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Abstract

We define and show the existence of the quantum symmetry group of a Hilbert module

equipped with an orthogonal filtration. Our construction unifies the constructions of Banica-

Skalski’s quantum symmetry group of a C∗-algebra equipped with an orthogonal filtration and

Goswami’s quantum isometry group of an admissible spectral triple.

Introduction

The quantum isometry group of a noncommutative Riemannian compact manifold (an admissible

spectral triple) was defined and constructed by Goswami in [6]. His breakthrough construction,

technically more involved than the previous approaches to quantum symmetry groups in the case

of finite structures [13, 3], provides a very natural direct link between Connes’ noncommutative

geometry [5] and the theory of compact quantum groups introduced by Woronowicz in the eight-

ies [15]. We refer the reader to the introduction and bibliography of [4] for an overview of the several

developments since Goswami’s paper.

Motivated by the work of Goswami, Banica and Skalski define and construct in [4] the quantum

symmetry group of a C∗-algebra endowed with an orthogonal filtration. Their construction provides

a general powerful tool to define and check the existence of quantum symmetry groups of various

mathematical systems and unifies several known quantum symmetry groups constructions. The

work of Banica and Skalski also has the merit to clearly exhibit some of the structures needed

to enable one to prove the existence of a compact quantum symmetry group, see [4] for details.

However, although Goswami’s work was one of the inspirations for [4], it seems that Goswami’s

quantum isometry group in [6] cannot, in general, be seen as a particular case of the quantum

symmetry groups defined in [4] (because the subspace spanned by the eigenvalues of Goswami’s

Laplacian does not seem to form a subalgebra in general).
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It is the purpose of the present paper to propose a construction that simultaneously generalizes

the quantum symmetry groups of Goswami and of Banica-Skalski. We define and construct the

quantum symmetry group of a Hilbert module endowed with an orthogonal filtration. The concept

of Hilbert module endowed with an orthogonal filtration is inspired by Banica-Skalski’s notion of

C∗-algebra equipped with an orthogonal filtration, and is a natural generalization of it. Also, to an

admissible spectral triple in the sense of [6], one can associate an appropriate Hilbert module en-

dowed with an orthogonal filtration, and our quantum symmetry group coincides with the quantum

isometry group in [6].

The concept also has the interest to provide an alternative approach to the quantum isometry

group of a spectral triple. The main difference with the approach of [6] is that, instead of extracting

from the spectral triple an analogue of the Laplacian on functions (the so-called “noncommutative

Laplacian”) and making appropriate assumptions on its spectrum, we directly use the Dirac operator

of the spectral triple, its spectrum and its natural domain. We then add assumptions to these data

to get the desired orthogonally filtered Hilbert module. In the case of ordinary compact Riemannian

manifolds, it is also possible to use our framework to provide an approach to the quantum isometry

group, using the Hilbert module of continuous sections of the bundle of exterior forms, although we

have not been able to show that our exterior forms based quantum isometry group coincides with

the one of Goswami in [6] (it is always a quantum subgroup).

The paper is organized as follows. In the first part, we briefly recall some basic definitions about

compact quantum groups. Then we introduce in part 2 the concept of Hilbert module endowed

with an orthogonal filtration, and define the category of “quantum transformations groups” for a

Hilbert module equipped with an orthogonal filtration (our starting point being the notion of action

of a compact quantum group on a Hilbert module given in [1]). Part 3 is devoted to the proof of

the existence of a universal object in this category. In the last part we discuss some examples and

compare our construction with the ones of Goswami and Banica-Skalski mentioned previously.

Notations and conventions: By algebra we will always mean unital algebra. So that algebra

morphisms are assumed to preserve the units. The symbol ⊙ will denote the algebraic tensor

product, while ⊗ will denote tensor product of maps, spatial tensor product of C∗-algebras, or

exterior tensor product of Hilbert modules. If A is a C∗-algebra, we will denote by S(A) the set of

states on A.

1. Compact quantum groups

We recall here some basic definitions on compact quantum groups. See [15, 16, 12] and [10] for more

details.

Definition 1.1 − A Woronowicz C∗-algebra is a couple (Q, ∆), where Q is a C∗-algebra and

∆ : Q → Q ⊗ Q is a ∗-morphism such that:

• (∆ ⊗ idQ) ◦ ∆ = (idQ ⊗ ∆) ◦ ∆,
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• the spaces span{∆(Q).(Q ⊗ 1Q)} and span{∆(Q).(1Q ⊗ Q)} are both dense in Q ⊗ Q.

Definition 1.2 − Let (Q0, ∆0) and (Q1, ∆1) be Woronowicz C∗-algebras. A morphism of Woronow-

icz C∗-algebras from Q0 to Q1 is a ∗-morphism:

µ : Q0 → Q1 such that (µ ⊗ µ) ◦ ∆0 = ∆1 ◦ µ.

The category of compact quantum groups is then defined to be the opposite category of the

category of Woronowicz C∗-algebras.

Definitions 1.3 − Let Q = (Q, ∆) be a Woronowicz C∗-algebra.

• A Woronowicz C∗-ideal of Q is a C∗-ideal I of Q such that ∆(I) ⊂ Ker(π ⊗ π), where

π : Q → Q/I is the canonical quotient map.

• A Woronowicz C∗-subalgebra of Q is a C∗-subalgebra Q′ of Q such that ∆(Q′) ⊂ Q′ ⊗ Q′.

Definition 1.4 − Let Q be a Woronowicz C∗-algebra. A matrix (vij)16i,j6n ∈ Mn(Q) is called

multiplicative if we have ∆(vij) =
n∑

k=1
vik ⊗ vkj for all i, j.

The concept of an action of a quantum group on a C∗-algebra is formalized as follows.

Definition 1.5 − Let Q be a Woronowicz C∗-algebra and let A be a C∗-algebra. A coaction of Q

on A is a ∗-morphism α : A → A ⊗ Q satisfying:

• (α ⊗ idQ) ◦ α = (idA ⊗ ∆) ◦ α,

• span{α(A).(1 ⊗ Q)} is dense in A ⊗ Q.

We say that a coaction α of Q on A is faithful if there exists no nontrivial Woronowicz C∗-subalgebra

Q′ of Q such that α(A) ⊂ A ⊗ Q′. Furthermore if τ is a continuous linear functional on A, we say

that α preserves τ if (τ ⊗ idQ) ◦ α = τ(·)1Q.

2. Quantum groups actions on Hilbert modules

We recall now the definition of an action of a compact quantum group on a Hilbert module (see [7]

for background material on Hilbert modules). Then we introduce the notion of orthogonal filtration

on a Hilbert module, give some natural examples of such objects, and define what we mean by

preserving the filtration for an action of a compact quantum group on a Hilbert module endowed

with an orthogonal filtration.

Definition 2.1 − Let A be a C∗-algebra. A (right) pre-Hilbert A-module is a vector space E,

equipped with a (right) A-module structure together with an A-valued inner product 〈·|·〉A, that is

to say:

• ∀ξ, η, ζ ∈ E, ∀a, b ∈ A, 〈ξ|ηa + ζb〉A = 〈ξ|η〉Aa + 〈ξ|ζ〉Ab,

3



• ∀ξ, η ∈ E, 〈ξ|η〉∗
A = 〈η|ξ〉A,

• ∀ξ ∈ E, 〈ξ|ξ〉A > 0 and if 〈ξ|ξ〉A = 0 then ξ = 0.

We define a norm ‖ · ‖A on E by setting for ξ ∈ E, ‖ξ‖A = ‖〈ξ|ξ〉A‖
1

2 . If furthermore E is complete

with respect to this norm, we say that E is a (right) Hilbert A-module.

We say that E is full if the space 〈E|E〉A = span{〈ξ|η〉A ; ξ, η ∈ E} is dense in A.

Left Hilbert A-modules are defined analogously, except that the A-valued inner product A〈·|·〉

has to be linear in the first variable and antilinear in the second one. In what follows we will mostly

consider right Hilbert modules. Of course, the construction can be adapted for left Hilbert modules.

The notion of coaction on a Hilbert module is due to Baaj and Skandalis [1, Definition 2.2]. But

working with Woronowicz C∗-algebras instead of Hopf C∗-algebras simplifies the original definition:

Definition 2.2 − Let A be a C∗-algebra and let E be a Hilbert A-module. A coaction of a

Woronowicz C∗-algebra Q on E consists of:

• a coaction α : A → A ⊗ Q,

• a linear map β : E → E ⊗ Q satisfying:

(a) (β ⊗ idQ) ◦ β = (idE ⊗ ∆) ◦ β,

(b) span{β(E).(1 ⊗ Q)} is dense in E ⊗ Q,

(c) ∀ξ, η ∈ E, 〈β(ξ)|β(η)〉A⊗Q = α(〈ξ|η〉A),

(d) ∀ξ ∈ E, ∀a ∈ A, β(ξ.a) = β(ξ).α(a).

We say that the coaction (α, β) of Q on E is faithful if there exists no nontrivial Woronowicz

C∗-subalgebra Q′ of Q such that β(E) ⊂ E ⊗ Q′ (note that we do not require α to be faithful).

Remark 2.3 − If (α, β) is a coaction of a Woronowicz C∗-algebra Q on a Hilbert A-module E,

then β : E → E ⊗ Q is necessarily continuous. Indeed:

For all ξ ∈ E, ‖β(ξ)‖2
A⊗Q = ‖〈β(ξ)|β(ξ)〉A⊗Q‖ = ‖α(〈ξ|ξ〉A)‖ 6 ‖〈ξ|ξ〉A‖ = ‖ξ‖2

A.

Definition 2.4 − Let A be a C∗-algebra, let τ be a faithful state on A and let E be a Hilbert

A-module. An orthogonal filtration (τ, (Vi)i∈I , J, ξ0) of E consists of:

• a family (Vi)i∈I of finite-dimensional subspaces of E such that:

(a) for all i, j ∈ I with i 6= j, ∀ξ ∈ Vi and ∀η ∈ Vj , τ(〈ξ|η〉A) = 0,

(b) the space E0 =
∑
i∈I

Vi is dense in (E, ‖ · ‖A),

• an element ξ0 ∈ E,

• a one-to-one antilinear operator J : E0 → E.
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Examples 2.5.

(1) Let M be a compact Riemannian manifold. The space of continuous sections of the bundle

of exterior forms on M , Γ(Λ∗M), is a Hilbert C(M)-module. We can equip it with an

orthogonal filtration by taking τ =

∫
· dvol (where dvol denotes the Riemannian density of

M), ξ0 = m 7→ 1Λ∗

mM , J : Γ(Λ∗M) → Γ(Λ∗M) the canonical involution and (Vi)i∈N the family

of eigenspaces of the de Rham operator D = d + d∗.

(2) We recall from [4] the definition of a C∗-algebra equipped with an orthogonal filtration:

Definition 2.6 − Let A be a C∗-algebra, τ be a faithful state on A and (Vi)i∈I be a family

of finite-dimensional subspaces of A (with the index set I containing a distinguished element

0). We say that (τ, (Vi)i∈I) is an orthogonal filtration of A if:

(a) V0 = C.1A,

(b) ∀i, j ∈ I such that i 6= j, ∀a ∈ Vi and ∀b ∈ Vj, τ(a∗b) = 0,

(c) the space A0 =
∑
i∈I

Vi is a dense ∗-subalgebra of A.

Setting E = A (with its canonical Hilbert A-module structure), ξ0 = 1A and J = a 7→ a∗,

then (τ, (Vi)i∈I , J, ξ0) is an orthogonal filtration of E.

(3) Let (A, H, D) be an admissible spectral triple in the sense of [6]. We set:

(a) E = A = A
L(H)

,

(b) τ =





a 7→
T rω(a|D|−p)

T rω(|D|−p)
if H is infinite dimensional,

the usual trace otherwise,

where T rω denotes the Dixmier trace and p is the metric dimension of (A, H, D),

(c) the (Vi)i∈N are the eigenspaces of the ‘noncommutative Laplacian’,

(d) ξ0 and J are respectively the unit and the involution of A.

The couple (τ, (Vi)i∈N) is not in general an orthogonal filtration of A in the sense of [4] since∑

i∈N

Vi is not necessarily a ∗-subalgebra of A. However, (τ, (Vi)i∈N, J, ξ0) is an orthogonal

filtration of A, seen as a Hilbert A-module.

(4) Let us recall some common conditions on spectral triples.

Definition 2.7 − Let (A, H, D) be a spectral triple with finite metric dimension p.

• We say that (A, H, D) satisfies the finiteness and absolute continuity condition if the

space H∞ =
⋂

k∈N

Dom(Dk) is a finitely generated projective left A-module, and if there

exists q ∈ Mn(A) with q = q2 = q∗ such that:

(a) H∞ ∼= Anq,
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(b) the left A-scalar product A〈·|·〉 induced on H∞ by the previous isomorphism sat-

isfies:
T rω(A〈ξ|η〉|D|−p)

T rω(|D|−p)
= (η|ξ)H.

(Note that if (A, H, D) is regular then H∞ is automatically a left A-module.)

• We say that (A, H, D) is real if it is equipped with an antiunitary operator J : H → H

such that J (Dom(D)) ⊂ Dom(D) and ∀a, b ∈ A, [a, J b∗J ∗] = 0.

If (A, H, D) satisfies the finiteness and absolute continuity condition it is natural to consider

A = A
L(H)

and the Hilbert A-module E obtain by completing H∞ (for the A-norm). The

eigenspaces (Vi)i∈N of D are two by two orthogonal in H, thus ∀ξ ∈ Vi, ∀η ∈ Vj such that

i 6= j, we get τ(A〈ξ|η〉) = 0 where τ = a 7→
T rω(a|D|−p)

T rω(|D|−p)
. If τ is faithful and E0 is dense in

E, then E can be equipped with an orthogonal filtration (with J : E0 → E0 any one-to-one

antilinear map and e.g. ξ0 = 0).

If we assume furthermore that (A, H, D) is real, then a natural choice is to set J = J |E0
.

Notation 2.8 − Let A be a C∗-algebra and let E be a Hilbert A-module endowed with an orthog-

onal filtration (τ, (Vi)i∈I , J, ξ0). We define on E a scalar product by:

∀ξ, η ∈ E, (ξ|η)τ = τ(〈ξ|η〉A).

We denote by H the completion of E with respect to this scalar product and by ‖ · ‖τ the norm

associated with it.

Remark that E0 = ©⊥
i∈I

Vi ⊂ H and since ∀ξ ∈ E, ‖ξ‖2
τ = τ(〈ξ|ξ〉A) 6 ‖〈ξ|ξ〉A‖ = ‖ξ‖2

A we have a

continuous injection E →֒ H with dense image.

We will define now the coactions that preserve the structure of a given Hilbert module equipped

with an orthogonal filtration. This will allow us to describe the category of its “quantum transfor-

mations groups”.

Definition 2.9 − Let E be a Hilbert A-module equipped with an orthogonal filtration

(τ, (Vi)i∈I , J, ξ0). A filtration preserving coaction of a Woronowicz C∗-algebra Q on E is a coaction

(α, β) of Q on E satisfying:

• (τ ⊗ idQ) ◦ α = τ(·)1Q,

• ∀i ∈ I, β(Vi) ⊂ Vi ⊙ Q,

• (J ⊗ ∗) ◦ β = β ◦ J on E0, where ∗ denotes the involution of A,

• β(ξ0) = ξ0 ⊗ 1Q.

In this case, we will also say that Q coacts on E in a filtration preserving way.
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Definition 2.10 − Let E be a Hilbert A-module equipped with an orthogonal filtration

(τ, (Vi)i∈I , J, ξ0). We will denote by C(E, τ, (Vi)i∈I , J, ξ0) the category of Woronowicz C∗-algebras

coacting on E in a filtration preserving way. If (α0, β0) and (α1, β1) are filtration preserving coac-

tions of Woronowicz C∗-algebras Q0 and Q1 on E, then a morphism from Q0 to Q1 in this category

is a morphism of Woronowicz C∗-algebras µ : Q0 → Q1 satisfying:

α1 = (idA ⊗ µ) ◦ α0 and β1 = (idE ⊗ µ) ◦ β0.

Remark 2.11 − If E is full and µ : Q0 → Q1 is a morphism of Woronowicz C∗-algebras satisfying

β1 = (idE ⊗ µ) ◦ β0, then µ automatically satisfies α1 = (idA ⊗ µ) ◦ α0.

Indeed, for all ξ, η ∈ E:

α1(〈ξ|η〉A) = 〈β1(ξ)|β1(η)〉A⊗Q1
= 〈(idE ⊗ µ) ◦ β0(ξ)|(idE ⊗ µ) ◦ β0(η)〉A⊗Q1

= (idA ⊗ µ)(〈β0(ξ)|β0(η)〉A⊗Q0
) = (idA ⊗ µ) ◦ α0(〈ξ|η〉A).

And since E is full, we get α1 = (idA ⊗ µ) ◦ α0.

Remark 2.12 − When E = Γ(Λ∗M) is equipped with the orthogonal filtration (τ, (Vi)i∈N, J, ξ0)

described in example 2.5.(1), the full subcategory of C(E, τ, (Vi)i∈I , J, ξ0) consisting of commutative

Woronowicz C∗-algebras coacting on Γ(Λ∗M) in a filtration preserving way is antiequivalent to the

category of compact groups acting isometrically on M (see section 4.2 for more details). This ex-

plains our choice of seeing the opposite category of C(E, τ, (Vi)i∈I , J, ξ0) as the category of quantum

transformations groups of E. Moreover since the isometry group of M is a universal object in the

category of compact groups acting isometrically on M , we will define the quantum symmetry group

of E as a universal object in C(E, τ, (Vi)i∈I , J, ξ0). Proving the existence of such a universal object

is the aim of the next section.

3. Construction of the quantum symmetry group of a Hilbert

module equipped with an orthogonal filtration

The following theorem generalizes the results of Goswami [6] and Banica-Skalski [4].

Theorem 3.1 − Let A be a C∗-algebra and let E be a full Hilbert A-module endowed with an

orthogonal filtration (τ, (Vi)i∈I , J, ξ0). The category C(E, τ, (Vi)i∈I , J, ξ0) admits an initial object,

which means that there exists a universal Woronowicz C∗-algebra coacting on E in a filtration pre-

serving way. The quantum group corresponding to that universal object will be called the quantum

symmetry group of (E, τ, (Vi)i∈I , J, ξ0).

Examples will be discussed in the next section. This section is devoted to the proof of Theo-

rem 3.1. The proof mostly consists in carefully adapting Goswami’s arguments in [6, Section 4].

In what follows E denotes a full Hilbert module over a given C∗-algebra A, equipped with an

orthogonal filtration (τ, (Vi)i∈I , J, ξ0).
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Lemma 3.2 − Let (α, β) be a filtration preserving coaction of a Woronowicz C∗-algebra Q on E.

The Q-linear map β : E0 ⊙ Q → E0 ⊙ Q given by β(ξ ⊗ x) = β(ξ)(1 ⊗ x) extends to a unitary of the

Hilbert Q-module H ⊗ Q.

Proof. We have for ξ, η ∈ E0 and x, y ∈ Q:

〈β(ξ ⊗ x)|β(η ⊗ y)〉Q = x∗〈β(ξ)|β(η)〉Q y

= x∗(τ ⊗ id)(〈β(ξ)|β(η)〉A⊗Q) y (by definition of (·|·)τ = τ(〈·|·〉A))

= x∗(τ ⊗ id) ◦ α(〈ξ|η〉A) y

= x∗ τ(〈ξ|η〉A) y (since (τ ⊗ id) ◦ α = τ(·)1Q)

= (ξ|η)τ x∗y = 〈ξ ⊗ x|η ⊗ y〉Q.

In particular β is isometric and thus extends to a Q-linear isometric operator still denoted by

β : H ⊗ Q → H ⊗ Q. To show that β is unitary, it is enough to check that β has dense image. Since

span{β(E).(1 ⊗ Q)} is dense in E ⊗ Q and E0 is dense in E, it follows that span{β(E0).(1 ⊗ Q)}

is dense in E ⊗ Q. Moreover the canonical injection E ⊗ Q →֒ H ⊗ Q has dense image, so that

span{β(E0).(1 ⊗ Q)} is also dense in H ⊗ Q.

Notation 3.3 − We define on E0 a left scalar product by:

τ (ξ|η) = τ(〈J(ξ)|J(η)〉A).

For each i ∈ I we set di = dim(Vi) and we fix:

• an orthonormal basis (eij)16j6di
of Vi for the right scalar product (·|·)τ ,

• an orthonormal basis (fij)16j6di
of Vi for the left scalar product τ (·|·).

We denote by p(i) ∈ GLdi
(C) the change of basis matrix from (fij) to the basis (eij) of Vi and we

set s(i) = p(i)tp(i).

Lemma 3.4 − Let (α, β) be a filtration preserving coaction of a Woronowicz C∗-algebra Q on E.

For all i ∈ I, we denote by v(i) the multiplicative matrix associated with the basis (eij)16j6di
of the

Q-comodule Vi (in other words, v(i) is characterized by: ∀j, β(eij) =
di∑

k=1
eik ⊗ v

(i)
kj ).

• For all i ∈ I, the matrix v(i) = (v
(i)
kj )16k,j6di

is unitary and

v(i)ts(i)v(i)(s(i))
−1

= s(i)v(i)(s(i))
−1

v(i)t = Idi

• The unital C∗-subalgebra Q′ of Q generated by {v
(i)
kj ; i ∈ I, j, k ∈ {1, . . . , di}} is a Woronowicz

C∗-subalgebra of Q satisfying α(A) ⊂ A ⊗ Q′ and β(E) ⊂ E ⊗ Q′.

Furthermore (α, β) is a faithful filtration preserving coaction of Q′ on E.
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Proof. First let us check that the v(i)’s are unitary matrices.

Consider the unitary β : H ⊗ Q → H ⊗ Q of the Hilbert Q-module H ⊗ Q constructed in the

previous lemma. For all i, j, m, n, we have 〈eij ⊗1|β(emn ⊗1)〉Q = δimv
(i)
jn =

di∑
k=1

〈eik ⊗v
(i)∗
jk |emn ⊗1〉Q.

Thus for all i, j, we have β
∗
(eij ⊗ 1) =

di∑
k=1

eik ⊗ v
(i)∗
jk . Then we get:

eij ⊗ 1 = β ◦ β
∗
(eij ⊗ 1) =

di∑

k=1

β(eik)(1 ⊗ v
(i)∗
jk ) =

di∑

k,l=1

eil ⊗ v
(i)
lk v

(i)∗
jk ,

which shows that for all l, j ∈ {1, . . . , di},
di∑

k=1
v

(i)
lk v

(i)∗
jk = δlj , i.e. v(i)v(i)∗ = Idi

.

Similarly (using eij ⊗1 = β
∗
◦β(eij ⊗1)) we get v(i)∗v(i) = Idi

. Thus the matrices v(i) are unitary.

⋆ Let us show now that v(i)ts(i)v(i)(s(i))
−1

= s(i)v(i)(s(i))
−1

v(i)t = Idi
.

Let i ∈ I. As v(i) is a multiplicative and unitary matrix in a Woronowicz C∗-algebra, the matrix

v(i)t is invertible in Mdi
(Q) (cf. [9]), so it is enough to prove that v(i)ts(i)v(i)(s(i))

−1
= Idi

.

Using Sweedler’s notations, we get for ξ, η ∈ E0:

Q〈β(ξ)|β(η)〉 =
∑

τ
(
〈J(ξ(0))|J(η(0))〉A

)
ξ(1)η

∗
(1) =

∑
(τ ⊗ id)

(
〈J(ξ(0)) ⊗ ξ∗

(1)|J(η(0)) ⊗ η∗
(1)〉A⊗Q

)

= (τ ⊗ id) (〈(J ⊗ ∗) ◦ β(ξ)|(J ⊗ ∗) ◦ β(η)〉A⊗Q) = (τ ⊗ id) (〈β ◦ J(ξ)|β ◦ J(η)〉A⊗Q)

= (τ ⊗ id) ◦ α (〈J(ξ)|J(η)〉A) = τ (〈J(ξ)|J(η)〉A) 1Q = τ (ξ|η)1Q.

Moreover, since β(Vi) ⊂ Vi ⊙ Q, there exists w(i) ∈ Mdi
(Q) such that ∀j, β(fij) =

di∑
k=1

fik ⊗ w
(i)
kj .

Then we get Q〈β(fij)|β(fik)〉 =
di∑

l,m=1
τ (fil|fim)w

(i)
lj w

(i)∗
mk =

di∑
l=1

w
(i)
lj w

(i)∗
lk = τ (fij|fik)1Q = δjk.

This shows:

w(i)tw(i) = Idi
. (1)

Furthermore we have for all j, eij =
di∑

k=1
p

(i)
kj fik, thus w(i) = p(i)v(i)(p(i))−1. Then replacing w(i) in the

equality (1) we get (p(i)t)
−1

v(i)tp(i)tp(i)v(i)(p(i))
−1

= Idi
, which shows that v(i)ts(i)v(i)(s(i))

−1
= Idi

,

where s(i) = p(i)tp(i).

⋆ It then follows easily that Q′ is a Woronowicz C∗-subalgebra of Q satisfying α(A) ⊂ A ⊗ Q′

and β(E) ⊂ E ⊗ Q′. Indeed, since the v(i)’s are multiplicative matrices, we have ∆(Q′) ⊂ Q′ ⊗ Q′

so that Q′ is a Woronowicz C∗-subalgebra of Q. Moreover β(E0) ⊂ E0 ⊙ Q′, thus β(E) ⊂ E ⊗ Q′.

Then for all ξ, η ∈ E0, α(〈ξ|η〉A) = 〈β(ξ)|β(η)〉A⊗Q ⊂ 〈E ⊗ Q′|E ⊗ Q′〉A⊗Q ⊂ A ⊗ Q′. This shows

α(A) ⊂ A ⊗ Q′ since 〈E0|E0〉A is dense in A.

⋆ It remains to check that (α, β) is a faithful filtration preserving coaction of Q′ on E.

We only show that span{α(A).(1⊗Q′)} and span{β(E).(1⊗Q′)} are respectively dense in A⊗Q′

and E ⊗ Q′ (the other conditions that must satisfy (α, β) to be a filtration preserving coaction of

Q′ on E directly follow from the fact that it is a filtration preserving coaction of Q on E).
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We have for all i, j:

di∑

k=1

β(eik)(1 ⊗ v
(i)∗
jk ) =

di∑

k,l=1

(eil ⊗ v
(i)
lk )(1 ⊗ v

(i)∗
jk ) =

di∑

k,l=1

eil ⊗ (v
(i)
lk v

(i)∗
jk )

=
di∑

l=1

eil ⊗ δlj (since v(i)v(i)∗ = Idi
)

= eij ⊗ 1.

This implies that span{β(E).(1⊗Q′)} is dense in E ⊗Q′. Moreover, we have seen that for all i ∈ I,

v(i) is invertible in Mdi
(Q′) with inverse x(i) = (s(i))

−1
v(i)ts(i).

Let i, j ∈ I, m ∈ {1, . . . , di} and n ∈ {1, . . . , dj}:

di∑

k=1

dj∑

l=1

α(〈eik |ejl〉A).
(
1 ⊗ v

(j)∗
nl x

(i)
km

)
=

di∑

k=1

dj∑

l=1

〈β(eik)|β(ejl)〉A⊗Q.
(
1 ⊗ v

(j)∗
nl x

(i)
km

)

=
di∑

k=1

〈β(eik)|

dj∑

l=1

β(ejl).(1 ⊗ v
(j)∗
nl )

︸ ︷︷ ︸
ejn⊗1

〉A⊗Q.(1 ⊗ x
(i)
km)

=
di∑

k,l=1

〈eil ⊗ v
(i)
lk |ejn ⊗ 1〉A⊗Q.(1 ⊗ x

(i)
km)

=
di∑

k,l=1

〈eil|ejn〉A ⊗ (v
(i)∗
lk x

(i)
km)

=
di∑

l=1

〈eil|ejn〉A ⊗ δlm (car v(i)x(i) = Idi
)

= 〈eim|ejn〉A ⊗ 1.

Thus for all i, j, m, n, 〈eim|ejn〉A ⊗ 1 is in span{α(A).(1 ⊗ Q′)}. By density of 〈E0|E0〉A in A, this

shows that span{α(A).(1 ⊗ Q′)} is dense in A ⊗ Q′.

Notation 3.5 − For all i ∈ I, we consider Au(s(i)) the universal Woronowicz C∗-algebra of Van

Daele and Wang (see [11]) associated with s(i). That is, Au(s(i)) is the universal Woronowicz

C∗-algebra generated by a multiplicative and unitary matrix u(i) = (u
(i)
kj )16k,j6di

, satisfying the

following relations:

u(i)ts(i)u(i)(s(i))
−1

= s(i)u(i)(s(i))
−1

u(i)t = Idi
.

We set U = ∗
i∈I

Au(s(i)) and βu : E0 → E0 ⊙ U the linear map given by:

βu(eij) =
di∑

k=1

eik ⊗ u
(i)
kj .

See [12] for the construction of free product of compact quantum groups.
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In the following, if (Q, ∆) is a Woronowicz C∗-algebra and I is a Woronowicz C∗-ideal of Q, we

will denote by πI : Q → Q/I the canonical projection and by ∆I the canonical coproduct of Q/I

(i.e. ∆I : Q/I → Q/I ⊗ Q/I is the unique ∗-morphism satisfying ∆I ◦ πI = (πI ⊗ πI) ◦ ∆).

Lemma 3.6 − Let (α, β) be a faithful filtration preserving coaction of a Woronowicz C∗-algebra

Q on E. There exists a Woronowicz C∗-ideal I ⊂ U and a faithful filtration preserving coaction

(αI , βI) of U/I on E such that:

• U/I and Q are isomorphic in C(E, τ, (Vi)i∈I , J, ξ0),

• βI extends (id ⊗ πI) ◦ βu.

Proof. For all i ∈ I, we denote by v(i) the multiplicative matrix associated with the basis

(eij)16j6di
of the Q-comodule Vi. In virtue of lemma 3.4, we know that v(i) is unitary and satisfies

v(i)ts(i)v(i)(s(i))
−1

= s(i)v(i)(s(i))
−1

v(i)t = Idi
. So by universal property of U there exists a morphism

of Woronowicz C∗-algebras µ : U → Q such that for all i, p, q, µ(u
(i)
pq ) = v

(i)
pq . Then Im µ is a

Woronowicz C∗-subalgebra of Q and for all i, j:

β(eij) =
di∑

k=1

eik ⊗ v
(i)
kj = (id ⊗ µ) ◦ βu(eij). (2)

Thus the inclusion β(E) ⊂ E ⊗ (Im µ) holds, so that µ is necessarily onto (since the coaction is

faithful). We set I = Ker µ, we denote by µ̂ : U/I → Q the isomorphism of Woronowicz C∗-algebras

such that µ̂ ◦ πI = µ and we set αI = (id ⊗ µ̂−1) ◦ α and βI = (id ⊗ µ̂−1) ◦ β. It is then easy to see

that (αI , βI) is a filtration preserving coaction, and that:

µ̂ : (U/I, ∆I , αI , βI) → (Q, ∆, α, β) is an isomorphism.

Thanks to (2), we see that βI = (id ⊗ µ̂−1) ◦ β extends (id ⊗ πI) ◦ βu.

Before proving Theorem 3.1 we need a last lemma.

Lemma 3.7 − Let A and B be C∗-algebras and let I be a nonempty family of C∗-ideals of B. Set

I0 =
⋂

I∈I

I, and for I ∈ I , set pI : B/I0 → B/I the unique ∗-morphism such that:

B
π0

}}zz
zz
zz
zz πI

!!
CC

CC
CC

CC

B/I0
pI

// B/I

where π0 and πI denote the canonical projections. Then we have, for all x ∈ A ⊗ (B/I0):

‖x‖ = sup
I∈I

‖id ⊗ pI(x)‖.
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Proof. For b ∈ B/I0 and x ∈ A ⊗ B/I0 we set:

‖b‖∞ = sup
I∈I

‖pI(b)‖ and ‖x‖∞ = sup
I∈I

‖id ⊗ pI(x)‖.

This defines C∗-seminorms on B/I0 and A ⊗ B/I0 respectively. In fact since I0 =
⋂

I∈I

I, we get

that ‖ · ‖∞ is a C∗-norm on B/I0. So by uniqueness of the C∗-norm on B/I0, ‖ · ‖∞ coincides with

the usual norm on B/I0. To prove the lemma, we will use the same argument on A ⊗ B/I0, thus

we only have to show that ‖ · ‖∞ is a C∗-norm on A ⊗ B/I0.

Let x be in A ⊗ B/I0 such that ‖x‖∞ = 0. Then for all I ∈ I , (id ⊗ pI)(x) = 0. Thus

(f ⊗ (g ◦ pI))(x) = 0 for all f ∈ S(A) and all g ∈ S(B/I). But the convex hull of the set

S0 = {g ◦ pI ; I ∈ I , g ∈ S(B/I)} is weak∗-dense in S(B/I0). Indeed, we have for every self-

adjoint element b ∈ B/I0:

‖b‖ = ‖b‖∞ = sup
I∈I

‖pI(b)‖ = sup
I∈I ,g∈S(B/I)

|g ◦ pI(b)| = sup
h∈S0

|h(b)|

and it follows from [14, Lemma T.5.9] that S(B/I0) is contained in the weak∗-closed convex hull

of S0. Consequently, we have for all f ∈ S(A) and all g ∈ S(B/I0), (f ⊗ g)(x) = 0. Since any

continuous linear functional on a C∗-algebra is a linear combination of states, we get (f ⊗ g)(x) = 0

for all f ∈ A∗ and all g ∈ (B/I0)∗. Then by [8, Proposition 3.2.11], we conclude that x = 0.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We denote by I the set of all C∗-ideals I ⊂ U such that:

(id ⊗ πI) ◦ βu extends to a continuous linear map βI : E → E ⊗ U/I such that there exists a

∗-morphism αI : A → A ⊗ U/I preserving τ and satisfying:

• ∀ξ, η ∈ E, 〈βI (ξ)|βI(η)〉A⊗U/I = αI(〈ξ|η〉A),

• ∀ξ ∈ E, ∀a ∈ A, βI(ξ.a) = βI(ξ).αI(a),

• (J ⊗ ∗) ◦ βI = βI ◦ J on E0,

• βI(ξ0) = ξ0 ⊗ 1.

The set I is nonempty, since it contains the kernel of the counit ε : U → C (this can be directly

checked, or seen by applying lemma 3.6 to the trivial coaction A → A ⊗ C, E → E ⊗ C).

We denote by I0 the intersection of all elements of I , by Q0 = U/I0 and by π0 : U → Q0 the

canonical projection (as intersection of C∗-ideals, I0 is a C∗-ideal, so π0 is a ∗-morphism). Let us

show that I0 ∈ I .

⋆ First let us show that (id ⊗ π0) ◦ βu extends to a continuous linear map β0 : E → E ⊗ Q0.

Note that for x ∈ E ⊗ Q0, ‖x‖A⊗Q0
= sup

I∈I

‖idE ⊗ pI(x)‖A⊗U/I . Indeed:

‖x‖2
A⊗Q0

= ‖〈x|x〉A⊗Q0
‖ = sup

I∈I

‖(idA ⊗ pI)(〈x|x〉A⊗Q0
)‖ (by the previous lemma)

= sup
I∈I

‖〈idE ⊗ pI(x)|idE ⊗ pI(x)〉A⊗U/I‖ = sup
I∈I

‖idE ⊗ pI(x)‖2
A⊗U/I .
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Furthermore we have for all ξ ∈ E0 and all I ∈ I :

‖(idE ⊗ πI) ◦ βu(ξ)‖2
A⊗U/I = ‖〈βI(ξ)|βI(ξ)〉A⊗U/I‖ = ‖αI(〈ξ|ξ〉A)‖ 6 ‖〈ξ|ξ〉A‖ = ‖ξ‖2

A

since αI is a ∗-morphism. Hence for all ξ ∈ E0:

‖(idE ⊗ π0) ◦ βu(ξ)‖A⊗Q0
= sup

I∈I

‖(idE ⊗ (pI ◦ π0)) ◦ βu(ξ)‖A⊗U/I

= sup
I∈I

‖(idE ⊗ πI) ◦ βu(ξ)‖A⊗U/I 6 ‖ξ‖A,

which shows that (id ⊗ π0) ◦ βu extends to a continuous linear map β0 : E → E ⊗ Q0.

⋆ Next let us show that there exists a linear map α0 : 〈E0|E0〉A → A ⊗ Q0 such that

∀ξ, η ∈ E0, α0(〈ξ|η〉A) = (id ⊗ π0)
(
〈βu(ξ)|βu(η)〉A⊗U

)
.

Let ξ1, . . . , ξn and η1, . . . ηn be elements of E0 such that
n∑

i=1
〈ξi|ηi〉A = 0.

Then for all I ∈ I :

n∑

i=1

(id ⊗ πI)
(
〈βu(ξi)|βu(ηi)〉A⊗U

)
=

n∑

i=1

〈βI(ξi)|βI(ηi)〉A⊗U/I =
n∑

i=1

αI(〈ξi|ηi〉A) = αI(0) = 0.

Thus we have:
∥∥∥∥∥

n∑

i=1

(id ⊗ π0)
(
〈βu(ξi)|βu(ηi)〉A⊗U

)∥∥∥∥∥ = sup
I∈I

∥∥∥∥∥

n∑

i=1

(id ⊗ πI)
(
〈βu(ξi)|βu(ηi)〉A⊗U

)∥∥∥∥∥ = 0.

This shows that we can define a linear map α0 : 〈E0|E0〉A → A ⊗ Q0 by the formula

α0

(
n∑

i=1

〈ξi|ηi〉A

)
=

n∑

i=1

(id ⊗ π0)
(

〈βu(ξi)|βu(ηi)〉A⊗U

)
.

⋆ Let us check that α0 : 〈E0|E0〉A → A ⊗ Q0 extends to a ∗-morphism α0 : A → A ⊗ Q0

preserving τ . We get for all ξ, η ∈ E0 and all I in I :

(id ⊗ pI) ◦ α0(〈ξ|η〉A) = (id ⊗ pI) ◦ (id ⊗ π0)
(
〈βu(ξ)|βu(η)〉A⊗U

)

= (id ⊗ πI)
(
〈βu(ξ)|βu(η)〉A⊗U

)
= αI(〈ξ|η〉A).

Hence (id ⊗ pI) ◦ α0 and αI coincide on 〈E0|E0〉A. Consequently we have for x ∈ 〈E0|E0〉A:

‖α0(x)‖ = sup
I∈I

‖(id ⊗ pI) ◦ α0(x)‖ = sup
I∈I

‖αI(x)‖ 6 ‖x‖.

Thus α0 extends continuously to A. Moreover for all a, b ∈ A, we have

(id ⊗ pI)(α0(ab) − α0(a)α0(b)) = αI(ab) − αI(a)αI(b) = 0

and (id ⊗ pI)(α0(a∗) − α0(a)∗) = αI(a∗) − αI(a)∗ = 0.

Hence ‖α0(ab) − α0(a)α0(b)‖ = sup
I∈I

‖(id ⊗ pI)(α0(ab) − α0(a)α0(b))‖ = 0.
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Similarly, we get ‖α0(a∗) − α0(a)∗‖ = 0. So α0 is indeed a ∗-morphism. Moreover for all a ∈ A

and all I ∈ I , we have

pI ◦ (τ ⊗ id)(α0(a)) = (τ ⊗ pI)(α0(a)) = (τ ⊗ id) ◦ αI(a)

= τ(a)1U/I = pI(τ(a)1Q0
).

Thus α0 preserves τ.

⋆ We are now ready to check that I0 ∈ I . For all ξ, η ∈ E0 we have (by construction of α0)

that α0(〈ξ|η〉A) = 〈β0(ξ)|β0(η)〉A⊗Q0
, and this equality extends by continuity for ξ, η ∈ E. Since

(idA ⊗ pI) ◦ α0 = αI and (idE ⊗ pI) ◦ β0 = βI for all I ∈ I , we get for all ξ ∈ E and a ∈ A:

‖β0(ξ.a) − β0(ξ).α0(a)‖ = sup
I∈I

‖(idE ⊗ pI) ◦ β0(ξ.a) − (idE ⊗ pI) (β0(ξ).α0(a)) ‖

= sup
I∈I

‖(idE ⊗ pI) ◦ β0(ξ.a) − [(idE ⊗ pI) ◦ β0(ξ)].[(idA ⊗ pI) ◦ α0(a)]‖

= sup
I∈I

‖βI(ξ.a) − βI(ξ).αI(a)‖ = 0.

Thus β0(ξ.a) = β0(ξ).α0(a).

Similarly for ξ ∈ E0, ‖(J ⊗ ∗) ◦ β0(ξ) − β0 ◦ J(ξ)‖ = sup
I∈I

‖(J ⊗ ∗) ◦ βI(ξ) − βI ◦ J(ξ)‖ = 0 and

‖β0(ξ0) − ξ0 ⊗ 1Q0
‖ = sup

I∈I

‖βI(ξ0) − ξ0 ⊗ 1U/I‖ = 0. Thus we have (J ⊗ ∗) ◦ β0 = β0 ◦ J on E0 and

β0(ξ0) = ξ0 ⊗ 1. We conclude that I0 ∈ I .

We set K = Ker((π0 ⊗ π0) ◦ ∆U). In order to show that I0 is a Woronowicz C∗-ideal we have to

check that I0 ⊂ K, and by definition of I0 it is enough to show that K ∈ I .

Denote by µ : U/K → Im((π0 ⊗π0)◦∆U ) the C∗-isomorphism that satisfies (π0 ⊗π0)◦∆U = µ◦πK .

Then for all i, j:

(id ⊗ µ) ◦ (id ⊗ πK) ◦ βu(eij) = (id ⊗ π0 ⊗ π0) ◦ (id ⊗ ∆U) ◦ βu(eij)

=
di∑

k,l=1

eil ⊗ π0(u
(i)
lk ) ⊗ π0(u

(i)
kj ) =

di∑

k=1

(β0 ⊗ id)(eik ⊗ π0(u
(i)
kj ))

= (β0 ⊗ id) ◦ β0(eij). (3)

Thus we have (β0⊗id)◦β0(E) ⊂ E⊗Im µ, and we set βK = (id⊗µ−1)◦(β0 ⊗id)◦β0 : E → E⊗U/K.

We get for all i, j, m, n:

(α0 ⊗ id) ◦ α0(〈eij |emn〉A) = α0 ⊗ id


〈

di∑

k=1

eik ⊗ π0(u
(i)
kj )|

dm∑

l=1

eml ⊗ π0(u
(m)
ln )〉A⊗Q0




= α0 ⊗ id


∑

k,l

〈eik|eml〉A ⊗ π0(u
(i)∗
kj u

(m)
ln )




=
∑

k,l

〈β0(eik)|β0(eml)〉A⊗Q0
⊗ π0(u

(i)∗
kj u

(m)
ln )

=
∑

k,l

〈
di∑

p=1

eip ⊗ π0(u
(i)
pk )|

dm∑

q=1

emq ⊗ π0(u
(m)
ql )〉A⊗Q0

⊗ π0(u
(i)∗
kj u

(m)
ln )
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=
∑

k,l,p,q

〈eip|emq〉A ⊗ π0(u
(i)∗
pk u

(m)
ql ) ⊗ π0(u

(i)∗
kj u

(m)
ln )

= 〈(β0 ⊗ id) ◦ β0(eij)|(β0 ⊗ id) ◦ β0(eml)〉A⊗Q0⊗Q0

= (id ⊗ µ)(〈βK(eij)|βK(eml)〉). (4)

Hence for ξ, η ∈ E, we have

(α0 ⊗ id) ