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Abstract

It is known that the disconnected Julia set of any polynomial map does not contain buried
Julia components. But such Julia components may arise for rational maps. The first example
is due to Curtis T. McMullen who provided a family of rational maps for which the Julia sets
are Cantor of Jordan curves. However all known examples of buried Julia components, up to
now, are points or Jordan curves and comes from rational maps of degree at least 5.

This paper introduce a family of hyperbolic rational maps with disconnected Julia set
whose exchanging dynamics of critically separating Julia components is encoded by a weighted
Hubbard tree. Each of these Julia sets presents buried Julia components of several types:
points, Jordan curves, but also Julia components which are neither points nor Jordan curves.
Moreover this family contains some rational maps of degree 3 with explicit formula that
answers a question McMullen raised.
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1 Introduction
For any rational map f of degree d > 2 on the Riemann sphere Ĉ, we denote by J(f) its Julia
set, namely the closure of the set of repelling periodic points. We recall that J(f) is a fully
invariant non-empty perfect compact set which either is connected or has uncountably many
connected components (see [Bea91], [CG93], [Mil06]). This paper focuses on the disconnected
case. Every connected component of J(f) is called a Julia component and every connected
component of the Fatou set Ĉ − J(f) is called a Fatou domain. We denote by by J (f) the
set of Julia components and we recall that f induces a dynamical system on J (f), called the
exchanging dynamics.

A Julia component is said to be buried if it has no intersection with the boundary of any
Fatou domain. In particular buried Julia components can not occur in the polynomial case
(since the Julia set coincides with the boundary of the unbounded Fatou domain). The same
holds if the Julia set is a Cantor set, or more generally if the complementary of every Julia
component is connected (since the Fatou set is then connected). That suggests sophisticated
topological structure for Julia sets with some buried Julia components.

The first example of rational maps with buried Julia components is due to Curtis T.
McMullen. Consider the family of rational maps given by

gc,λ : z 7→ zd∞ + c+
λ

zd0
where d∞, d0 > 1 and c, λ ∈ C

The special case c = 0 has been studied in [McM88] (see also [DHL+08]), where it is proved
that if the following condition is satisfied

1

d∞
+

1

d0
< 1 (H0)

and if |λ| > 0 is small enough then J(g0,λ) is a Cantor of Jordan curves, namely homeomorphic
to the product of a Cantor set with a Jordan curve (see Figure 1). Recall that any Cantor
set is homeomorphic to the no-middle third set [0, 1]\ ∪n>1 ∪3

n−1−1
k=0 In,k where In,k is the real

open interval ]3k+1
3n

, 3k+2
3n

[. Remark that the no-middle third set contains uncountably many
points which are not endpoints of any segment In,k and each of these points corresponds to a
buried Jordan curve in J(g0,λ).

In [PT00], the authors has provided another example by slightly modifying the map g−1,λ
for d∞ = 2 and d0 = 3 (that satisfies assumption (H0)) in a clever way:

g̃−1,λ : z 7→ 1

z
◦ (z2 − 1) ◦ 1

z
+
λ

z3
=

z2

1− z2
+
λ

z3
where λ ∈ C

If |λ| > 0 is small enough then J(g̃−1,λ) has the same topological structure than J(g0,λ) except
that one fixed Julia component (which contains the boundary of the unbounded Fatou domain
and hence is not buried) is quasiconformally homeomorphic to the Julia set of z 7→ z2 − 1.
The uncountably many Julia components which are not eventually mapped under iterations
onto this fixed Julia component are buried Jordan curves in J(g̃−1,λ) (see Figure 1).

Examples of buried Jordan components which are not Jordan curves have appeared in
some works. For instance in [BDGR08] (see also [DM08] and [GMR13]), the authors have
studied the family gc,λ for d∞ = d0 > 3 (that satisfies assumption (H0)) and for a fixed
parameter c chosen so that for the polynomial z 7→ zd∞ + c the critical point 0 lies in a
cycle of period at least 2. In that case, if |λ| > 0 is small enough then J(gc,λ) still has
uncountably many Jordan curves as buried Jordan components but also uncountably many
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points. The remaining Julia components are eventually mapped under iterations onto a fixed
Julia component (which coincides with the boundary of the unbounded Fatou domain and
hence is not buried) quasiconformally homeomorphic to the Julia set of z 7→ zd∞ + c. Each of
these not buried Julia components has infinitely many “decorations” and every buried point
component is actually the accumulation point of a nested sequence of such decorations (see
Figure 1).

Figure 1: a) J(g0,λ) with d∞ = 2, d0 = 3 and λ ≈ 10−9

b) J(g̃−1,λ) with d∞ = 2, d0 = 3 and λ ≈ 10−9

c) J(gc,λ) with d∞ = d0 = 3, c = −i and λ ≈ 10−9

Remark that each of the previous examples are rational maps of degree d∞+ d0 at least 5
according to assumption (H0). The existence question of buried Julia components for rational
maps of degree less than 5 has been raised in [McM88]. In the last decade, a number of papers
have appeared that deal with subfamilies of gc,λ or some slightly perturbations of it. Some
of them present sophisticated Julia sets with buried Julia components, however the degree
of these examples is always at least equal to 5. Furthermore the buried Julia components of
these examples are points or Jordan curves.

The aim of this paper is to answer the question Curtis T. McMullen has raised by providing
a family of rational maps of degree 3 which does not come from the family gc,λ and whose
Julia set presents buried Julia components of several types: points, Jordan curves but also
Julia components which are neither points nor Jordan curves. One of our main result here is
the following

Theorem 1. Consider the family of cubic rational maps given by

fλ : z 7→
(1− λ)

[
(1− 4λ+ 6λ2 − λ3)z − 2λ3

]
(z − 1)2

[
(1− λ− λ2)z − 2λ2(1− λ)

] where λ ∈ C

If |λ| > 0 is small enough then J(fλ) contains buried Julia components of several types:

point type: uncountably many points

circle type: uncountably many Jordan curves

complex type: countably many preimages of a fixed Julia component which is quasiconfor-
mally homeomorphic to the connected Julia set of f0 : z 7→ 1

(z−1)2
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An example of such Julia set is depicted in Figure 2. J(fλ) is called a “Persian car-
pet” because of similarities with sophistications from carpet-weaving art: the Julia set of
f0 : z 7→ 1

(z−1)2 appears as a watermark in the central motif of the carpet whose surface is
covered by an elaborate pattern of Cantor of Jordan curves, and there are some small Julia
components everywhere that looks like dust. These small Julia components actually con-
tain nested sequences of finite coverings of the Persian carpet which accumulate buried point
components.

Figure 2: a) A Persian carpet: J(fλ) with λ ≈ 10−3

b) J(f0) which appears as a buried Julia component in J(fλ)
c) A magnification about a dust of the Persian carpet

The Persian carpet example is maximal among rational maps with buried Julia components
in the sense that buried Julia components can not occur for rational maps of degree less than
3. Indeed, by a theorem in [Mil00], the Julia set of any quadratic rational maps is either
connected or a Cantor set.

Furthermore, the Persian carpet example is maximal among geometrically finite rational
maps (namely rational maps such that every critical point in the Julia set is preperiodic, in
our case fλ has no critical point in J(fλ) for |λ| > 0 small enough) in the sense that every
Julia component (not necessarily buried) of such a map is one of the three types described in
Theorem 1. That follows from two results. Firstly, by a theorem in [McM88], every periodic
Julia component of a rational map is either a point or quasiconformally homeomorphic to
the connected Julia set of a rational map. Secondly, it has been proved in [PT00] that every
wandering Julia component (namely a Julia component which is not eventually mapped under
iterations onto a periodic Julia component) of a geometrically finite rational map is either a
point or a Jordan curve.

The main idea of this paper is that the exchanging dynamics of critically separating Julia
components (a Julia component is said to be critically separating if its complementary has at
least two connected components containing some postcritical point) for some rational maps
may be encoded by weighted Hubbard trees. This idea is specified in Section 2.1 by showing
that, under assumption (H0), the exchanging dynamics for the family g0,λ is topologically
conjugated to that one coming from a Hubbard tree HQ (see Theorem 2). Weights are added
on the edges of HQ in order to carry information about the degrees d∞, d0 of the restrictions
of g0,λ to each Julia component.

In Section 2.2 the purpose is then to do the converse: starting from a Hubbard tree
HP more sophisticated than HQ and a weight function w on its edges, Theorem 3 states
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the existence of rational maps with disconnected Julia set whose exchanging dynamics of
critically separating Julia components is encoded by (HP , w) if (and, actually, only if) the
weight function w satisfies two conditions (H1) and (H2). Theorem 4 shows that the Julia
sets of these rational maps own buried Julia components of every type as explained above.

The main part of the proof of Theorem 3, that is the construction by quasiconformal
surgery of the required rational maps, is detailed in Section 3.

In Section 4, some properties of the rational maps constructed in the previous section
are shown. The properties about exchanging dynamics (Section 4.1) conclude the proof of
Theorem 3 while the properties about topology of some Julia components (Section 4.2) give
the proof of Theorem 4.

Finally Section 5 deals with a particular choice of the weight function w for which the two
assumptions (H1) and (H2) are satisfied and such that the rational maps in Theorem 3 and
Theorem 4 are of degree 3. In this case, an explicit formula is provided that concludes the
proof of Theorem 1.

Acknowledgment. The author would like very much to thank Professor Tan Lei, the advisor
of his thesis, together with Professor Cui Guizhen for all their helpful comments and fruitful
discussions on this work.

2 Encoding by weighted Hubbard trees

2.1 McMullen example

Consider the cubic polynomial Q : z 7→ 3z2(3
2
− z). It has two simple critical points: 0 which

is fixed and 1 which is mapped on 0 after two iterations.

02:1 99 1 2:1 // 3
2

1:1

��

LetHQ be its Hubbard tree, namely the smallest closed connected infinite union of internal
rays which contains the postcritical set {0, 3

2
} (see [DH84]). In fact HQ is the straight real

segment [0, 3
2
] or more precisely the union of two edges [0, 1]∪ [1, 3

2
] while the vertices are 0, 1

and 3
2
. Both edges of HQ are homeomorphically mapped by Q onto the whole tree (see Figure

3).
Denote by J (HQ) the intersection set between the Hubbard tree HQ and the Julia set

J(Q). Notice that J (HQ) is disconnected (actually a Cantor set) and Q induced a dynamical
system on it since the Hubbard tree HQ and the Julia set J(Q) are both invariant.

Finally, let w be a weight function on the set of edges of HQ, say w([0, 1]) = d∞ and
w([1, 3

2
]) = d0 where d∞, d0 are positive integer.

The result about the family g0,λ discussed in introduction (see Section 1) may be refor-
mulated as follows.

Theorem 2. If the weight function w satisfies the following condition

1

d∞
+

1

d0
< 1 (H0)

then for every |λ| > 0 small enough, the dynamical system induced by g0,λ on the set of its
Julia components J (g0,λ) is encoded by the weighted Hubbard tree (HQ, w) in the following
sense
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(i) every critical orbit accumulates the super-attracting fixed point ∞

(ii) there exists a homeomorphism h : J (g0,λ) → J (HQ) such that the following diagram
commutes

J (g0,λ)
g0,λ //

h
��

J (g0,λ)

h
��

J (HQ)
Q

// J (HQ)

(iii) for every Julia component J ∈ J (g0,λ), the restriction map g0,λ|J is of degree w(e) where
e is the edge of HQ which contains h(J)

Proof. We only sketch the proof since the main part is done in [McM88]. Indeed it is shown
that there exists a large annulus A centered at 0 and containing J(g0,λ) whose preimage
consists of two disjoint annuli A∞, A0 both nested in A and such that the restriction maps
g0,λ|A∞ : A∞ → A and g0,λ|A0 : A0 → A are coverings of degree d∞, d0 respectively. Using
combinatorial reasoning from complex dynamics, it is a classical exercise to prove that the
set of connected components of J(g0,λ) = ∩n>0g

−n
0,λ(A) is homeomorphic to the space of all

sequences of two digits Σ2 = {0, 1}N (equipped with the product topology making it a Cantor
set) and the exchanging dynamics is topologically conjugated to a 2-to-1 shift map σ : Σ2 →
Σ2 defined by σ(s0, s1, s2, . . . ) = (s1, s2, s3, . . . ). The same holds for the dynamical system
induced by Q on J (HQ) since for ε > 0 small enough the real segment I = [ε, 3

2
− ε] contains

J (HQ) and its preimage consists of two disjoint real segment both included in I (one in each
of the two edges of HQ).

