 0 , Dφ(t 0 , x 0 )) = θ > 0.

We set P := Dφ(t 0 , x 0 ) and let v be a periodic Lipschitz continuous viscosity solution of the cell problem -H(x 0 , P ) + H E (x 0 , y, P, Dv(y)) = 0.

We use the perturbed test function introduced by Evans. For any ε > 0, we define φ ε (t, x, y) = φ(t, x) + εv(y). We want to prove that φ ε is a supersolution of (1.4) in

B((t 0 , x 0 ), r) × R 2 for r > 0 small enough. Let ψ ∈ C 1 ((0, T ) × R d × R 2 ) such that φ ε -ψ attains a minimum at (t 1 , x 1 , y 1 ) ∈ B((t 0 , x 0 ), r) × R 2 . Then φ ε (t 1 , x 1 , y 1 ) -ψ(t 1 , x 1 , y 1 ) ≤ φ ε (t, x, y) -ψ(t, x, y).
This implies that v(y 1 ) -Γ(y 1 ) ≤ v(y) -Γ(y)

where

Γ(y) = 1 ε [ψ(t 1 , x 1 , y)-φ(t 1 , x 1 )
]. We deduce that v(y)-Γ(y) attains a minimum at y 1 , then -H(x 0 , P ) + H E (x 0 , y 1 , P, DΓ(y 1 )) ≥ 0, i.e.

-φ t (t 0 , x 0 ) -θ + H E (x 0 , y 1 , Dφ(t 0 , x 0 ), 1 ε D y ψ(t 1 , x 1 , y 1 )) ≥ 0.
We then deduce that

-φ t (t 1 , x 1 ) + H E (x 1 , y 1 , Dφ(t 1 , x 1 ), 1 ε D y ψ(t 1 , x 1 , y 1 )) ≥ φ t (t 0 , x 0 ) -φ t (t 1 , x 1 ) -θ +H E (x 1 , y 1 , Dφ(t 1 , x 1 ), 1 ε D y ψ(t 1 , x 1 , y 1 )) -H E (x 0 , y 1 , Dφ(t 0 , x 0 ), 1 ε D y ψ(t 1 , x 1 , y 1 )). Since φ ∈ C 1 ((0, T ) × R d ) and H E (•, y, •, q) is continuous, we have for r > 0 small enough -φ t (t 1 , x 1 ) + H E (x 1 , y 1 , Dφ(t 1 , x 1 ), 1 ε D y ψ(t 1 , x 1 , y 1 )) ≥ θ 2 .
Note that v(•) is independent on t and x, the application t → φ(t, x 1 ) -ψ(t, x 1 , y 1 ) is C 1 and attains a minimum at t 1 and the application x → φ(t 1 , x) -ψ(t 1 , x, y 1 ) is C 1 and attains a minimum at x 1 , we obtain

φ t (t 1 , x 1 ) = ψ t (t 1 , x 1 , y 1 ), Dφ(t 1 , x 1 ) = D x ψ(t 1 , x 1 , y 1 ).
We conclude that -ψ t (t 1 , x 1 , y 1 ) + H E (x 1 , y 1 , D x ψ(t 1 , x 1 , y 1 ), 1 ε D y ψ(t 1 , x 1 , y 1 )) ≥ θ 2 , which implies that φ ε is a supersolution of (1.4). Then by Theorem 2.7, we have max B((t0,x0),r)×R 2 {u ε (t, x, y) -φ ε (t, x, y)} ≤ max ∂B((t0,x0),r)×R 2 {u ε (t, x, y) -φ ε (t, x, y)}.

Then we deduce that max (t,x)∈B((t0,x0),r) {u(t, x) -φ(t, x)} ≤ max (t,x)∈∂B((t0,x0),r) {u(t, x) -φ(t, x)}, which contradicts the fact that (t 0 , x 0 ) is a local strict maximum of u -φ.

Step 2 : u is a supersolution of (1.6). The proof is very similar. The main difference is to check that φ ε is a subsolution. By contradiction, assume that there exists φ ∈ C 1 ((0, T ) × R d ) such that u -φ has a strict local minimum at (t 0 , x 0 ).and such that (5.2) -φ t (t 0 , x 0 ) + H(x 0 , Dφ(t 0 , x 0 )) = -θ < 0.

We set P := Dφ(t 0 , x 0 ) and let v be a periodic Lipschitz continuous viscosity solution of the cell problem -H(x 0 , P ) + H E (x 0 , y, P, Dv(y)) = 0.

