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Abstract. Region matching - finding conjugate regions on a pair of im-
ages - plays a fundamental role in computer vision. Indeed, such meth-
ods have numerous applications such as indexation, motion estimation
or tracking. In the vast literature on the subject, several dissimilarity
measures have been proposed in order to determine the true match for
each region. In this paper, under statistical hypothesis of similarity, we
provide an improved decision rule for patch matching based on signif-
icance tests and the statistical inequality of McDiarmid. The proposed
decision rule allows to validate or not the similarity hypothesis and so
to automatically detect matching outliers. The approach is applied to
motion estimation and object tracking on noisy video sequences. Note
that the proposed framework is robust against noise, avoids the use of
statistical tests and may be related to the a contrario approach.

1 Introduction

The notion of similarity between regions is a key feature for a wide range of
applications in image analysis and pattern recognition such as clustering, in-
dexation, image segmentation, shape matching or registration [1]. This notion
is usually indirectly defined through a distance or a measure of dissimilarity.
In many methods proposed for matching, the most similar pattern in a set of
patterns is usually chosen. In this paper we are interested in the significance of
the matching. One straightforward way to decide if two connected set of pixels
(regions) are significantly similar consists in comparing the dissimilarity of both
regions to a fixed threshold [18]. However, such a decision rule does not usually
provide a clear interpretation of the threshold which is often difficult to set and
which should be adapted to each data-set.

Deciding if two regions are similar may alternatively be stated as the decision
between the two opposite hypothesis: “H0: both regions are similar” and “H1:
both regions are dissimilar”. Given a dissimilarity measure, one must measure
the probability that an observation of this dissimilarity is greater than a given
threshold under both hypothesis H0 and H1. The decision may then be stated
using a likelihood ratio test. The main problem of such a decision scheme is that
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both hypothesis H0 and H1 are not symmetric. Indeed the set of regions similar
to a given region is usually much simpler than the set of its dissimilar regions.
Consequently, the design of a general model for H0 is usually tractable while
the design of a model for H1 may be quite difficult or even impossible. This last
point limits the use of likelihood ratio test.

The a contrario approach provides a way to solve this difficulty by setting
the decision only on the null hypothesis H0. This approach has been used in
several distinct fields such as detection of gelstat [5, 7, 6], motion detection [17],
shape matching and recognition [13, 14], object matching [2], parameter estima-
tion [8], blotch detection for digitized film restoration [16] and segmentation [15,
9]. The a contrario approach comes from the perception theory and particularly
the grouping law of the Wertheimer’s theory. This grouping law states that “ob-
jects having a quality in common get perceptually grouped”. The Helmholtz
principle [5] which states that “an event is meaningful if its number of occur-
rences is very small in a random model” is a quantitative version of the previous
law. More formally, let us consider an event E which probability under H0 is
bounded by a low threshold δ, the a contrario approach leads to reject the initial
hypothesis if such an event occurs. Using such a decision scheme, δ may be in-
terpreted as an upper bound of the probability of a false alarm (rejection of H0

while H0 is actually true). The probability δ may be fixed a priori in which case
the test P (E|H0) < δ is called a significance test [4]. Desolneux [6] proposed to
set δ according to the expected number of false alarm. Such a method provides
an elegant way to fix the threshold but reduces the adaptability of the method
to user requirements.

Our approach is based on a conjoint use of the a contrario approach and
a general formulation of the McDiarmid’s theorem [11]. McDiarmid’s theorem
allows to design statistical tests for a wide variety of problems and provides a
natural robustness to noise and to outliers. Within our framework this theorem
is used to bound the probability that the dissimilarity between two regions is
greater than a given threshold. Such a bound is incorporated into the a con-
trario framework in order to provide an automatic threshold on the dissimilarity
between two regions. This general framework is illustrated by a dissimilarity
measure between patches which corresponds to the Sum of Squared Difference
(SSD) involved in Block Matching algorithms. This dissimilarity measure is used
in conjunction with the McDiarmid Theorem within the a contrario approach in
order to design a robust Variable Size Block Matching (VSBM) algorithm that
can be used for motion estimation and tracking in noisy video sequences.