Figure 3: a) The Julia set of the polynomial Q
b) The action of Q on the Hubbard tree HQ

c) The action of g0,λ on the set of Julia components J (g0,λ)

Heuristically speaking, we may topologically think the Riemann sphere Ĉ as a smooth
neighborhood’s boundary of the Hubbard tree HQ embedded in the space R3. The two points
on this topological sphere which correspond to∞ and 0 should be closed to the corresponding
vertices of HQ, that is 0 and 3

2
respectively. If the neighborhood becomes smaller and smaller,

every Jordan curves in J(g0,λ) is shrinked to a point in J(HQ). Moreover the dynamical
tree Q : HQ → HQ together with the weight function w encode the action of g0,λ on the
neighborhood’s boundary with respect to this heuristic (see Figure 3).
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2.2 Persian carpets example

Consider a quadratic polynomial of the form P : z 7→ z2 + c where the parameter c ∈ C
is chosen in order that the critical point 0 is periodic of period 4. There are exactly six
choices of such a parameter. Let us fix c to be that one with the largest imaginary part,
that is c ≈ −0.157 + 1.032i. The postcritical points are denoted by ck = P k(0) for every
k ∈ {0, 1, 2, 3}.

c11:1

��
c2

1:1
//

α 1:1
yy

c0

2:1

WW

c3

1:1
mm

Let HP be the Hubbard tree of P (see Figure 4). As one-dimensional simplicial complex,
HP may be described by a set of five vertices {c0, c1, c2, c3, α} where α is a fixed point of P
and the following four edges

e0 = [α, c0]HP , e1 = [α, c1]HP , e2 = [α, c2]HP , e3=[c0, c3]HP

P homeomorphically acts on the edges as follows
P (e0) = e1
P (e1) = e2
P (e2) = e0 ∪ e3
P (e3) = e0 ∪ e1

Denote by J (HP ) the intersection set between the Hubbard tree HP and the Julia set J(P ).
Notice that J (HP ) is disconnected (actually a Cantor set) and P induced a dynamical system
on it. Moreover the fixed branching point α belongs to J (HP ) but not to the boundary of
any connected component of HP − J (HP ). Finally, let w be a weight function on the set of
edges of HP , say w(ek) = dk where dk is a positive integer for every k ∈ {0, 1, 2, 3}.

Definition 1. The transition matrix of the weighted Hubbard tree (HP , w) is the 4-square
matrix M = (mi,j)i,j∈{0,1,2,3} whose entries are defined as follows

∀i, j ∈ {0, 1, 2, 3}, mi,j =


1

w(ei)
if ej ⊂ P (ei)

0 otherwise

Since M is a non-negative matrix, it follows from Perron-Frobenius theorem that the eigen-
value with the largest modulus is real and non-negative. Let us call λ(HP , w) this leading
eigenvalue. The weighted Hubbard tree (HP , w) is said to be unobstructed if λ(HP , w) < 1.

Let us give some remarks about this definition.

1. This definition is strongly related to obstructions which occur in Thurston characteri-
zation of postcritically finite rational maps and all the theory behind.
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Figure 4: a) The Julia set of the polynomial P
b) The Hubbard tree HP

c) The action of P on a straightened copy of HP

2. When (HP , w) is unobstructed, Perron-Frobenius theorem and continuity of the spectral
radius ensure the existence of a vector V ∈ R4 with positive entries such that MV < V .
This remark will be useful later.

3. Actually the transition matrix of (HP , w) is given by

M =


0 1

d0
0 0

0 0 1
d1

0
1
d2

0 0 1
d2

1
d3

1
d3

0 0


and an easy computation shows that λ(HP , w) is the largest root of

X4 −
(

1

d0d1d2
+

1

d1d2d3

)
X − 1

d0d1d2d3

Notice that if λ(HP , w) > 1 then λ(HP , w) 6 1
d0d1d2

+ 1
d1d2d3

+ 1
d0d1d2d3

. Consequently
(HP , w) is unobstructed as soon as at least three of weights d0, d1, d2, d3 are > 2.

4. For the McMullen example, the transition matrix of (HQ, w) may be defined as well and
we get

M =

(
1
d∞

1
d∞

1
d0

1
d0

)
An easy computation gives that λ(HQ, w) = 1

d∞
+ 1

d0
. Consequently the weighted

Hubbard tree (HQ, w) is unobstructed if and only if the assumption (H0) holds.

Finally, recall that a Julia component J ∈ J (f) of a rational map f is said to be criti-
cally separating if its complementary has at least two connected components containing some
postcritical points, namely some iterates of critical points. We denote by Jcrit(f) the set of
critically separating Julia components. Remark that every Julia component of g0,λ for every
|λ| > 0 small enough is critically separating and hence J (g0,λ) = Jcrit(g0,λ).

We can now state the main result of this paper by analogy with Theorem 2.
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Theorem 3. If the weight function w satisfies the two following conditions

d̂ =
1

2
(d0 + d1 + d2 − 1) is an integer > 2 and max{d0, d1, d2} 6 d̂ (H1)

(HP , w) is unobstructed (H2)

then there exists a rational map f of degree d̂ + d3 with disconnected Julia set such that the
dynamical system induced by f on the set of its critically separating Julia components Jcrit(f)
is encoded by the weighted Hubbard tree (HP , w) in the following sense

(i) every critical orbit accumulates a super-attracting cycle {z0, z1, z2, z3} of period 4

(ii) there exists a homeomorphism h : Jcrit(f) → J (HP ) such that the following diagram
commutes

Jcrit(f)
f //

h
��

Jcrit(f)

h
��

J (HP )
P

// J (HP )

(iii) for every Julia component J ∈ Jcrit(f) such that h(J) is not eventually mapped under
iteration to the fixed branching point α, the restriction map f |J is of degree w(ek) = dk
where ek is the edge of HP which contains h(J)

The same heuristic as for Theorem 2 still holds: we may topologically think the Riemann
sphere Ĉ as a smooth neighborhood’s boundary of the Hubbard tree HP embedded in the
space R3. The action of f on this topological sphere follows that one of the dynamical tree
P : HP → HP . The points on this topological sphere which correspond to the points in the
super-attracting periodic cycle {z0, z1, z2, z3} should be closed to the corresponding vertices
{c0, c1, c2, c3} of HP . And every Julia component in Jcrit(f) closely surrounds a corresponding
point in J (HP ).

The next result deals with buried Julia components of f .

Theorem 4. Under assumptions (H1) and (H2) there exists a rational map f satisfying
Theorem 3 and such that J(f) contains buried Julia components of several types:

point type: uncountably many points

circle type: uncountably many Jordan curves

complex type: countably many preimages of a fixed Julia component over the fixed branching
point α, say Jα = h−1(α) ∈ J (f), which is quasiconformally homeomorphic to the Julia
set of a rational map f̂

Moreover f̂ is of degree d̂ and has only one critical orbit which is a super-attracting cycle
{ẑ0, ẑ1, ẑ2} of period 3 such that the local degree of f̂ at ẑk is dk for every k ∈ {0, 1, 2}.
In particular J(f̂) is connected and the Fatou set Ĉ − J(f̂) has infinitely many connected
components.

Let us give some comments about these results.
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1. The rational map f is not postcritically finite since J(f) is disconnected (but it is
hyperbolic from point (i) in Theorem 3). In particular Thurston characterization of
postcritically finite rational maps is not allowed to prove the existence of f . However
these results are strongly related to the works of Tan Lei and Cui Guizhen about sub-
hyperbolic semi-rational maps in [CT11].

2. The rational map f is not unique since the critical points which do not belong to the
super-attracting periodic cycle {z0, z1, z2, z3} (but whose orbits accumulate it) may be
perturbed in some neighborhoods without changing the exchanging dynamics and the
topology of Julia components.

3. The rational map f̂ is unique up to conjugation by a Möbius map or equivalently it is
unique as soon as its critical orbit {ẑ0, ẑ1, ẑ2} is fixed in Ĉ (see Lemma 2).

4. The assumption (H1) is necessary. Indeed it is the smallest requirement such that there
exists a topological model for f̂ , that is an orientation-preserving branched covering
combinatorially equivalent to f̂ (see Lemma 1 and proof of Lemma 2).

5. The assumption (H2) is necessary. Otherwise we can find a Thurston obstruction, that
is to say a multicurve Γ whose transition matrix is equal to M with leading eigenvalue
λ(Γ) = λ(HP , w) > 1. According to a result of Curtis T. McMullen from [McM94] it
follows that λ(Γ) = 1 and at least one curve in Γ is contained in an union of Fatou
domains where f is biholomorphically conjugated to a rotation. That is a contradiction
since every critical orbit of f accumulates a super-attracting periodic cycle.

6. The rational map f̂ may also be seen as encoded by a weighted Hubbard tree. Consider
the quadratic polynomial R : z 7→ z2 + ĉ where ĉ ∈ C is the parameter with the
largest imaginary part such that the critical point 0 is periodic of period 3, that is
ĉ ≈ −0.123 + 0.745i. The Hubbard tree HR of R is described by a set of four vertices
{ĉ0, ĉ1, ĉ2, α̂} where ĉk = Rk(0) and α̂ is a fixed point of R, and three edges of the
form êk = [α̂, ĉk]HR for every k ∈ {0, 1, 2}. Consider the weight function w defined by
w(êk) = dk for every k ∈ {0, 1, 2}. Then the weighted Hubbard tree (HR, w) encodes
the action of f̂ in the same setting as in Theorem 2 and Theorem 3. Notice that the
intersection set between HR and J(R) is reduced to J (HR) = {α̂}, that corresponds
to the unique Julia component in J (f̂) = Jcrit(f̂) = {J(f̂)}. Finally, remark that
the weighted Hubbard tree (HR, w) is unobstructed as soon as (H1) holds (actually
λ(HR, w) = 1

d0d1d2
).

3 Construction
The aim of this section is to construct by quasiconformal surgery the resulting map f satisfying
Theorem 3 and Theorem 4. The strategy is to start from a rational map f̂ whose Julia set
corresponds to the branching point α in HP (see Theorem 4) and then to modify this map in
order to create a folding corresponding to the critical point c0 (see Figure 4).

3.1 Existence of the branching map f̂

The first step of the construction is to prove the existence of the rational map f̂ which appears
in Theorem 4. This is done by Lemma 2 below. Lemma 1 is a general preliminary about the
existence of a topological model for f̂ .
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Lemma 1 (Branched covering extension). Let X = {x1, x2, . . . , xn} be a finite subset of n > 2
points in the topological sphere S2. Let F : X → X be a bijective map and d1, d2, . . . , dn be
a family of positive integers not all equal to 1. Then F can be extended to an orientation-
preserving branched covering F̂ : S2 → S2 with local degree dk at xk for every k ∈ {1, 2, . . . , n}
and no other critical points outside X if and only if

d =
1

2

n∑
k=1

(dk − 1) + 1 is an integer > 2 and max{d1, d2, . . . , dn} 6 d (H1’)

In that case, the extended map F̂ : S2 → S2 is of degree d.

Proof. The necessity of (H1’) easily comes from classical properties of branched coverings. In
order to proof the sufficiency, let us prove the following claim.

Claim: Let δ1, δ2, . . . , δm be a family of m > 1 positive integers. Assume that

δ =
m∑
k=1

(δk − 1) + 1 is an integer > 2 and max{δ1, δ2, . . . , δm} 6 δ (H1”)

Then there exist a continuous map G : U → V between closures of two Jordan domains U, V
and two finite subsets {u1, u2, . . . , um} ⊂ U and {v1, v2, . . . , vm} ⊂ V such that

• G|U : U → V is an orientation-preserving branched covering of degree δ such that
G(uk) = vk and the local degree of G at uk is δk for every k ∈ {1, 2, . . . ,m}

• G|∂U : ∂U → ∂V is homeomorphically equivalent to the map z 7→ zδ on the unit circle
{z ∈ C / |z| = 1}

Proof of the claim. Let {u1, u2, . . . , um} be a finite subset in the Riemann sphere Ĉ. Let
G : C→ C be any antiderivative of the polynomial map z 7→

∏m
k=1(z − uk)δk−1. Then G is a

polynomial map of degree δ (according to (H1”)) such that the local degree of G at uk is δk
for every k ∈ {1, 2, . . . ,m}. Denote by vk the image of uk under G for every k ∈ {1, 2, . . . ,m}.
Remark that each vk polynomially depends on the points u1, u2, . . . , um and these polynomial
relations are distinct. Consequently we may carefully choose the distinct points u1, u2, . . . , un
in order that v1, v2, . . . , vn are distinct as well. The result follows with U = {z ∈ C, / |z| < R}
and V = G(U) for R > 0 large enough.

Now come back to the proof of Lemma 1. Up to postcomposition with an orientation-
preserving homeomorphism on S2, we may assume that F is the identity map on X.