For any ε > 0, we define φ ε (t, x, y) = φ(t, x) + εv(y). We want to prove that φ ε is a supersolution of (1.4) in B((t 0 , x 0 ), r) × R 2 for r > 0 small enough. Let ψ : (0, T ) × R d ×R 2 → R be continuous with ψ| (0,T )×R d ×M being C 1 for each M ∈ S 1 ∪S 2 ∪I with y 1 ∈ M such that u -ψ attains a local maximum at (t 1 , x 1 , y 1 ) ∈ B((t 0 , x 0 ), r) × R 2 . As in the previous tep, we deduce that v -Γ reaches a maximum at y 1 where

Γ(y) = 1 ε [ψ(t 1 , x 1 , y) -φ(t 1 , x 1 )].
Then -H(x 0 , P ) + sup (p,q)∈Φ M (x0,y1)∩(R d ×T M (y1))

{-p • P -q • D M ψ(t 1 , x 1 , y 1 ))} ≤ 0.

i.e.

-φ t (t 0 , x 0 )+θ+ sup (p,q)∈Φ M (x0,y1)∩(R d ×T M (y1))

{-p•Dφ(t 0 , x 0 )-q•D M ψ(t 1 , x 1 , y 1 ))} ≤ 0.

Then we deduce that -φ t (t 1 , x 1 ) + sup (p,q)∈Φ M (x1,y1)∩(R d ×T M (y1))

{-p • Dφ(t 1 , x 1 ) -q • D M ψ(t 1 , x 1 , y 1 ))} ≤ φ t (t 0 , x 0 ) -φ t (t 1 , x 1 ) + sup (p,q)∈Φ M (x1,y1)∩(R d ×T M (y1))

{-p • Dφ(t 1 , x 1 ) -q • D M ψ(t 1 , x 1 , y 1 ))} -sup (p,q)∈Φ M (x0,y1)∩(R d ×T M (y1))

{-p • Dφ(t 0 , x 0 ) -q • D M ψ(t 1 , x 1 , y 1 ))} -θ.

Since φ ∈ C 1 ((0, T ) × R d ) and Φ M (•, y 1 ) ∩ (R d × T M (y 1 )) are continuous, we have for r > 0 small enough -φ t (t 1 , x 1 ) + sup (p,q)∈Φ M (x1,y1)∩(R d ×T M (y1))

{-p • Dφ(t 1 , x 1 ) -q • D M ψ(t 1 , x 1 , y 1 ))} ≤ -θ 2 .

Using that φ t (t 1 , x 1 ) = ψ t (t 1 , x 1 , y 1 ), Dφ(t 1 , x 1 ) = D x ψ(t 1 , x 1 , y 1 ), we conclude that -ψ t (t 1 , x 1 , y 1 )+ sup (p,q)∈Φ M (x1,y1)∩(R d ×T M (y1))

{-p•Dφ(t 1 , x 1 )-q•D M ψ(t 1 , x 1 , y 1 ))} ≤ -θ 2 , which implies that φ ε is a subsolution of (1.4). We then get a contradiction as in the previous step.

Step 3: Terminal condition Now we check the terminal condition. We set ϕ(x) := inf y∈R 2 ϕ(x, y).

The Lipschitz continuity of ϕ implies that ϕ is Lipschitz continuous. Since u ε (T, x, y) = ϕ(x, y), we have inf y∈R 2 u ε (T, x, y) = ϕ(x).

Then we deduce that u(T, x) = ϕ(x).

On the other hand, for any t ∈ [0, T ], x ∈ R d and y ∈ S(= (-1, 1) 2 ), u ε (t, x, y) = inf We conclude that (5.3) u(T, x) ≤ ϕ(x) = u(T, x).

Step 4 : Conclusion Since u is a subsolution of (1.6) and u is a supersolution of (1.6), by (5.3) and the comparison principle for (1.6) we have u(t, x) ≤ u(t, x), for (t, x) ∈ (0, T ) × R d ,

  y, a) : a ∈ A} is nonempty, convex, and compact; (ii) f (x, y, a) is L-Lipschitz continuous w.r.t x, y, and continuous w.r.t a; (iii) ∃ M > 0 so that f (x, y, a) ≤ M, ∀, (x, y) ∈ R d × R 2 , a ∈ A.

  5) H E (x, y, P, D y w(y)) = λ has a periodic viscosity solution w. Moreover, seen as a function of x and P , H is Lipschitz continuous. Theorem 1.3 (Convergence result). Assume (H1)-(H2). The value function v ε defined in (1.3) converges uniformly on [0, T ]×R d ×R 2 to the unique viscosity solution v of (1.6)

(2. 1 )Definition 2 . 6 (

 126 H 1 (u(y)) + H E (x, y, P, Du(y)) = 0. Viscosity solution for (2.1)). Let u : R 2 → R be a bounded Lipschitz continuous function.

  such that the equation (1.5) has a viscosity solution.

3. 1

 1 Approximating problem To solve the cell problem, we classically introduce an approximated cell problem. Given x ∈ R d , P ∈ R d and β > 0, we consider the problem (3.1)

0 e 0 e 0 e

 000 (i) The super-optimality. ∃ (X, Y ) ∈ S[x, y] such that w β (y) ≥ h 0 e -βs P • Ẋ(s)ds + e -βh w β (Y (h)); (ii) The sub-optimality. ∀ (X, Y ) ∈ S[x, y] we have w β (y) ≤ h 0 e -βs P • Ẋ(s)ds + e -βh w β (Y (h)).The value function w β satisfies the following properties. Proposition 3.3 (Regularity of w β ). Assume that (H1)-(H2) hold. Then w β is bounded and Lipschitz continuous. Moreover, the Lipschitz constant is uniform in β.Proof. By the definition of w β , for any y ∈ R 2 , Now we prove the Lipschitz continuity. For any y, z ∈ R 2 , consider the following trajectory:Y (s) := y + r 0 z -y y -z s, for s ≥ 0.We set h = y -z /r 0 , then we have Y (0) = y, Y (h) = z. Note that ẏx (s) = r 0 , by (H2)(iii) there exists X such that (X, Y ) ∈ S[x, y]. Since w β satisfies the sub-optimality along (X, Y ), we obtainw β (y) ≤ h -βs P • Ẋ(s)ds + e -βh w β (z) ≤ w β (z) + h -βs P • Ẋ(s)ds + (e -βh -1)w β (z) ≤ w β (z) + h -βs P M ds + (1 -e -βh )|w β (z)| ≤ w β (z) + 2(1 -e -βh ) P M β ≤ w β (z) + 2h P M = w β (z) + 2 P M r 0 y -z ,which implies the Lipschitz continuity of w β (the Lipschitz constant is independent on β).Then we have that w β is solution of the equation (3.1). Proposition 3.4 (w β satisfies (3.1)). The value function w β is the viscosity solution of (3.1).

h 0 e

 0 -βs P • Ẋ(s)ds + e -βh u(Y (h)), for h > 0, i.e. u(Y (h)) ≤ ξ(h), ξ(h) := e βh u(y) -h 0 e -βs P • Ẋ(s)ds , h > 0.

  y)), by the definition of [T epi (u) (y, u(y))] -we have (ζ, σ), (0, 1) ≤ 0, i.e. σ ≤ 0. Based on this fact, we consider the following three cases. Case 1: σ = -1 By [14, Proposition 4.1] there exists φ ∈ C 1 (R d ) such that u -φ attains a local minimum on y with Dφ(y) = ζ. Then inf (p,q)∈Φ(x,y)

e

  -β(s-a) P • Ẋ(s)ds + e -β(b-a) u(Y (b)). Then for any trajectory (X, Y ) ∈ S[x, y] with Y (•) ⊆ Ω ∪ M, we still have u(Y (a)) ≤ b a e -β(s-a) P • Ẋ(s)ds + e -β(b-a) u(Y (b)).Proof. Let (X, Y ) ∈ S[x, y] with Y (•) ⊆ Ω ∪ M satisfying the property (3.9). Without loss of generality, suppose that Y (a) ∈ M, Y (b) ∈ M (otherwise we consider the first arrival time and the last exit time of Y for M). Let J := {s ∈ [a, b] : Y (s) ∈ M}, which is an open set and so can be written as J = ∞ n=1 (a n , b n )

Taking η → 0

 0 and by the continuity of u, Y (•) and the integral, we deduce that u(Y (a n )) ≤ bn an e -β(s-an) P • Ẋ(s)ds + e -β(bn-an) u(Y (b n )). Next we need to deal with Y (•) restricted to [b n , a n+1 ]. For n = 0, . . . , p, we note that Y (s) ∈ M for all s ∈ [b n , a n+1 ]\J, then ( Ẋ(s), Ẏ (s)) ∈ Φ(x, Y (s)) ∩ (R d × T M (Y (s))) for almost all s ∈ [b n , a n+1 ]\J. For n = 0, . . . , p, set η n := meas [b n , a n+1 ] ∩ J , and note that p n=0 η n = meas(J\J p ). Then we have an+1 bn e -β(s-bn) P • Ẋ(s)ds ≤ M |P |η n .

ee

  .11) where L u is the Lipschitz constant of u. Then we deduce thatu(Y (a n )) ≤ bn an e -β(s-an) P • Ẋ(s)ds + an+1 bn e -β(s-an) P • Ẋ(s)ds +e -β(an+1-an) u(Y (a n+1 )) + e -β(bn-an) • ( P L + L u ) 2M ε e L(an+1-bn)/ε η n ≤ an+1 ane -β(s-an) P • Ẋ(s)ds + e -β(an+1-an) u(Y (a n+1 ))+( P L + L u ) 2M ε e L(an+1-bn)/ε η n . (3.12)By using(3.11) for n = 0 and (3.12) for n = 1, . . . , p, we obtainu(Y (a)) ≤ a1 a e -β(s-a) P • Ẋ(s)ds + e -β(a1-a) u(Y (a 1 )) + ( P L + L u ) 2M ε e L(a1-b0)/ε η 0 ≤ a2 a e -β(s-a) P • Ẋ(s)ds + e -β(a2-a) u(Y (a 2 )) + ( P L + L u ) 2M ε e L(a2-b0)/ε (η 0 + η 1 ) -β(s-a) P • Ẋ(s)ds + e -β(ap+1-a) u(Y (a p+1 )) + ( P L + L u ) -β(s-a) P • Ẋ(s)ds + e -β(b-a) u(Y (b)) + ( P L + L u )By taking p → +∞, we have p n=0 η n = meas(J\J p ) → 0 and the desired result is obtained. Now we state the proof of Theorem 3.6. Proof. [Proof of Theorem 3.6] Let u be a subsolution of (3.1). For any trajectory (X, Y )(•) ∈ S[x, y], any [a, b] ⊂ [0, +∞), we want to prove that (3.9) is true, i.e. u(Y (a)) ≤ b a e -β(s-a) P • Ẋ(s)ds + e -β(b-a) u(Y (b)).

  then the subsolution property of u implies that u satisfies the sub-optimality along (X, Y )| [a,b] , i.e. (3.9) holds true. Case 2: d Ω = 1. Two cases can happen. Case 2.1: Ω contains only one manifold In that case, Ω ∈ I with dimension 1, then the subsolution property of u implies (3.9) since the dynamics Φ ∩ (R d × T Ω ) is Lipschitz continuous on Ω.

( 3 . 0 e

 30 [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF])u(y 0 ) ≤ e -βh u( Ȳ (h)) + h -βs P • Ẋ(s)ds, ∀ h ≥ 0.Equations (3.15) and (3.16) leads to

  3), then w β is differentiable almost everywhere and sup 0<β<1 Dw β ≤ C 1 . Moreover, by (3.2), we get that (3.20) βw β ≤ P M.

2

 2 and min S (βw β ) → -λ for some v Lipschitz continuous and S-periodic and λ ∈ R. Moreover, since v β is uniformly bounded (see (3.21)), we get βv β → 0 uniformly on R 2 .

H 1 (

 1 x, y, P ) = sup a∈A {-P • f (x, y, a)}.

(

  X,Y )∈S ε [t,T ] (x,y) {ϕ(X(T ), Y (T ))} ≤ inf (X,Y )∈S ε [t,T ] (x,y) {ϕ(x, Y (T )) + L ϕ x -X(T ) } ≤ inf (X,Y )∈S ε [t,T ] (x,y) ϕ(x, Y (T )) + M L ϕ (T -t).By the controllability assumption (H2)(iii) for g i , we set that for anyx ∈ R d , Y (•) such that (x , Y ) ∈ S[x , y], inf ϕ(x , Y (T )) = inf y∈S ϕ(x , y) = ϕ(x ), for T ≥ t + 2 √ 2ε r 0 ,where we have used that S ⊂ B(0, √ 2). Then for any t < T we can restrict ε < r 0 (T -t)/(2 √ 2) and getlim sup ε→0,t→T -,x →x sup y∈R 2 inf (X ,Y )∈S ε [t,T ] (x ,y) ϕ(x , Y (T )) = lim sup x →x ϕ(x ) = ϕ(x).Therefore, u(T, x) ≤ ϕ(x) + lim supt→T - M L ϕ (T -t) = ϕ(x).
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which gives

and implies the convergence of u ε to u which is the viscosity solution of (1.6).