We first present our a contrario approach for region matching in section 2. We
then illustrate this method using a first dissimilarity measure between patches
in section 3. Several experiments presented in section 4 demonstrate the effec-
tiveness of our approach for variable size block matching (VSBM) and tracking
in noisy video sequences.
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2 Problem statement and statistical tools

We present in this section our approach for region matching and the statistical
tools which constitute the basis of our approach.

2.1 A contrario approach for region matching

Due to the random part in image acquisition systems, an image I is classically
considered as an observation of a perfect statistical image I∗. Using such an
image model, an ideal region is defined as a vector X = (X1, . . . , Xn) of n

random variables (r.v.) representing the pixel intensities. A “real” region is then
considered as an observation of this random vector which takes its values in
∏n

k=1
Ak. In natural images, the set of admissible values Ak usually corresponds

to [0;M ] where M = 255. However, in medical images (e.g. : MRI, Echography),
the set Ak may be larger.

Given two statistical regions X1 and X2 and a dissimilarity criterion d(., .),
let us consider two observations R1 and R2 of respectively X1 and X2 and the
event E: the observed value d(R1, R2) of the statistic d(X1,X2) is greater than
a threshold T . As mentioned in section 1, the a contrario approach is based on
the estimation of the probability of this event under the similarity hypothesis
H0. Let us consider an upper bound δ of this probability:

P {d(X1,X2) ≥ T |H0} ≤ δ (1)

We can remark that the probability δ and the threshold T are dependent. Indeed
if the threshold T is set to a high value, this corresponds to a non probable event
under H0 and δ should then be small. On the contrary if the threshold T is set
to a small value, this corresponds to a probable event under H0 and so δ must
be large. More generally, one may usually assume that the threshold T is a
decreasing function of δ which may be denoted as T (δ).

Using the a contrario approach, if we take δ as a low probability value, the
event E is considered as not probable under the similarity hypothesis H0 and
this hypothesis is then rejected. Our decision rule for region matching is then
defined as:

if d(R1, R2) ≥ T (δ) then H0 is rejected (2)

2.2 Computation of the threshold

The main difficulty of the above approach lies in the computation of the thresh-
old T (δ). In this work, we propose to use the extension of the McDiarmid theo-
rem [11] which allows to bound the probability of a large class of events. Let us
remind this theorem:

Theorem 1. Let Y = (Y1, . . . , Yn) be a family of random variables with Yk

taking values in a set Ak, and let f be a bounded real-valued function defined on
Ω =

∏n
k=1

Ak. If µ denotes the expectation of f(Y) we have for any α ≥ µ:

P {f(Y) ≥ α} ≤ exp

(−2(α − µ)2

r2

)

+ P {Y ∈ C} (3)

Where C is a subset of Ω and r2 is the maximal sum of squared range (sec-
tion 6.1) defined on C = Ω − C.
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The set C in the above theorem corresponds to a set of outliers for Y. Within
our framework, we define f(Y ) as our dissimilarity measure d(X1,X2) and Y as
an appropriate combination of the two vectors X1 and X2. An example will be
given in the next section. Theorem 1 then provides a bound for P (d(X1,X2) ≥
α). The hypothesis H0 is introduced through the parameters r and µ. Some
assumptions on the noise model can be used to estimate those parameters (see
section 3.1).

A simplified version of theorem 1 has already been used [15, 9] within the
segmentation framework. In this simplified version C = Ω and P {Y ∈ C} = 0.
To our knowledge, the general theorem 1 has never been used for region matching
whereas it provides a natural tool for taking into account outliers which may
occur in a statistical image. Indeed, the set C can be used to define the set of
admissible values for a given type of images or regions.

Let us denote by ∆(α), the probabilistic bound given by the McDiarmid’s
theorem:

P {f(Y) ≥ α} ≤ ∆(α) (4)

The threshold T (δ) introduced in (1) can then be computed by setting δ = ∆(α)
and so α = ∆−1(δ).

3 A first dissimilarity measure for patch matching

We consider two statistical regions defined in two images. In order to match
heterogeneous regions we restrict our definition of region to rectangular patches.
Such a restriction allows us to assume a one to one correspondence between the
pixels of two matched regions.

Let us denote the considered regions by X1 = {Xi}1≤i≤n and X2 = {Xi}n+1≤i≤2n.
The correspondence between the pixels of both regions is implicitly encoded by
the index, since we suppose that a pixel Xi, i ∈ {1, . . . , n} of X1 corresponds to
the pixel Xi+n of X2. We measure the similarity between corresponding pixels
by the following dissimilarity measure which corresponds to the classical Sum of
Square Differences (SSD):

d(X1,X2) =
1

n

n
∑

i=1

(Xi − Xn+i)
2 (5)

For the sake of simplicity, we introduce the random vector Y = (Y1, . . . , Yn)
where Yi = (Xi − Xn+i)

2, i ∈ {1, . . . , n}. If [0;M ] is the interval of variation of
the r.v. (Xi), then Yi varies within [0;M2].

Our goal is to compute a decision rule that indicates if two observations R1

and R2 of X1 and X2 are similar or not. According to our approach (section 2),
we have to upper bound the probability that the function d(X1,X2) is greater
than a given threshold α using the McDiarmid’s theorem (theorem 1). Such an
upper bound is provided by the following proposition:

Proposition 1. Using the previously defined notations, we have for any couple
(X1,X2) of statistical regions and any threshold α > 0:

P {d(X1,X2) ≥ α} ≤ exp

(

−2n(α − µ)2

N4

)

+ K (6)
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with K = P {Y ∈ C} where C = [N2;M2]n ⊂ Ω, is defined by the parameter N

and µ = E (f(Y)) with f(Y ) = 1

n

∑n
i=1

Yi = d(X1,X2).

Proof. see Appendix, section 6.2.

The exact values of K and µ should be determined according to a specific
model of similarity between regions (section 3.1). The parameter N determines
the size of our set of outliers. Intuitively, if each pixel Xi, i ∈ {1, . . . , n} of X1

corresponds to the pixel Xi+n of X2, observations of the random variables Yi

should be around 0 with a large probability. We thus define a priori the set
[0;N2] on which we expect a large number of observations and consider the set
C =]N2;M2] as our set of outliers. The parameter N should be set for each
application and each dissimilarity measure. However, experiments, not reported
here shown us that the optimal value of N remains stable on a wide class of
images. The value of N as been fixed to 65 in all experiments reported below.

As described in section 2, given the parameter N , the probability K remains
fixed and the right side of equation 6 defines a function ∆ of α such that:

P {d(X1,X2) ≥ α} ≤ ∆(α).

The function ∆ being bijective this last equation is equivalent to:

P
{

d(X1,X2) ≥ ∆−1(δ)
}

≤ δ.

For a threshold δ.
According to our decision rule (section 2.1), we thus reject the hypothesis

H0 that both regions are similar if d(X1,X2) is greater than:

T (δ) = ∆−1(δ) = µ + N2

√

1

2n
ln

(

1

δ − K

)

(7)

3.1 Statistical prior for parameter estimation

In order to explicitly compute the parameters µ and K given in equation 7, we
need to formalize our similarity hypothesis H0. This task is achieved by the
notion of σ-similar regions which relies on a Gaussian noise model:

Definition 1. (σ-similarity)
Two statistical regions X1 = (Xi)i∈{1,...,n} and X2 = (Xi)i∈{n+1,...,2n} are called
σ-similar if the r.v. (Xi−Xi+n) are independent and identically distributed (iid)
and follow a normal distribution N (0, σ) for any i ∈ {1, . . . , n}.

Let us consider two σ-similar regions X1 and X2. As all r.v. Xi − Xi+n are
iid, the r.v. Yi are iid and follow P {Yi = y} = 1

σ
√

2yπ
exp

(

− y
2σ2

)

. We have thus:

µ = E (f(Y)) = E

(

1

n

n
∑

i=1

Yi

)

=
1

n

n
∑

i=1

E (Yi) = σ2

K = P
{

Y ∈ C = [N2;M2]n
}

=
n
∏

i=1

P
{

Yi ∈ [N2;M2]
}

=

(

1

σ
√

2π

∫ M2

N2

1√
y

exp
(

− y

2σ2

)

dy

)n

=

(

erf

(

M

σ
√

2

)

− erf

(

N

σ
√

2

))n
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Note that our threshold (equation (7)) takes into account the amount of noise
through the two terms µ = σ2 and K.

3.2 Patch matching

In order to illustrate our approach, let us give some basic results for patch
matching between two frames of a video sequence.

#1

#2

...

...
469.4 532.5 558 594.2

Accepted

909.7 1631.5 1711

Rejected

240.9 343.5 307
Accepted

375 658.9 1379.5 1453
Rejected

#2+

Fig. 1. Examples of acceptation/rejection of 13x15-patch matching. The candidate
patches from frame #2 are selected around the position of the reference patch (from
frame #1).

Given a reference patch from frame #1, we present the set of accepted/rejected
patches of frame #2 in Fig. 1. The frame #2 is considered with or without the
addition of a Gaussian noise N (0, 15). The candidate patches are presented with
their associated value of dissimilarity. To compute the threshold T (δ), the ratio δ

of authorised false alarms is set to 0.1 and N is set to 65 for both experiments
(with or without noise on the frame #2). The value of σ is estimated by extract-
ing homogeneous 20x20-patches from the two images. We find σ = 5.91 between
the non-noisy frames #1 and #2, and σ = 16.5 between the frame #1 and
the noisy frame #2. The rejected patches are the ones which present significant
translations of the car hood inside the patch. We can notice that the computed
threshold adapts itself automatically to the additional noise in frame #2. Indeed,
using the same threshold for non-noisy sequences would lead to the rejection of
all patches in noisy sequences. With this adaptive threshold, the discrimination
between rejected and accepted patches is still valid.

4 Application to motion estimation and tracking

The framework developed above can be efficiently applied for motion estimation
and tracking (especially in the case of noisy images). This leads us to the design
of a robust variable size block matching (VSBM) method that is then used for
rigid object tracking. For both methods, we present some experimental results on
real video sequences and we focus our attention on two main points: robustness
to noise and automatic detection of false matching.
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4.1 Motion estimation using variable size block matching

Block matching (BM) algorithms were originally described by Jain and Jain [10]
and are now widely adopted for motion estimation especially in video compres-
sion (MPEG-2,MPEG-4). Each frame is divided into a fixed number of usually
square blocks. For each block in the frame, we search for the “best” matching
block in the next frame. The dissimilarity measure is usually taken as the SSD
measure defined in equation 5. Since a fixed size for the blocks is not adapted to
the granularity of both motion and objects, VSBM algorithms have been intro-
duced and are now widely used in new compression standards (H264, MPEG-4
AVC) [18]. If the best matching error for a block is above some threshold, the
block is divided into four smaller blocks, until the maximum number of blocks
or locally minimum errors are obtained, see [3] for example.

(a) (b)

(c) (d)

Fig. 2. “Foreman” sequence (a) and (b), the computed motion estimation (c) by our
VSBM. The variable size block division, the residual between the reconstruction of (b)
from (a) and rejected blocks represented by a cross are superposed on (d).

Using a contrario approaches, we have designed a statistical decision rule
for the dissimilarity measure used in BM. Our decision rule allows us to detect
false matching and is robust to noise. It is thus adapted to the design of VSBM
algorithms. Fig. 2 presents the results of our VSBM between frames (a) and
(b). Motion estimation errors are visualized through the inverse difference (d)
between (b) and its reconstruction. Such a reconstruction is computed using
(a) and the estimated motion field (c) obtained by our VSBM algorithm. These
results have been obtained by choosing 32x32-blocks which can be recursively
cut in half size blocks while the SSD is above the threshold T (δ) and until 8x8-
blocks are reached. The threshold T given by (7) is computed by fixing N to 65
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and δ to 0.1. We can remark that the algorithm gives smaller blocks when the
motion is more complex (the mouth or the helmet). Rejected blocks (represented
by a cross on (d)) are also (qualitatively) well detected. Such blocks correspond
to strong and complex motions, such as the mouth which is opened on frame (a)
and closed on frame (b).

4.2 Application to tracking in noisy sequences

The validity of our algorithm can be further attested for rigid object tracking in
noisy video sequences. In this application, we assume as in [12] that the object
of interest undergoes an affine deformation from one frame to another which
is estimated by minimizing the following convex criterion according to the six
parameters of the affine transformation A:

E(A) =
∑

p∈ΩI/Θ

||d(p) − A(p)||2

where p = [x1, x2]
T is the pixel, d(p) = [u(p), v(p)]T the motion vector esti-

mated as explained in the previous section, A the affine transformation applied
on p, and ΩI the region domain. The set Θ represents the set of pixels within
the rejected blocks (section 4.1). Such blocks are represented by a cross in Fig. 2.
The estimated transformation A is then used to deform an initial segmentation.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 3. First line - tracking of the white car in a sequence which presents a noisy frame
(c). Second line - the motion between frames is estimated by our VSBM algorithm
(section 4.1).

Fig. 3 illustrates the effectiveness of our method on the video sequence “Taxi”
where an additional Gaussian noise N (0, 15) has been added on frame (c). The
white car has been manually segmented in the first frame (a). This segmentation
is then deformed according to the affine transformation computed using the
motion field estimated by our VSBM (section 4.1). The estimated motion is
presented on the second line of Fig. 3 and the tracking results on the first line.
The set of parameters used here for the VSBM is the same as the one used in
the previous experiment (section 4.1) and is kept all along the sequence. This
result shows that we can track the car with the same set of parameters all along
the sequence even in its noisy part.
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5 Conclusion

In this paper, we propose to combine a contrario approaches and the recent sta-
tistical inequality of McDiarmid to design significance tests for region matching.
This approach is illustrated by designing an improved decision rule for patch
matching that is robust to noise. This decision rule has been applied to mo-
tion estimation with a VSBM algorithm and tracking. Our experimental results
show the effectiveness of our approach on noisy video sequences. Our on going
research is directed towards the design of other decision rules for region merg-
ing algorithms so as to extend the work proposed in [9]. Moreover, we plan to
extend our method to other noise models such as Rayleigh or Poisson which are
encountered in several application domains (e.g. medical image).

6 Appendix

6.1 Statistical notations and definitions

Let Y = (Y1, . . . , Yn) be a family of r.v. with Yk taking values in a set Ak, and let f

be a real-valued function defined on
Q

Ak. Let yi ∈ Ai for each i = 1, . . . , k and let Bk

denotes the set of events {Yi = yi}i=1,...k. For yk ∈ Ak, let:

g(yk) = E (f(Y)|Bk−1, Yk = yk) − E (f(Y)|Bk−1) (8)

be the function that measures how much the expected value of f(Y) changes if it is
revealed that the r.v. Yk takes the value yk. By these notations, the range of g(Yk|Bk−1)
is defined as follows:

ran(y1, . . . , yk−1) = sup {|g(y) − g(x)| : x, y ∈ Ak} (9)

For y ∈
Q

Ak, the sum of squared range and its maximum are defined as:

R
2(y) =

n
X

k=1

(ran(y1, . . . , yk−1))
2
, r̂

2 = sup
y∈

Q

Ak

(R2(y)) (10)

6.2 Proof of Proposition 1

The r.v. {Yk}k=1...n are independent and so the function g defined in equation (8) that
measures how much the expected value of SSD changes can be written as:

g(y) = E (f(y1, . . . , yk−1, yk, Yk+1, . . . , Yn))

− E (f(y1, . . . , yk−1, Yk, Yk+1, . . . , Yn))

g(y) =
1

n
(yk − E (Yk)) (11)

Now, let us consider C =
˘

Y = y : y ∈
ˆ

N2; M2
˜n¯

the subset of all the outliers such
that the vector of r.v. Y = y,y ∈ C is not acceptable, then the range defined by
equation (9) becomes:

ran(y1, . . . , yk−1) = sup



1

n

˛

˛yk − y
′

k − E
`

Yk − Y
′

k

´˛

˛ : yk, y
′

k ∈
ˆ

0; N2
˜

ff

=
N2

n
(12)

where y′

k is another observation of the r.v. Yk. Consequently:

E
`

Yk − Y
′

k

´

= E (Yk) − E
`

Y
′

k

´

= 0

So the maximum sum of squared ranges defined in (10) is equal to: r̂2 = N4

n
.

By applying equation (3) and from theorem 1, we obtain the proposition 1:

P {f(Y) ≥ α} ≤ exp

„

−
2n(α − µ)2

N4

«

+ K (13)

where K = P {Y = y : y ∈ C} and µ = E (f(Y)).
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