First case: ∃` ∈ {1, 2, . . . , n− 1}/
∑`

k=1(dk − 1) + 1 =
∑n

k=`+1(dk − 1) + 1 = d

Let S be a copy of Ĉ seen as the topological sphere S2. Denote by C = {z ∈ S / |z| = 1} the
corresponding unit circle and by D0 = {z ∈ S / |z| < 1} and D∞ = {z ∈ S / |z| > 1} ∪ {∞}
the two connected components of S − C. Without loss of generality we may assume that
{x1, x2, . . . , x`} ⊂ D0 and {x`+1, x`+2, . . . , xn} ⊂ D∞.

We are going to piecewisely define a continuous map F̂ : S → S according to this partition
of S. At first define F̂ on C to be the map z 7→ zd, in particular F̂ (C) = C.

Let G0 : U0 → V 0 be an orientation-preserving branched covering of degree d coming from
the claim for the family of integers d1, d2, . . . , d`. Let ϕ0 : U0 → D0 and ψ0 : V 0 → D0 be two
homeomorphisms such that ϕ0(u0k) = xk = ψ0(v0k) for every ∀k ∈ {1, 2, . . . , `}. Moreover ϕ0

and ψ0 may be carefully chosen in order that ψ0 ◦G0 ◦ (ϕ0)−1 : D0 7→ D0 can be continuously
extended with the map z 7→ zd on ∂D0 = C. So define F̂ on D0 to be the map ψ0◦G0◦(ϕ0)−1.
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Do as well on D∞ for the family of integers d`+1, d`+2, . . . , dn. We get an orientation-
preserving branched covering G∞ : U∞ → V ∞ of degree d and two homeomorphisms ϕ∞ :
U∞ → D∞ and ψ∞ : V ∞ → D∞ such that ϕ∞(u∞k ) = x`+k = ψ∞(v∞k ) for every k ∈
{1, 2, . . . , n− `} and ψ∞ ◦G∞ ◦ (ϕ∞)−1 : D∞ 7→ D∞ can be continuously extended with the
map z 7→ zd on ∂D∞ = C. So define F̂ on D∞ to be the map ψ∞ ◦G∞ ◦ (ϕ∞)−1.

Consequently we have well defined a continuous map F̂ : S → S which is actually a
branched covering of degree d. Moreover, according to the previous construction, F̂ satisfies
every requirement from Lemma 1.

Second case: ∃` ∈ {2, 3, . . . , n− 1}/
∑`−1

k=1(dk − 1) + 1 < d <
∑`

k=1(dk − 1) + 1
Then we can find two integers d0` , d∞` > 2 such that

`−1∑
k=1

(dk − 1) + (d0` − 1) + 1 =
n∑

k=`+1

(dk − 1) + (d∞` − 1) + 1 = d (1)

Let S be a copy of Ĉ seen as the topological sphere S2. Denote by C, D0 and D∞ the same
subsets as in the first case. Denote by R0

θ = {rei 2πd θ / 0 6 r 6 1} and R∞θ = {rei 2πd θ / 1 6
r} ∪ {∞} the closed straight rays of angle 2π

d
θ ∈ R in D0 and D∞ respectively. Let T be the

following union of rays

T =

d0`−1⋃
k=0

R0
k

 ∪
d∞` −1⋃

k=0

R∞d−k


It follows from (1) that d0` + d∞` = d` + 1 6 d+ 1 and thus d0` − 1 < d− d∞` + 1. Consequently
T is connected and contains no loop (equivalently S−T is connected and simply connected).
Denote the connected components of S − (C ∪ T ) as follows

∀k ∈ {0, 1, . . . , d0` − 2}, A0
k =

{
rei

2π
d
θ / 0 < r < 1 and k < θ < k + 1

}
B0 =

{
rei

2π
d
θ / 0 < r < 1 and d0` − 1 < θ < d

}
∀k ∈ {0, 1, . . . , d∞` − 2}, A∞k =

{
rei

2π
d
θ / 0 < r < 1 and d− k − 1 < θ < d− k

}
B∞ =

{
rei

2π
d
θ / 0 < r < 1 and 0 < θ < d− d∞` + 1

}
Without loss of generality, we may assume that {x1, x2, . . . , x`−1} ⊂ B0 and {x`+1, x`+2,
. . . , xn} ⊂ B∞.

We are going to piecewisely define a continuous map H : S → S according to this partition
of S. At first define H on C∪T to be the map z 7→ zd, in particular H(C∪T ) = C∪(R0

0∪R∞0 ).
For every k ∈ {0, 1, . . . , d0`−2}, remark that ∂A0

k is a Jordan curve and H(∂A0
k) = C∪R0

0.
More precisely, ∂A0

k = Ck∪R0
k∪R0

k+1 where Ck is the closed arc {ei 2πd θ / k 6 θ 6 k+1}, the map
H|Ck : Ck → C is a continuous surjective map of degree 1 and the maps H|R0

k
: R0

k → R0
0 and

H|R0
k+1

: R0
k+1 → R0

0 are homeomorphisms. It follows that H can be continuously extended
to a homeomorphism H|A0

k
: A0

k → D0 −R0
0.

Similarly, H can be extended to a homeomorphism H|A∞k : A∞k → D∞ − R∞0 for every
k ∈ {0, 1, . . . , d∞` − 2}.

Now remark that ∂B0 is a Jordan curve and H(∂B0) = C ∪ R0
0. More precisely, ∂B0 =

C0 ∪R0
d0`−1
∪R0

0 where C0 is the closed arc {ei 2πd θ / d0` − 1 6 θ 6 d}, the map H|C0 : C0 → C

is a continuous surjective map of degree d− d0` + 1 and the maps H|R0
d0
`
−1

: R0
d0`−1
→ R0

0 and

H|R0
0

: R0
0 → R0

0 are homeomorphisms.
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Let G0 : U0 → V 0 be an orientation-preserving branched covering coming from the claim
for the family of integers d1, d2, . . . , d`−1. It follows from (1) that G0 is of degree d− d0` + 1.
Choose a continuous path RV 0 in V 0 − {v01, v02, . . . , v0`−1} with one endpoint in V 0 and the
other one in ∂V 0. Choose also a connected component of the preimage under G0 of RV 0 . This
preimage is a continuous path in U0 − {u01, u02, . . . , u0`−1}, say RU0 , with one endpoint in U0

and the other one in ∂U0. Remark that G0|RU0 : RU0 → RV 0 is a homeomorphism.
Let ϕ0 : U0 − RU0 → B0 and ψ0 : V 0 − RV 0 → D0 − R0

0 be two homeomorphisms such
that ϕ0(u0k) = xk = ψ0(v0k) for every ∀k ∈ {1, 2, . . . , `− 1}. It follows from everything above
that ϕ0 and ψ0 may be carefully chosen in order that ψ0 ◦ G0 ◦ (ϕ0)−1 : B0 7→ D0 − R0

0 can
be continuously extended with the map H on ∂B0. Finally define H on B0 to be the map
ψ0 ◦G0 ◦ (ϕ0)−1.

Do as well on B∞ for the family of integers d`+1, d`+2, . . . , dn. So H can be continuously
extended to a map H : B∞ → D∞ − R∞0 such that H(xk) = xk and the local degree of H at
xk is dk for every k ∈ {`+ 1, `+ 2, . . . , n}.

Consequently we have well defined a continuous map H : S → S which is actually a
branched covering of degree d such that

• for every k ∈ {1, . . . , `− 1, ` + 1, . . . n}, H(xk) = xk and the local degree of H at xk is
dk

• H(0) = 0, H(∞) = ∞ and the local degree of H at 0 (respectively at ∞) is d0`
(respectively d∞` )

• H has no other critical points outside {x1, . . . , x`−1, x`+1, . . . , xn} ∪ {0,∞}

Remark that T ′ = H−1(R0
0 ∪ R∞0 ) is the union of T with some ϕ0(R′U0) where R′U0 describe

the set of connected components of (G0)−1(RV 0) distinct from RU0 and with some ϕ∞(R′U∞)
where R′U∞ describe the set of connected components of (G∞)−1(RV∞) distinct from RU∞ .
In particular, T ′ is connected and contains no loop (equivalently S − T ′ is connected and
simply connected). Moreover H|T ′ : T ′ → R0

0 ∪ R∞0 is a continuous surjective map of degree
d0` + d∞` − 1 which is equal to d` from (1).

Finally let ϕ : S − T ′ → S2 − {x`} and ψ : S − (R0
0 ∪ R∞0 ) → S2 − {x`} be two home-

omorphisms such that ϕ(xk) = xk = ψ(xk) for every k ∈ {1, . . . , ` − 1, ` + 1, . . . n}. Then
the map F̂ = ψ ◦H ◦ ϕ−1 : S2 − {x`} → S2 − {x`} can be continuously extended to S2 with
F̂ (x`) = x`. The extended map F̂ : S2 → S2 is actually an orientation-preserving branched
covering of degree d whose local degree at x` is d`. According to the previous construction,
F̂ satisfies every requirement from Lemma 1.

Lemma 2. Let d0, d1, d2 be three positive integers. Assume that

d̂ =
1

2
(d0 + d1 + d2 − 1) is an integer > 2 and max{d0, d1, d2} 6 d̂ (H1)

Then there exists a rational map f̂ of degree d̂ such that

(i) f̂ has only one critical orbit which is a super-attracting cycle {ẑ0, ẑ1, ẑ2} of period 3 such
that the local degree of f̂ at ẑk is dk for every k ∈ {0, 1, 2}

(ii) J(f̂) is connected and the Fatou set Ĉ− J(f̂) has infinitely many connected components
which are simply connected.

Furthermore f̂ is unique up to conjugation by a Möbius map.
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Proof. Up to conjugation by a Möbius map, we may fix a subset {ẑ0, ẑ1, ẑ2} ⊂ Ĉ. Let
ψ : S2 → Ĉ be a homeomorphism and denote by xk the preimage under ψ of ẑk for every
k ∈ {0, 1, 2}. Notice that assumption (H1) ensures that at least two of integers d0, d1, d2 are
> 2. Apply Lemma 1 to the cyclic permutation F on X = {x0, x1, x2} defined by F (x0) = x1,
F (x1) = x2 and F (x2) = x0. We get an orientation-preserving branched covering F̂ of degree
d̂ such that every critical point belongs to the periodic cycle {x0, x1, x2} and the local degree
of F̂ at xk is dk for every k ∈ {0, 1, 2}. Remark that the map ψ ◦ F̂ : S2 → Ĉ induces a
complex structure on S2. In other words, the uniformization theorem gives a homeomorphism
ψ′ : S2 → Ĉ such that the map f̂ = ψ ◦ F̂ ◦ ψ′−1 is holomorphic on Ĉ and thus a rational
map of degree d̂. Moreover, up to postcomposition with a Möbius map, we may assume that
ψ′(xk) = ẑk for every k ∈ {0, 1, 2}. It follows that f̂ satisfies (i).

Now remark that every connected components of the immediate super-attracting bassin
of f̂ is simply connected since there is no critical point outside the super-attracting periodic
cycle {ẑ0, ẑ1, ẑ2}. It follows that f̂ satisfies (ii).

Finally let ĝ be another rational map of degree d̂ which satisfies (i) and (ii) for the same
super-attracting periodic cycle {ẑ0, ẑ1, ẑ2}. The map z 7→ f̂(z) − ĝ(z) is a rational map of
degree at most 2d̂ for which 0 has at least d0 + d1 + d2 = 2d̂ + 1 preimages counted with
multiplicity (each ẑk is a preimage of 0 with multiplicity dk). Consequently this map is
identically equal to 0, that is f̂ = ĝ.

Notice that the previous proof strongly uses the fact that the postcritical set contains only
three points. Indeed if the postcritical set contains more than three points, that may be not
possible to find a uniformization map ψ′ for S2 equipped with the complex structure coming
from ψ ◦ F̂ such that ψ′(xk) = ẑk for every k ∈ {0, 1, 2}. In fact we would also need to check
that the topological model F̂ coming from Lemma 1 has no Thurston obstruction.

3.2 Cutting along a system of equipotentials

Starting with the map f̂ coming from Lemma 2, we need to divide Ĉ into several pieces on
which the map f (or more precisely a quasiregular model F ) will be piecewisely defined. This
partition comes from a certain system of equipotentials of f̂ defined in Lemma 3.

For every k ∈ {0, 1, 2}, denote by B(ẑk) the connected component containing ẑk of the
immediate super-attracting bassin of f̂ . Recall that each B(ẑk) is simply connected. More
precisely the well-known theorem of Böttcher provides Riemann mappings (namely biholo-
morphic maps) φk : D→ B(ẑk) such that the following diagram commutes

B(ẑ0)

f̂
��

D
φ0oo

z 7→ zd0
��

B(ẑ1)

f̂
��

D
φ1oo

z 7→ zd1
��

B(ẑ2)

f̂
��

D
φ2oo

z 7→ zd2
��

B(ẑ0) D
φ0oo

Recall that an equipotential β in any B(ẑk) is the image by φk of a regular circle in D centered
at 0. The radius of this circle is called the level of β and is denoted by |φ−1k (β)|.
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Recall that any pair of disjoint continua β, β′ (that are two disjoint non-empty compact
connected subsets of Ĉ) uniquely defines an open annulus in Ĉ denoted by A(β, β′). If β, β′
contain at least two points each, A(β, β′) is biholomorphic to a round annulus of the form
Ar = {z ∈ C / r < |z| < 1} where r ∈]0, 1[ only depends on A(β, β′). The modulus of A(β, β′)
is defined to be mod(A(β, β′)) = 1

2π
log(1

r
). In particular if β, β′ are two equipotentials in the

same domain B(ẑk) of levels |φ−1k (β)| > |φ−1k (β′)| then

mod(A(β, β′)) =
1

2π
log

(
|φ−1k (β)|
|φ−1k (β′)|

)
Finally for every k ∈ {0, 1, 2}, denote by αk the compact connected subset of J(f̂) which

corresponds to the boundary of B(ẑk).

Lemma 3. If (H2) holds then there exist three equipotentials β0, β1, β2 in B(ẑ0), B(ẑ1), B(ẑ2)
respectively, together with two equipotentials β+

3 , β
−
3 in B(ẑ0) such that

|φ−10 (β0)| > |φ−10 (β+
3 )| > |φ−10 (β−3 )|

and the following system of inequalities holds

1

d0
mod(A(α1, β1)) < mod(A(α0, β0))

1

d1
mod(A(α2, β2)) < mod(A(α1, β1))

1

d2
mod(A(α0, β0)) +

1

d2
mod(A(β+

3 , β
−
3 )) < mod(A(α2, β2))

1

d3
mod(A(β1, β0)) < mod(A(β+

3 , β
−
3 ))

and mod(A(β0, β
+
3 )) > 1

(2)

Recall that modulus is a conformal invariant, or more precisely if there is a holomorphic
covering of degree d from an annulus A onto another annulus A′ then mod(A) = 1

d
mod(A′).

Hence the first three inequalities in (2) implies that the preimages under f̂ of these equipo-
tentials are arranged as shown in Figure 5. The fourth inequality will allow to realize the
preimage of the branching point α in the Hubbard tree HP (see Lemma 7). The last inequal-
ity ensures sufficient space to realize the folding corresponding to the critical point c0 in the
Hubbard tree HP (see Lemma 6).

The key point of the proof of Lemma 3 needs the following useful result due to Cui Guizhen
and Tan Lei.

Lemma 4 (Inverse Grötzsch’s inequality). Let B,B′ be two disjoint topological disks in Ĉ
whose boundary are respectively denoted by α, α′. Then there exists a positive constant C > 0
such that for every pair of equipotentials β in B and β′ in B′ the following inequalities hold

mod(A(α, β)) + mod(A(α′, β′)) 6 mod(A(β, β′)) 6 mod(A(α, β)) + mod(A(α′, β′)) + C

The left hand side is the classical Grötzsch’s inequality. The right hand side is a conse-
quence of Koebe 1/4-theorem. We refer the readers to [CT11] for a complete proof.

Proof of Lemma 3. Let C > 0 be the constant coming from Lemma 4 for B(ẑ0), B(ẑ1). In
particular, for every pair of equipotentials β0, β1 in B(ẑ0), B(ẑ1) respectively , we have

1

d3
mod(A(β1, β0)) 6

1

d3
(mod(A(α0, β0)) + mod(A(α1, β1)) + C)
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Figure 5: The pattern of the equipotentials (and their preimages) coming from Lemma 3
displayed on the Riemann sphere which is topologically distorted to emphasize
the three domains B(ẑ0), B(ẑ1), B(ẑ2) (compare with Figure 4)

Now consider the following system of linear inequations with real unknows x0, x1, x2, x3.

1

d0
x1 < x0

1

d1
x2 < x1

1

d2
x0 +

1

d2
x3 < x2

1

d3
(x0 + x1 + C) < x3

(3)

Using the transition matrix M coming from Definition 1, this system is equivalent to

MX +


0
0
0
C
d3

 < X where X =


x0
x1
x2
x3


Recall that assumption (H2) says that the leading eigenvalue λ(HP , w) of M is less than 1.
It follows from Perron-Frobenius theorem and continuity of spectral radius the existence of a
vector V ∈ R4 with positive entries such that MV < V . Now taking µ > 0 large enough (for
instance µ = ( C

d3
+ 1)(v3− 1

d3
v0− 1

d3
v1)
−1), the vector X = µV with positive entries solves the

system of linear inequations (3).
The equipotentials β0, β1, β2 are uniquely defined by

1

2π
log

(
1

|φ−1k (βk)|

)
= mod(A(αk, βk)) = xk for every k ∈ {0, 1, 2}

For β+
3 , choose an arbitrary equipotential in B(ẑ0) such that

|φ−10 (β0)| > |φ−10 (β+
3 )| and

1

2π
log

(
|φ−10 (β0)|
|φ−10 (β+

3 )|

)
= mod(A(β0, β

+
3 )) > 1

Then β−3 is uniquely defined by

|φ−10 (β+
3 )| > |φ−10 (β−3 )| and

1

2π
log

(
|φ−10 (β+

3 )|
|φ−10 (β−3 )|

)
= mod(A(β+

3 , β
−
3 )) = x3
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It follows from construction that β0, β1, β2, β+
3 , β

−
3 satisfy all the requirements of Lemma

3, the fourth inequality in (2) coming from the last inequality in (3) and Lemma 4.

It turns out in the proof above that the lower bound of the last inequality in (2) may be
changed for any positive constant (which depends only on the integers d0, d1, d2, d3). As we
will see later in Lemma 5 and Lemma 6, the lower bound 1 ensures sufficient space to make
the surgery in A(β0, β

+
3 ). However, the author guesses that the last inequality in (2) is not

necessary (see discussion after the proof of Lemma 5).
The system of equipotentials coming from Lemma 3 will be used to divide Ĉ into several

pieces on which a quasiregular map F will be piecewisely defined. This map F should be
carefully defined in such a way that its dynamics is encoded by the weighted Hubbard tree
(HP , w) (see Theorem 3).

For instance, the first step of the construction which corresponds to the dynamics on e1∪e2
for HP (see Figure 4) is the following. Denote by β0,1 the preimage of β1 in B(ẑ0) (see Figure
5). From Lemma 3, β0,1 is an equipotential of level |φ−10 (β0,1)| > |φ−10 (β0)|. Denote by D(β0,1)

the open disk bounded by β0,1 and containing {ẑ1, ẑ2} (and hence J(f̂)∪B(ẑ1)∪B(ẑ2) as well).
Then F is defined to be the rational map f̂ on D(β0,1). Remark that F |D(β0,1) continuously
extends to β0,1 by a degree d0 covering denoted by F |β0,1 : β0,1 → β1.

3.3 Folding with an annulus-disk surgery

The aim of this part of the construction is to realize the folding corresponding to the critical
point c0 in the Hubbard treeHP (see Figure 4). More precisely F should holomorphically maps
a small annulus (corresponding to a neighborhood of c0 in HP ) onto a disk (corresponding
to a neighborhood of c1 in HP ) with respect to the degrees d0, d3. Lemma 5 below provides
a general result about the existence of such a map. Then Lemma 6 is a direct application of
Lemma 5 for our construction.

Lemma 5 (Annulus-disk map). Let n, n′ be two positive integers. Then there exists a holo-
morphic branched covering G : A(γ, γ′) → D from an annulus bounded by two quasicircles
γ, γ′ onto the open unit disk D centered at 0 and of radius 1 such that

(i) G is of degree n+ n′ and has n+ n′ critical points counted with multiplicity

(ii) G continuously extends to γ ∪ γ′ by a degree n covering G|γ : γ → ∂D and a degree n′
covering G|γ′ : γ′ → ∂D

(iii) mod(A(γ, γ′)) 6 1

Proof. There are many ways to prove the existence of such a map. Here this proof uses the
properties of the McMullen’s family

g0,λ : z 7→ zn +
λ

zn′

for |λ| > 0 small enough (see [McM88] and [DHL+08] for a complete study of this family).
Recall that g0,λ is of degree n+ n′, its critical set contains n+ n′ simple critical points of the
form

ck =

(
n′

n

)1/(n+n′)

|λ|1/(n+n′)e2kiπ/(n+n′) where k ∈ {1, 2, . . . , n+ n′}
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(the other critical points are ∞ of multiplicity n − 1 if n > 1 and 0 of multiplicity n′ − 1 if
n′ > 1). Moreover, the preimages of 0 are of the form

g−10,λ(0) = {|λ|1/(n+n′)e2kiπ/(n+n′) / k ∈ {1, 2, . . . , n+ n′}}

Let A be the preimage of the open unit disk D, namely A = g−10,λ(D). We are going to
prove that for every |λ| > 0 small enough A is connected and actually an annulus separating
0 and ∞. Indeed remark that for every z ∈ C with modulus |z| = |λ|1/(n+n′) we have

|g0,λ(z)| =
∣∣∣∣zn +

λ

zn′

∣∣∣∣ 6 |λ|n/(n+n′) +
|λ|

|λ|n′/(n+n′)
= 2|λ|n/(n+n′)

Similarly for every k ∈ {1, 2, . . . , n+ n′} we have

|g0,λ(ck)| 6
(
n′

n

)n/(n+n′)
|λ|n/(n+n′) +

( n
n′

)n′/(n+n′) |λ|
|λ|n′/(n+n′)

= C|λ|n/(n+n′)

with

C =

(
n′

n

)n/(n+n′)
+
( n
n′

)n′/(n+n′)
=

(
n+ n′

n

)n/(n+n′)
×
(
n+ n′

n′

)n′/(n+n′)
6 2

(by using the arithmetic-geometric mean inequality xn/(n+n′) × yn′/(n+n′) 6 n
n+n′

x+ n′

n+n′
y).

So if λ is such that 0 < 2|λ|n/(n+n′) < 1 then A contains the circle centered at 0 and of
radius |λ|1/(n+n′) where all the preimages of 0 lie, together with n + n′ simple critical points
of g0,λ. In particular, A is a connected set which separates 0 and ∞ and it follows from the
Riemann-Hurwitz formula applied to the degree n+n′ branched covering g0,λ|A : A→ D that
A is an annulus.

Let γ be the outer boundary of A, namely the boundary of the connected component of
Ĉ−Ā containing∞, and γ′ be the inner boundary of A, namely the boundary of the connected
component of Ĉ−Ā containing 0. It turns out that A = A(γ, γ′) and G = g0,λ|A : A(γ, γ′)→ D
satisfy (i). The point (ii) follows from the fact that g0,λ realizes a degree n (respectively n′)
branched covering on the the connected component of Ĉ − Ā containing ∞ (respectively 0)
with no critical points on the boundary. Moreover γ and γ′ are quasicircles as preimages of
the unit circle ∂D by conformal maps.

For the point (iii), remark that for every R > 1 we have

|z| 6 1

R1/n′
|λ|1/(n+n′) ⇒ |g0,λ(z)| > |λ|

|z|n′
− |z|n > |λ|n/(n+n′)

(
R− 1

Rn

)
|z| > R1/n|λ|1/(n+n′) ⇒ |g0,λ(z)| > |z|n − |λ|

|z|n′
> |λ|n/(n+n′)

(
R− 1

Rn′

)
In particular if R = 2|λ|−n/(n+n′), then max{ 1

Rn
, 1
Rn′
} 6 1

R
< 1

2
R (since λ was chosen so that

0 < 2|λ|n/(n+n′) < 1 that implies R > 4) and hence

|g0,λ(z)| > |λ|n/(n+n′)1
2
R = 1 if |z| 6 1

R1/n′
|λ|1/(n+n′) or |z| > R1/n|λ|1/(n+n′)

Consequently the preimage A = A(γ, γ′) of the unit disk is contained as essential subannu-
lus in the round annulus {z ∈ C / 1

R1/n′ |λ|1/(n+n
′) < |z| < R1/n|λ|1/(n+n′)} and the Grötzsch’s

inequality gives

mod(A(γ, γ′)) 6
1

2π
log

(
R1/n|λ|1/(n+n′)

1
R1/n′ |λ|1/(n+n

′)

)
=

1

2π

(
1

n
+

1

n′

)
log(R)
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In particular, if λ is fixed so that 2|λ|n/(n+n′) = 4
eπ
< 1 then R = 2|λ|−n/(n+n′) = eπ and

mod(A(γ, γ′)) 6
1

2

(
1

n
+

1

n′

)
6 1

In the proof above, 1 is obviously not the optimal upper bound for mod(A(γ, γ′)). The
author guesses that this modulus is arbitrary small when λ is close to 0. But one can prove
that the modulus of the smallest round annulus (namely an annulus bounded by two disjoint
euclidean circles centered at 0) containing A(γ, γ′) as essential subannulus is bounded by
below by a positive constant which does not depend on λ. The same happens if the open unit
disk D is replaced by any open disk centered at 0 and containing the critical values. However
we do not need a sharper estimation than (iii) in this paper (see Lemma 3 and the proof of
Lemma 6 below).

Now we will apply Lemma 5 to realize the folding corresponding to the critical point c0 in
the Hubbard tree HP .

Let γ1 be an arbitrary equipotential in B(ẑ1) such that |φ−11 (γ1)| < |φ−11 (β1)|. In order to
follow more easily the construction, we will slightly improve the notation. So let γ0,1 be the
equipotential β0, keeping in mind that γ0,1 will be mapped onto γ1 by a degree d0 covering.
Notice that the first inequality of (2) in Lemma 3 implies |φ−10 (β0,1)| > |φ−10 (γ0,1)|. Similarly
let β3,1 be the equipotential β+

3 , keeping in mind that β3,1 will be mapped onto β1 by a degree
d3 covering.

Lemma 6. There exist an equipotential γ3,1 in B(ẑ0) and a holomorphic branched covering
F |A(γ0,1,γ3,1) : A(γ0,1, γ3,1)→ D(γ1) such that

(i) |φ−10 (β0,1)| > |φ−10 (γ0,1)| > |φ−10 (γ3,1)| > |φ−10 (β3,1)|

(ii) the image of A(γ0,1, γ3,1) by F |A(γ0,1,γ3,1) is the open disk D(γ1) bounded by γ1 and con-
taining ẑ1

(iii) F |A(γ0,1,γ3,1) is of degree d0 + d3 and has d0 + d3 critical points counted with multiplicity,
furthermore one of them, denoted by c, satisfies F |A(γ0,1,γ3,1)(c) = ẑ1

(iv) F |A(γ0,1,γ3,1) continuously extends to γ0,1 ∪ γ3,1 by a degree d0 covering F |γ0,1 : γ0,1 → γ1
and a degree d3 covering F |γ3,1 : γ3,1 → γ1

Proof. Let G : A(γ, γ′)→ D be a holomorphic branched covering coming from Lemma 5 for
the integers n = d0 and n′ = d3. Define the equipotential γ3,1 by

|φ−10 (γ0,1)| > |φ−10 (γ3,1)| and
1

2π
log

(
|φ−10 (γ0,1)|
|φ−10 (γ3,1)|

)
= mod(A(γ0,1, γ3,1)) = mod(A(γ, γ′))

Since mod(A(γ0,1, β3,1)) = mod(A(β0, β
+
3 )) > 1 (from the last inequality of (2) in Lemma

3) and mod(A(γ, γ′)) 6 1 (from the point (iii) in Lemma 5), it follows that |φ−10 (γ3,1)| >
|φ−10 (β3,1)| and the point (i) holds.

Now let ϕ be any biholomorphic map from A(γ0,1, γ3,1) onto A(γ, γ′) (the existence of
such a biholomorphic map is ensured by the fact that these two annuli have same modulus).
Since A(γ0,1, γ3,1) and A(γ, γ′) are bounded by quasicircles, ϕ may be continuously extended
to γ0,1 ∪ γ3,1 by two homeomorphisms.
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Let c be the preimage under ϕ of any critical point of G and let φ : D → D(γ1) be
any Riemann mapping of D(γ1) such that φ(G(ϕ(c))) = ẑ1. Since D(γ1) is bounded by a
quasicircle, φ may be continuously extended to ∂D by a homeomorphism. Then F |A(γ0,1,γ3,1) =
φ ◦G ◦ϕ is holomorphic on A(γ0,1, γ3,1) and satisfies (ii), (iii), and (iv) by construction.

Figure 6 depicts the equipotentials involved in Lemma 6.

Figure 6: The map F |A(γ0,1,γ3,1) coming from Lemma 6 displayed on the Riemann
sphere which is topologically distorted to emphasize the three domains
B(ẑ0), B(ẑ1), B(ẑ2) (compare with Figure 4)

3.4 Preimage of the the branching part

According to the last two sections, the map F is defined up to there on the union of the open
disk D(β0,1) containing {ẑ1, ẑ2} with the open annulus A(γ0,1, γ3,1) containing c. Moreover F
maps c to ẑ1, ẑ1 to ẑ2 and ẑ2 to ẑ0. Now we need to define F near ẑ0 by sending ẑ0 to c in
order to realize a cycle of period 4 as required in Theorem 3. This should be done carefully
so that the quasiconformal surgery may be concluded.

The first problem is that some preimage of J(f̂) (or more precisely of the annulus A(β1, β0)

containing J(f̂)) must appear in B(ẑ0) (compare with Figure 4 where the edge e3 = [c0, c3]HP
contains a preimage of the branching point α). This is done in Lemma 7 below which essen-
tially uses the fourth inequality of (2) in Lemma 3.

Lemma 7. There exist an equipotential β3,0 in B(ẑ0) and a holomorphic covering F |A(β3,1,β3,0) :
A(β3,1, β3,0)→ A(β1, β0) such that

(i) |φ−10 |(β3,1)| = |φ−10 |(β+
3 )| > |φ−10 |(β3,0)| > |φ−10 |(β−3 )|

(ii) the image of A(β3,1, β3,0) by F |A(β3,1,β3,0) is the open annulus A(β1, β0)

(iii) F |A(β3,1,β3,0) is of degree d3 and has no critical point

(iv) F |A(β3,1,β3,0) continuously extends to β3,1∪β3,0 by two degree d3 coverings F |β3,1 : β3,1 → β1
and F |β3,0 : β3,0 → β0

Proof. Define the equipotential β3,0 by

|φ−10 (β3,1)| > |φ−10 (β3,0)| and
1

2π
log

(
|φ−10 (β3,1)|
|φ−10 (β3,0)|

)
= mod(A(β3,1, β3,0)) =

1

d3
mod(A(β1, β0))
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Since β3,1 = β+
3 (see the previous subsection) and 1

d3
mod(A(β1, β0)) < mod(A(β+

3 , β
−
3 )) (from

the fourth inequality of (2) in Lemma 3), it follows that |φ−10 |(β3,0)| > |φ−10 |(β−3 )| and the
point (i) holds.

Now let ϕ be any biholomorphic map from A(β3,1, β3,0) onto a round annulus of the form
Ar = {z ∈ C / r < |z| < 1} where r is defined by

1

2π
log

(
1

r

)
= mod(A(β3,1, β3,0))

Since A(β3,1, β3,0) is bounded by equipotentials, ϕ may be continuously extended to β3,1∪β3,0
by two homeomorphisms which send β3,1 onto {z ∈ C / |z| = 1} and β3,0 onto {z ∈ C / |z| = r}.
Similarly, let ψ be any biholomorphic map from A(β1, β0) onto Ard3 . The existence of such a
biholomorphic map is ensured by the following remark

mod(A(β1, β0)) = d3 mod(A(β3,1, β3,0)) =
d3
2π

log

(
1

r

)
=

1

2π
log

(
1

rd3

)
ψ may be continuously extended to β1 ∪ β0 by two homeomorphisms which send β1 onto
{z ∈ C / |z| = 1} and β0 onto {z ∈ C / |z| = rd3}.

Then F |A(β3,1,β3,0) = ψ−1 ◦ (z 7→ zd3) ◦ ϕ is holomorphic on A(β3,1, β3,0) and satisfies (ii),
(iii) and (iv) by construction.

Figure 7 depicts the map F |A(β3,1,β3,0) coming from Lemma 7.

Figure 7: The map F |A(β3,1,β3,0) coming from Lemma 7 displayed on the Riemann
sphere which is topologically distorted to emphasize the three domains
B(ẑ0), B(ẑ1), B(ẑ2) (compare with Figure 4)

3.5 Achievement of the super-attracting cycle of period 4

Now we achieve the definition of F near ẑ0. This is done in two parts. Firstly Lemma 9 realizes
a preimage of a neighborhood of ẑ0 which does not contain the critical point c (coming from
Lemma 6). Then Lemma 10 defines F near ẑ0 by sending a neighborhood of ẑ0 onto a
neighborhood of c (mapping ẑ0 to c). Before, Lemma 8 is a technical result from conformal
geometry which allows to define precisely the neighborhoods involved in this construction.

Lemma 8 (Separating quasicircle). Let A(γ, γ′) be an open annulus bounded by a pair of
disjoint quasicircles γ, γ′, and let a be a point in A(γ, γ′). Then there exists a quasicircle δ in
A(γ, γ′) which separates a from γ ∪ γ′ such that mod(A(γ, δ)) is arbitrary small.
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Proof. This proofs uses the definition of the modulus of an annulus by the extremal length
(see [Ahl10]). Up to a biholomorphic change of coordinates, we may assume that γ = {z ∈
C / |z| = 1}, γ′ = {z ∈ C / |z| = e−2πmod(A(γ,γ′)) < 1} and a is a positive real number in
]e−2πmod(A(γ,γ′)), 1[. Fix x to be the positive real number x = (1 + e−2πmod(A(γ,γ′)))/2 and
define δε to be the euclidean circle centered at x and of radius 1 − x − ε for every ε > 0.
Notice that δε is included in A(γ, γ′) and that δε separates a from γ ∪ γ′ for every ε > 0 small
enough.

For every angle θ (small enough), consider the path `θ connecting δε and γ of the form
`θ = {z = reiθ /Rθ 6 r 6 1} with Rθ > 0 maximal such that Rθe

iθ ∈ δε. By classical results
from euclidean geometry and trigonometry, we get:

Rθ = x cos(θ) +
√

(1− x− ε)2 − x2 sin2(θ)

Since θ 7→ Rθ is an even function with a local maximum at θ = 0, it follows for every ε > 0
small enough that

θ ∈ [−
√
ε,
√
ε] =⇒ Rθ > R√ε = x cos(

√
ε) +

√
(1− x− ε)2 − x2 sin2(

√
ε)

= 1− 2− x
2(1− x)

ε+ O
ε→0

(ε2)

> 1− Cε (4)

where C is a positive constant fixed so that C > 2−x
2(1−x) .

Now recall that the modulus of A(γ, δε) is given by the extremal length of the collection
L of rectifiable paths connecting δε and γ, namely

mod(A(γ, δε)) = sup
ρ

(
inf`∈L

∫
`
ρ|dz|

)2∫
A(γ,δε)

ρ2dxdy

where the supremum is over all measurable functions ρ : A(γ, δε) → [0,+∞] such that∫
A(γ,δε)

ρ2dxdy < +∞. Let ρ be such a measurable function. For every θ (small enough),
we have:

inf
`∈L

∫
`

ρ|dz| 6
∫
`θ

ρ|dz| =
∫ 1

Rθ

ρ(reiθ)dr

Integrating over θ ∈ [−
√
ε,
√
ε] and applying the Cauchy-Schwarz inequality give

2
√
ε inf
`∈L

∫
`

ρ|dz| 6

(∫ √ε
−
√
ε

∫ 1

Rθ

ρ(reiθ)2rdrdθ

)1/2(∫ √ε
−
√
ε

∫ 1

Rθ

1

r
drdθ

)1/2

6

(∫
A(γ,δε)

ρ2dxdy

)1/2
(∫ √ε
−
√
ε

log

(
1

Rθ

)
dθ

)1/2

Therefore it follows from (4) that(
inf`∈L

∫
`
ρ|dz|

)2∫
A(γ,δε)

ρ2dxdy
6

1

4ε

∫ √ε
−
√
ε

log

(
1

Rθ

)
dθ

6
1

4ε

∫ √ε
−
√
ε

log

(
1

1− Cε

)
dθ =

1

2
√
ε

log

(
1

1− Cε

)
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Finally we take the supremum over all measurable functions ρ to get

mod(A(γ, δε)) 6
1

2
√
ε

log

(
1

1− Cε

)
∼
ε→0

C

2

√
ε →
ε→0

0

that concludes the proof.

Now we come back to the construction. Let γ0 be an arbitrary equipotential in B(ẑ0)
such that |φ−1(β0)| = |φ−10 (γ0,1)| > |φ−10 (γ0)| > |φ−10 (γ3,1)| and A(γ0, γ3,1) contains the critical
point c.

Lemma 9. There exist two equipotentials γ3,0 and δ+3,c in B(ẑ0) and a holomorphic covering
F |A(γ3,0,δ+3,c) : A(γ3,0, δ

+
3,c)→ A(γ0, δ

+
c ) such that

(i) |φ−10 (β3,0)| > |φ−10 (γ3,0)| > |φ−10 (δ+3,c)| > |φ−10 (β−3 )|

(ii) the image of A(γ3,0, δ
+
3,c) by F |A(γ3,0,δ+3,c) is an open annulus A(γ0, δ

+
c ) where δ+c is a qua-

sicircle in A(γ0, γ3,1) which separates c from γ0 ∪ γ3,1

(iii) F |A(γ3,0,δ+3,c) is of degree d3 and has no critical point

(iv) F |A(γ3,0,δ+3,c) continuously extends to γ3,0∪δ+3,c by two degree d3 coverings F |γ3,0 : γ3,0 → γ0

and F |δ+3,c : δ+3,c → δ+c

Proof. Applying Lemma 8, we get a quasicircle δ+c in A(γ0, γ3,1) which separates c from γ0∪γ3,1
and such that

1

d3
mod(A(γ0, δ

+
c )) < mod(A(β3,0, β

−
3 ))

Therefore we can find two equipotentials γ3,0 and δ+3,c in B(ẑ0) so that

|φ−10 (β3,0)| > |φ−10 (γ3,0)| > |φ−10 (δ+3,c)| > |φ−10 (β−3 )|

and
1

2π
log

(
|φ−10 (γ3,0)|
|φ−10 (δ+3,c)|

)
= mod(A(γ3,0, δ

+
3,c)) =

1

d3
mod(A(γ0, δ

+
c ))

The point (i) holds by definition. For the three other points, the proof may be achieved as
that one of Lemma 7.

Figure 8 depicts the equipotentials involved in Lemma 9.
It remains to define F near ẑ0. Let δ−c be an arbitrary quasicircle in the open disk D(δ+c )

bounded by δ+c and containing c which separates c from δ+c . We slightly improve the notation
by denoting δ−3,c the equipotential β−3 keeping in mind that δ−3,c will be mapped onto δ−c by a
degree d3 covering.

Lemma 10. There exists a degree d3 holomorphic branched covering F |D(δ−3,c)
: D(δ−3,c) →

D(δ−c ) from the open disk D(δ−3,c) bounded by δ−3,c and containing ẑ0 onto the open disk D(δ−c )
bounded by δ−c and containing c such that ẑ0 is the only one critical point of F |D(δ−3,c)

with
F |D(δ−3,c)

(ẑ0) = c and local degree d3. Moreover F |D(δ−3,c)
continuously extends to δ−3,c by a degree

d3 covering denoted by F |δ−3,c : δ−3,c → δ−c .
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Proof. Let φ : D → D(δ−3,c) be any Riemann mapping of the open disk D(δ−3,c) such that
φ(0) = ẑ0, and let φ′ : D → D(δ−c ) be any Riemann mapping of the open disk D(δ−c ) such
that φ′(0) = c. Since D(δ−3,c) (respectively D(δ−c )) is bounded by a quasicircle, φ (respectively
φ′) may be continuously extended to ∂D by a homeomorphism. Then F |D(δ−3,c)

= φ′ ◦ (z 7→
zd3) ◦ φ−1 gives the result.

Figure 8 depicts the map F |D(δ−3,c)
coming from Lemma 10.

Figure 8: The maps F |A(γ3,0,δ+3,c) and F |D(δ−3,c)
coming from Lemma 9 and Lemma 10 dis-

played on the Riemann sphere which is topologically distorted to emphasize the
three domains B(ẑ0), B(ẑ1), B(ẑ2) (compare with Figure 4)

3.6 Uniformization

At first we sum up in the following table the definition of F up to there.

domain
of definition image continuous extension

on the boundary critical points critical values

D(β0,1) Ĉ β0,1
d0:1−→ β1

ẑ1 with mult. d1 − 1
ẑ2 with mult. d2 − 1

F (ẑ1) = ẑ2
F (ẑ2) = ẑ0

A(γ0,1, γ3,1) D(γ1)
γ0,1

d0:1−→ γ1

γ3,1
d3:1−→ γ1

c ∈ {d0 + d3 crit. pts
counted with mult.}

F (c) = ẑ1
and others

A(β3,1, β3,0) A(β1, β0)
β3,1

d3:1−→ γ1

β3,0
d3:1−→ β0

∅ ∅

A(γ3,0, δ
+
3,c) A(γ0, δ

+
c )

γ3,0
d3:1−→ γ0

δ+3,c
d3:1−→ δ+c

∅ ∅

D(δ−3,c) D(δ−c ) δ−3,c
d3:1−→ δ−c ẑ0 with mult. d3 − 1 F (ẑ0) = c
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So F is holomorphically defined on H = D(β0,1)∪A(γ0,1, γ3,1)∪A(β3,1, β3,0)∪A(γ3,0, δ
+
3,c)∪

D(δ−3,c) with continuous extension on the boundary. It remains to define F on the complement
Q = Ĉ−H = A(β0,1, γ0,1)∪A(γ3,1, β3,1)∪A(β3,0, γ3,0)∪A(δ+3,c, δ

−
3,c). This is done in the following

lemma.

Lemma 11. The map F |H : H → Ĉ extend to a quasiregular map F : Ĉ → Ĉ by quasicon-
formal coverings defined on each connected component of Q = Ĉ−H.

Moreover there exists an open subset E ⊂ H such that F (E) ⊂ E and F 2(Q) ⊂ E.

In particular, notice that the quasiregular map F : Ĉ → Ĉ has no more critical points
than those coming from the holomorphic restriction F |H : H → Ĉ.

Proof. Remark that every connected component of Q is an open annulus whose two connected
components of the boundary are quasicircles where F realizes two coverings of same degree.
Interpolating these two coverings of same degree, F may be continuously extended to each
connected component of Q by a covering of degree corresponding to that one on the boundary.
Since the connected components of the boundary of each connected component of Q, together
with their images under F , are quasicircles, each interpolation may be carefully done in such
a way that the resulting covering is actually quasiconformal. Finally F quasiregularly extends
to Q by

• a degree d0 quasiconformal covering F |A(β0,1, γ0,1) : A(β0,1, γ0,1)→ A(β1, γ1)

• a degree d3 quasiconformal covering F |A(γ3,1, β3,1) : A(γ3,1, β3,1)→ A(γ1, β1)

• a degree d3 quasiconformal covering F |A(β3,0, γ3,0) : A(β3,0, γ3,0)→ A(β0, γ0)

• a degree d3 quasiconformal covering F |A(δ+3,c, δ
−
3,c) : A(δ+3,c, δ

−
3,c)→ A(δ+c , δ

−
c )

In particular, we have F (Q) = A(β1, γ1) ∪ A(β0, γ0) ∪ A(δ+c , δ
−
c ) (see figure 9 to follow the

continuation of the proof).
Now denote by β1,2 the preimage of β2 in B(ẑ1) under f̂ (thus under F ) and similarly by

β−2,3 the preimage of β−3 in B(ẑ2) (see Figure 5). Moreover denote by D(β1,2) (respectively by
D(β−2,3)) the open disk bounded by β1,2 (respectively by β−2,3) and containing ẑ1 (respectively
ẑ2). Finally let E be the union D(β1,2) ∪D(β−2,3) ∪D(δ−3,c) ∪ A(γ0,1, γ3,1) (see Figure 9).

At first remark that E is an open subset of H = D(β0,1) ∪ A(γ0,1, γ3,1) ∪ A(β3,1, β3,0) ∪
A(γ3,0, δ

+
3,c) ∪D(δ−3,c). Indeed we have D(β1,2) ∪D(β−2,3) ⊂ D(β0,1) from definition of β0,1.

Moreover, it follows from the definition of F on H that F (E) = D(β2)∪D(β−3 )∪D(δ−c )∪
D(γ1) where D(β2) denotes the open disk bounded by β2 and containing ẑ2, and D(β−3 ) =
D(δ−3,c) denotes the open disk bounded by β−3 = δ−3,c and containing ẑ0.

Furthermore, according to the whole construction, we have

• from Lemma 3 and definition of γ1: A(β1, γ1) ∪D(γ1) ⊂ D(β1,2) and D(β2) ⊂ D(β−2,3)

• from definitions of δ−c , δ+c and γ0: A(δ+c , δ
−
c ) ∪D(δ−c ) ⊂ A(γ0, γ3,1) ⊂ A(γ0,1, γ3,1)

• from definition of γ0 and recaling β0 = γ0,1: A(β0, γ0) ⊂ A(γ0,1, γ3,1)

Putting everything together gives the following diagram in which the arrows F−→ stand for
images under F , ⊂−→ stand for inclusions, ⊂−→ stand for compact inclusions (namely A ⊂−→ B
if and only if A ⊂ B) and =−→ stands for equality.
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zz
F (Q)
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))

∪ A(δ+c , δ
−
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H = D(β0,1) ∪ A(γ0,1, γ3,1) ∪ A(β3,1, β3,0) ∪ A(γ3,0, δ

+
3,c) ∪ D(δ−3,c)

In particular, we deduce that F (E) ⊂ E and F 2(Q) ⊂ E ⊂ H. Furthermore, following
compact inclusions, it turns out that F 2(Q) ⊂ E.

Figure 9: The maps F coming from Lemma 11. On the left topological sphere, the black
area stands for Q and the colored area stands for E. On the right topological
sphere, the black area stands for F (Q) and the colored area stands for F (E).

Now we have a quasiregular map F from the Riemann sphere to itself whose dynamics
follows that one of the dynamical tree P : HP → HP (see Figure 4). We need to find a
holomorphic map f conjugated to F so that f follows the same dynamics as well (f should
satisfy the requirements of Theorem 3 and Theorem 4). In other words, we need to find a
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complex structure on the Riemann sphere making F holomorphic. To do so, we will apply
the Shishikura’s fundamental lemma for quasiconformal surgery (stated for the first time in
[Shi87]) that we recall below.

Lemma 12 (Shishikura’s fundamental lemma for quasiconformal surgery). Let G : Ĉ → Ĉ
be a quasiregular map. Assume there are an open set E ⊂ Ĉ and an integer N > 0 which
satisfy the following conditions:

• G(E) ⊂ E

• G is holomorphic on E

• G is holomorphic on an open set containing Ĉ−G−N(E)

Then there exists an almost complex structure µ on Ĉ which is G-invariant. In particular,
if ϕ : Ĉ → Ĉ is the quasiconformal map of dilatation µ given by the measurable Riemann’s
mapping theorem then the map ϕ ◦G ◦ ϕ−1 is holomorphic.

The result stated in [Shi87] is a little more general but it easily implies the more explicit
statement of Lemma 12 (we refer the readers to [Shi87] for more details and for a proof).

Here our map F satisfies the three assumptions (indeed F is holomorphic on H hence on
E ⊂ H and Lemma 11 implies that Ĉ−F−2(E) ⊂ Ĉ−Q = H), so applying Lemma 12 gives
a holomorphic map f : Ĉ→ Ĉ quasiconformally conjugated to F : Ĉ→ Ĉ as desired.

Lemma 13. The rational map f : Ĉ → Ĉ obtained above is of degree d̂ + d3 and has a
super-attracting cycle {z0, z1, z2, z3} of period 4 which is accumulated by every critical orbit.
In particular, f is hyperbolic.

Proof. Since f is quasiconformally conjugated to F , the critical points of f are images under
a quasiconformal map ϕ of the critical points of F with same multiplicities. More precisely,
the critical points of f are:

• z1 = ϕ(ẑ1) ∈ ϕ(D(β1,2)) ⊂ ϕ(E) with multiplicity d1 − 1

• z2 = ϕ(ẑ2) ∈ ϕ(D(β−2,3)) ⊂ ϕ(E) with multiplicity d2 − 1

• d0 + d3 critical points counted with multiplicity in ϕ(A(γ0,1, γ3,1)) ⊂ ϕ(E), which one of
them is given by z0 = ϕ(c)

• z3 = ϕ(ẑ0) ∈ ϕ(D(δ−3,c)) ⊂ ϕ(E) with multiplicity d3 − 1

According to the Riemann-Hurwitz formula, it follows that

2 deg(f)− 2 = (d1 − 1) + (d2 − 1) + (d0 + d3) + (d3 − 1) = (d0 + d1 + d2 − 1) + 2d3 − 2

Therefore
deg(f) =

1

2
(d0 + d1 + d2 − 1) + d3 = d̂+ d3

Notice that {z0, z1, z2, z3} forms a super-attracting cycle of period 4. Moreover every
critical points of f lies in the forward invariant open set ϕ(E), namely an union of 4 connected
components each containing one point of {z0, z1, z2, z3}. Consequently, every critical orbit
accumulates this super-attracting cycle.
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4 Properties
The aim of this section is to achieve the proofs of Theorem 3 and Theorem 4. More precisely
we are going to show that the rational map f constructed in the previous section satisfies all
the requirements of these two theorems. Section 4.1 focuses on the dynamical properties of
f (stated in Theorem 3), then Section 4.2 deals with the topological properties of the Julia
component of f (stated in Theorem 4).

In order to lighten notations, we forget the quasiconformal map ϕ provided by Lemma
12 to denote the image under ϕ of any set introduced in the previous section (equivalently
speaking, we act as if the quasiregular map F constructed in the previous section is actually
holomorphic).

4.1 Exchanging dynamics

Consider the following pairwise disjoint collection of open annuli (see Figure 10).

A0 = A(α0, β0), A1 = A(α1, β1), A2 = A(α2, β2), and A3 = A(β+
3 , β

−
3 )

Then, consider the connected components of the preimage under f of this collection which
are each contained as essential subannulus in one of these annuli, namely:

• A0,1 = A(α0, β0,1)

• A1,2 = A(α1, β1,2)

• A2,0 = A(α2, β2,0) where β2,0 is the preimage of β0 in B(ẑ2) (see Figure 5)

• A2,3 = A(β+
2,3, β

−
2,3) where β+

2,3 is the preimage of β+
3 in B(ẑ2) (see Figure 5)

• A3,0 = A(α3,0, β3,0) where α3,0 is the preimage of α0 in A(β3,1, β3,0) (see Lemma 7)

• A3,1 = A(β3,1, α3,1) where α3,1 is the preimage of α1 in A(β3,1, β3,0) (see Lemma 7)

Notice that the notation is chosen so that each Ai,j is contained as essential subannulus
in Ai, and f|Ai,j : Ai,j → Aj is a degree di covering. Remark that some connected components
of f−1(A3) are included in A3 as well (from Lemma 9, see Figure 8), but none of them is
contained in A3 as essential subannulus.

Figure 10: The various annuli considered to encode the exchanging dynamics.
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Denote by A the collection of all connected components of the non-escaping set induced by
f|U : U → A0∪A1∪A2∪A3 on the union of subannuli U = A0,1∪A1,2∪A2,0∪A2,3∪A3,0∪A3,1.
More precisely:

A =
{
J connected component of {z ∈ U / ∀n > 0, fn(z) ∈ U}

}
Let Jα be the continuum in Ĉ which corresponds to the Julia set J(f̂) of f̂ (more precisely,

Jα is the image of J(f̂) under the quasiconformal map ϕ provided by Lemma 12). Remark
that Jα is fixed under iteration of f and Jα intersects U (along α0 ∪ α1 ∪ α2). Denote by Aα
the collection of all continua which are eventually mapped onto Jα and whose every iterate
intersects U .

Aα =
{
J connected component of

⋃
n>0

f−n(Jα) such that ∀n > 0, fn(J) ∩ U 6= ∅
}

Finally , denote by A? the union A∪Aα. As collection of pairwise disjoint continua, A? is
endowed with the topology coming from the usual distance between continua on the Riemann
sphere Ĉ (equipped with the spherical metric). It turns out that f induced a topological
dynamical system on A?. This dynamical system may be encoded by the weighted Hubbard
tree (HP , w) (see Section 2.2) as it is shown in the following lemma.

Lemma 14. There exists a homeomorphism h : A? → J (HP ) such that the following diagram
commutes

A? f //

h
��

A?

h
��

J (HP )
P

// J (HP )

Moreover for every J ∈ A, the restriction map f |J is of degree w(ek) = dk where ek is the
edge of HP which contains h(J).

Proof. At first, remark there is a subannulus Ai,j for some i, j ∈ {0, 1, 2, 3} if and only if
the (i, j)-entry of the transition matrix M = (mi,j)i,j∈{0,1,2,3} is non-zero (see Definition 1).
Indeed, recall that the transition matrix is

M =


0 1

d0
0 0

0 0 1
d1

0
1
d2

0 0 1
d2

1
d3

1
d3

0 0


According to this remark, we introduce the subshift of finite type (Σ, σ) associated to the
transition matrix M , namely the restriction of the 4-to-1 shift map on the subset of all
infinite sequences of digits in {0, 1, 2, 3} such that every adjacent pair of entries lies in
{(0, 1), (1, 2), (2, 0), (2, 3), (3, 0), (3, 1)}.

Σ =
{
s = (s0, s1, s2, . . . ) ∈ {0, 1, 2, 3}N / ∀k > 0, msk,sk+1

6= 0
}

σ : Σ→ Σ, s = (s0, s1, s2, . . . ) 7→ σ(s) = (s1, s2, s3, . . . )

Σ is endowed with the topology coming from the following distance, making it a Cantor set.

∀s, s′ ∈ Σ, d(s, s′) =
∑
k>0

|sk − s′k|
4k
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Let Sα be the subset of Σ of three infinite sequences of repeating 0, 1, 2 digits.

Sα =
{

(0, 1, 2, 0, 1, 2, 0, 1, 2, . . . ), (1, 2, 0, 1, 2, 0, 1, 2, 0, . . . ), (2, 0, 1, 2, 0, 1, 2, 0, 1, . . . )
}

We shall identify these three sequences in Σ, and similarly every subset of sequences which
are eventually mapped in Sα after the same itinerary under σ. More precisely, let ∼ be the
equivalence relation on Σ defined by

∀s, s′ ∈ Σ, s ∼ s′ ⇐⇒ ∃n > 0 /

{
∀k ∈ {0, 1, . . . , n}, sk = s′k
σn(s), σn(s′) ∈ Sα

and let Σ? be the topological quotient space Σ/ ∼. Remark that Σ? is a Cantor set as well for
the quotient topology induced by ∼. Abusing notations, every equivalence class containing
only one infinite sequence s ∈ Σ which is not eventually mapped in Sα is still denoted by
s ∈ Σ?, and the map induced by the shift map on Σ? is still denoted by σ.

We are going to show that (A?, f) is topologically conjugated to (Σ?, σ). To do so, consider
the itinerary map h1 : A → Σ? defined as follows

∀J ∈ A, h1(J) = (s0, s1, s2, . . . ) with ∀k > 0, fk(J) ⊂ Ask

This map is well defined and injective by definition of A.
To prove that h1 extends to a homeomorphism from A? to Σ?, we first define by induction

for every s = (s0, s1, s2, . . . ) ∈ Σ an infinite sequence of subannuli (As0,s1,...,sn)n>0 such that
for every n > 0, As0,s1,...,sn is contained in As0 as essential subannulus, and f|As0,s1,...,sn :
As0,s1,...,sn → As1,s2,...,sn is a degree ds0 covering. Denote by As = As0,s1,s2,... the limit set⋂
n>0As0,s1,...,sn which is a continuum.
If s is not eventually mapped in Sα, then As0,s1,...,sn is contained in U = A0,1∪A1,2∪A2,0∪

A2,3 ∪ A3,0 ∪ A3,1 for every n > 0 large enough and thus As is a connected component of the
non-escaping set, that is an element of A. Moreover, h1(As) = s holds from the definition of
the itinerary map h1.

On the contrary, if s is in Sα, then As is either α0, α1 or α2, and in particular As is
contained in Jα. More generally, if s is eventually mapped in Sα, then As is contained in a
continuum J which is eventually mapped onto Jα, that is an element of Aα. Moreover, for
every s′ ∈ Σ such that s′ ∼ s, As′ is contained in the same continuum J ∈ Aα.

Therefore h1 extends to a bijective map from A? to Σ?, by associating to J ∈ Aα the
equivalence class h1(J) ∈ Σ∗ of the itinerary s = (s0s1, s2, . . . ) ∈ Σ of any subcontinuum in
J which is eventually mapped into α0 ∪ α1 ∪ α2. Furthermore, this extension is actually a
conjugation between f and σ.

∀J ∈ A?, h1(f(J)) = σ(h1(J))

It remains to prove the continuity. Fix J ∈ A? and let s = (s0, s1, s2, . . . )Σ be a class
representative of h1(J). Let J ′ be another element of A? such that some class representative
s′ = (s′0, s

′
1, s
′
2, . . . ) ∈ Σ of h1(J ′) is arbitrary close to s. That implies the first n digits of s

and s′ coincide for arbitrary large n > 0. In particular, As and As′ are contained in As0,s1,...,sn .
Remark that fn|As0,s1,...,sn : As0,s1,...,sn → Asn is a covering of degree ds0ds1 . . . dsn−1 tending to
infinity with n (since assumption (H2) implies that at least three of weights d0, d1, d2, d3 are
> 2, see Definition 1). Therefore As and As′ are contained in an annulus of arbitrary small
modulus. Then, using extremal length, it follows that As ⊂ J and As′ ⊂ J ′ are arbitrary close,
hence J and J ′ are arbitrary close in A?. Consequently h−11 is continuous. The continuity of
h1 follows from a similar argument.
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Similarly, we can show that (J (HP ), P ) is topologically conjugated to (Σ?, σ) by a home-
omorphism h2 : J (HP )→ Σ?. Indeed recall that the Hubbard tree HP is described by a set
of four edges e0, e1, e2, e3 where P acts as follows (see Section 2.2)

P (e0) = e1
P (e1) = e2
P (e2) = e0 ∪ e3
P (e3) = e0 ∪ e1

Thus, we may find a collection of four connected open subsets I0, I1, I2, I3 included in e0, e1, e2, e3
respectively, together with a collection of six connected open subsets I0,1, I1,2, I2,0, I2,3, I3,0, I3,1
such that:

• each Ii,j is contained in Ii and P|Ii,j : Ii,j → Ij is a homeomorphism

• and J (HP ) =
{
z ∈ V / ∀n > 0, P n(z) ∈ V

}
∪
{
z point in

⋃
n>0 P

−n(α) ∩ V
}

where V = I0,1 ∪ I1,2 ∪ I2,0 ∪ I2,3 ∪ I3,0 ∪ I3,1

Consequently, we can show as above that the itinerary map h2 : {z ∈ V / ∀n > 0, P n(z) ∈
V } → Σ? extends to a homeomorphism from J (HP ) to Σ? which conjugates the dynamics of
P and σ.

Finally, taking h = h−12 ◦ h1 concludes the proof.

Remark that the proof of Theorem 3 is almost completed. Indeed point (i) comes from
Lemma 13 while points (ii) and (iii) follows from Lemma 14 (since A is, by definition, the
set of continua J in A? such that J is not eventually mapped under iterations to the fixed
continuum Jα, or equivalently, such that h(J) is not eventually mapped under iterations to the
fixed branching point α). It only remains to prove that A? is actually the set of all critically
separating Julia components of f .

Lemma 15. The following equality of sets holds.

A? = Jcrit(f)

Proof. Recall that the postcritical set is contained in the forward invariant set E = D(β1,2)∪
D(β−2,3) ∪ D(δ−3,c) ∪ A(γ0,1, γ3,1) (see Lemma 11 and Figure 9) and each point of the super-
attracting cycle {z0, z1, z2, z3} lies in a different connected component of E. In particular J(f)

is the set of all points whose orbit remains in Ĉ− E = A0 ∪ A1 ∪ A2 ∪ A3 ∪Kα where Kα is
the complement in Ĉ of B(ẑ0) ∪B(ẑ1) ∪B(ẑ2) (see Figure 10).

It follows that every element J in A is a Julia component. Moreover J is critically
separating as limit set of nested essential subannuli which separate each the super-attracting
cycle {z0, z1, z2, z3} (see proof of Lemma 14). Therefore A ⊂ Jcrit(f).

Similarly, every element J in Aα is a Julia component. Moreover recall that J intersects U
along a limit set of nested essential subannuli which separate each the super-attracting cycle
{z0, z1, z2, z3} (see proof of Lemma 14). Therefore Aα ⊂ Jcrit(f) and A? = A∪Aα ⊂ Jcrit(f).

Conversely, let J be a critically separating Julia component of f . Remark that J is not
contained in Kα − Jα. Indeed, recall that every connected component of Ĉ − Jα is simply
connected (see Lemma 2) and that ∂Kα = α0 ∪ α1 ∪ α2 ⊂ Jα, therefore every connected
compact subset of any connected component of Kα − Jα does not separate the postcritical
points. Consequently either J is Jα ∈ Aα ⊂ A? or fn(J) stays in A0 ∪A1 ∪A2 ∪A3 for every
n > 0. Assume that J is not Jα.
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Recall that every connected component of the preimage under f of A0∪A1∪A2∪A3 which
is contained in this compact union, is contained either in U or in some connected component
of f−1(A3) included in A3 (from Lemma 9, see Figure 8), says A′3,3. However every A′3,3 is not
contained in A3 as essential subannulus, and hence does not separate the postcritical points.
In particular J is not contained in any A′3,3. Furthermore, J can not eventually fall in some
A′3,3 after some iterations of f , otherwise fn(J) would not be critically separating for some
n > 0 contradicting the fact that J is critically separating. It follows that fn(J) stays in U
for every n > 0 and hence J ∈ A? that concludes the proof.

4.2 Topology of buried Julia components

Existence of each of the three types of buried Julia components which occurs in J(f) is shown
in this section, that proofs Theorem 4.

Lemma 16 (Point type buried Julia components). There exist uncountably many buried Julia
components in J(f) which are points.

Proof. Let A′3,3 = A(β+
3,3, β

−
3,3) be a connected component of f−1(A3) contained in A3 =

A(β+
3 , β

−
3 ) (from Lemma 9, see Figure 8) where β+

3,3, β
−
3,3 are preimages of β+

3 , β
−
3 respectively.

Recall that A′3,3 is not contained in A3 as essential subannulus. In particular, the connected
component of Ĉ− β+

3,3 containing A′3,3 is an open disk D(β+
3,3) contained in A3 and such that

f|D(β3,3) : D(β+
3,3) → D is a homeomorphism where D = D(β+

3 ) is the open disk bounded by
β+
3 and containing A3.
Using notations coming from the proof of Lemma 14, consider the subannulus A3,0,1,2,3

contained in A3 as essential subannulus and such that f 4
|A3,0,1,2,3

: A3,0,1,2,3 → A3 is a degree
d3d0d1d2 covering. Since assumption (H2) implies that at least three of weights d0, d1, d2, d3
are > 2 (see Definition 1), it follows that this degree is > 2 and hence, there are at least 2
disjoint preimages under f 4

|A3,0,1,2,3
of D(β+

3,3) in A3,0,1,2,3 ⊂ A3 ⊂ D, says D0 and D1.
Finally we have two disjoint open disks D0 and D1 in D such that f 5

|D0
: D0 → D and

f 5
|D1

: D1 → D are homeomorphims. It is then a classical exercise to prove that the non-
escaping set

D = {z ∈ D0 ∪D1 / ∀n > 0, (f 5)n ∈ D0 ∪D1}
is a Cantor set homeomorphic to the space of all sequences of two digits Σ2 = {0, 1}N. In
particular, D contains uncountably many points. Furthermore every point in D is a buried
point in J(f) since A3 ⊂ D contains infinitely many critically separating Julia components.

Lemma 17 (Circle type buried Julia components). There exist uncountably many buried
Julia components in J(f) which are wandering Jordan curves.

Proof. This is mostly a consequence of the main result in [PT00] claiming that every wander-
ing Julia component of a geometrically finite rational map is either a point or a Jordan curve.
Here our map f is hyperbolic (from Lemma 13) therefore every wandering Julia component
in Jcrit(f) must be a Jordan curve (since a point is obviously not critically separating). More-
over, according to the proof of Lemma 14, the set of wandering Julia components in Jcrit(f)
exactly corresponds to the set of all the infinite sequences in Σ? which are not eventually peri-
odic. In particular, there are uncountably many such Julia components. Finally, uncountably
many of them must be buried since the Fatou set only has countably many Fatou domains
and each of them only has countably many Jordan curves as connected components of its
boundary.
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Lemma 18 (Complex type buried Julia components). Jα and all its countably many preim-
ages, are buried Julia components in J(f).

Proof. Coming back to the proof of Lemma 14, remark that each infinite sequence in Sα is
not isolated in Σ. Therefore, αk has no intersection with the boundary of any Fatou domain
contained in B(ẑk) for every k ∈ {0, 1, 2}. It remains to show that Jα has no intersection with
the boundary of any Fatou domain in Kα = Ĉ − (B(ẑ0) ∪ B(ẑ1) ∪ B(ẑ2)). Recall that every
connected component of Kα − Jα, that is a connected component of Ĉ − Jα, is eventually
mapped under iterations onto B(ẑk) for some k ∈ {0, 1, 2} (since f is defined to be f̂ on
Kα ⊂ D(β0,1)). By continuity of f , it follows that Jα has no intersection with the boundary
of any Fatou domain contained in any connected component of Kα − Jα. Consequently Jα is
buried. The same holds as well for every preimage of Jα by continuity of f .

5 Explicit formula in the cubic case
In this last section, we proof Theorem 1 stated in Introduction. Firstly we show that a
particular choice of the weight function w gives a rational map of degree 3 (in Lemma 19).
Then we compute an explicit formula for this particular example.

Lemma 19. The following weight function on the set of edges of HP

(d0, d1, d2, d3) = (1, 2, 2, 1)

satisfies assumptions (H1) and (H2) from Theorem 3 and Theorem 4. In particular there are
some rational maps of degree 3 whose Julia set contains buried Julia components of several
types:

point type: uncountably many points

circle type: uncountably many Jordan curves

complex type: countably many preimages of a fixed Julia component which is quasiconfor-
mally homeomorphic to the connected Julia set of f̂ : z 7→ 1

(z−1)2

Proof. Assumption (H1) is obviously satisfied, indeed

d̂ =
1

2
(d0 + d1 + d2 − 1) =

1

2
(1 + 2 + 2− 1) = 2 = max{d0, d1, d2}

For assumption (H2), the transition matrix (see Definition 1) for this choice of weight function
is given by

M =


0 1 0 0
0 0 1

2
0

1
2

0 0 1
2

1 1 0 0


and an easy computation shows that λ(HP , w) is the largest root of X4 − 1

2
X − 1

4
that is

λ(HP , w) ≈ 0.918 < 1.
Applying Theorem 3 and Theorem 4 gives a rational map of degree d̂+ d3 = 2 + 1 = 3.
Furthermore, recall that the rational map f̂ which appears in Theorem 4 is of degree d̂ = 2

and has only one critical orbit which is a super-attracting cycle {ẑ0, ẑ1, ẑ2} of period 3 such
that the local degrees of f̂ at ẑ0, ẑ1 and ẑ2 are d0 = 1, d1 = 2 and d2 = 2 respectively. Up to
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conjugation by a Möbius map, we may assume that ẑ0 = 0, ẑ1 = 1 and ẑ2 =∞. It turns out
that there is then only one such quadratic rational map which is f̂ : z 7→ 1

(z−1)2 .

ẑ0 = 0 1:1 // ẑ1 = 1 2:1 // ẑ2 =∞

2:1

vv

Remark that this choice of weight function is the only one which gives a degree 3 and
which satisfies assumptions (H1) and (H2).

The construction by quasiconformal surgery detailed in Section 3 does not provide an
algebraic formula for the rational map f in Theorem 3 and Theorem 4. Furthermore the
degree d̂ + d3 of f increases quickly with the weight function w so the algebraic relations
behind are complicated to study. However the particular rational map of degree 3 coming
from Lemma 19 is simple enough to allow a computation by hand of an algebraic formula.

Let f be a rational map coming from the construction detailed in Section 3 for the partic-
ular choice of weight function in Lemma 19 . Recall that the local degrees of f at z1, z2 and z3
are d1 = 2, d2 = 2 and d3 = 1 respectively. In particular, z1 and z2 are simple critical points.
It remains d0 +d3 = 1+1 = 2 critical points counted with multiplicity coming from definition
of f near z0 (see Lemma 6), namely two simple critical points, one is z0 by construction and
the orbit of the other one accumulates the super-attracting cycle {z0, z1, z2, z3}.

Up to conjugation by a Möbius map, we assume that z1 = 1, z2 = ∞ and z3 = 0. So 1
and∞ are critical points whereas 0 is a singular point. In order to simplify notations, denote
by λ the critical point z0 (λ will be the parameter of our family) and by λ′ the last critical
point.

z0 = λ
2:1 // z1 = 1 2:1 // z2 =∞ 2:1 // z3 = 0

1:1

vv

λ′
2:1 // . . .

Since f is of degree 3, it is of the form

f : z 7→ a3z
3 + a2z

2 + a1z + a0
b3z3 + b2z2 + b1z + b0

Since z1 = 1 is mapped to z2 =∞ with a local degree 2, the denominator may factor as

f : z 7→ a3z
3 + a2z

2 + a1z + a0
(z − 1)2(b′1z + b′0)

We do likewise for z2 =∞ which is mapped to z3 = 0 with a local degree 2.

f : z 7→ a1z + a0
(z − 1)2(b′1z + b′0)

Now use the fact that z3 = 0 is mapped to z0 = λ to get

f : z 7→ a1z + λ

(z − 1)2(b′1z + 1)
(5)
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It remains two informations coming from the fact that z0 = λ is mapped to z1 = 1 with a
local degree 2. Namely f(λ) = 1 and f ′(λ) = 0 which lead to the two following equations
satisfied by a1 and b′1.{

(λ− 1)2(λb′1 + 1) = λ(a1 + 1)

a1(λ− 1)2(λb′1 + 1) = λ(a1 + 1)
[
(3λ2 − 4λ+ 1)b′1 + 2(λ− 1)

]
Remark that we may easily simplify the second equation by using the first one (luckily) to
get {

(λ− 1)2(λb′1 + 1) = λ(a1 + 1)
a1 = (3λ2 − 4λ+ 1)b′1 + 2(λ− 1)

or equivalently {
λa1 − λ(1− λ)2b′1 = 1− 3λ+ λ2

a1 − (1− λ)(1− 3λ)b′1 = −2 + 2λ

Solving this linear system of two equations gives:
a1 =

(1− 3λ)(1− 3λ+ λ2)− λ(1− λ)(−2 + 2λ)

λ(1− 3λ)− λ(1− λ)
=

1− 4λ+ 6λ2 − λ3

−2λ2

b′1 =
(1− 3λ+ λ2)− λ(−2 + 2λ)

−λ(1− λ)2 + λ(1− λ)(1− 3λ)
=

1− λ− λ2

−2λ2(1− λ)

Finally, putting these expressions in (5) leads to the following formula for f which depends
on the parameter λ.

fλ : z 7→
(1− λ)

[
(1− 4λ+ 6λ2 − λ3)z − 2λ3

]
(z − 1)2

[
(1− λ− λ2)z − 2λ2(1− λ)

]
Remark that fλ(z) = 1

(z−1)2 (1−4λ+Oλ→0(λ
2)) for every complex number z, thus fλ is actually

a particular perturbation of f0 = f̂ : z 7→ 1
(z−1)2 .

Some more computations provide an algebraic formula for the critical point λ′, namely

λ′ = − λ(1− 6λ+ 11λ2 − 10λ3 + 5λ4)

(1− λ− λ2)(1− 4λ+ 6λ2 − λ3)
= −λ+ O

λ→0
(λ2)

According to the construction detailed in Section 3, there exist some choices of λ such that
fλ satisfies Theorem 1. Recall that the two critical points z0 = λ and λ′ ∼λ→0 −λ should lie
in B(ẑ0) (see Section 3), and hence near ẑ0 which corresponds to z3 = 0.

Indeed, we have:
fλ(λ

′) = 1− 8λ+ O
λ→0

(λ2)

Furthermore, we can roughly prove for every |λ| > 0 small enough that

• the image under fλ of a disk centered at z1 = 1 and of radius of order |λ| is contained
in the complement of a disk centered at 0 (thus containing z2 = ∞) and of radius of
order |λ|−2

• the image under fλ of the complement of a disk centered at 0 (thus containing z2 =∞)
and of radius of order |λ|−2 is contained in a disk centered at z3 = 0 and of radius of
order |λ|4
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• the image under fλ of a disk centered at z3 = 0 and of radius of order |λ|4 is contained
in a disk centered at z0 = λ and of radius of order |λ|2

• the image under fλ of a disk centered at z0 = λ and of radius of order |λ|2 is contained
in a disk centered at z1 = 1 and of radius of order |λ|3

It turns out that the orbit of the critical point λ′ accumulates the super-attracting cycle
{z0, z1, z2, z3} for every |λ| > 0 small enough. Consequently, we may encode the exchanging
dynamics of Julia components of fλ as it was explained in Section 4, proving that fλ satisfies
Theorem 1 for every |λ| > 0 small enough. Numerically, picking any parameter λ in the
hyperbolic component centered at 0 of the parameter space for the family fλ provides a
Persian Carpet example in the dynamical plane (see Figure 11).

Figure 11: a) The bifurcation locus for the family fλ with |λ| / 10−2

b) A Persian carpet: J(fλ) with λ ≈ 10−3
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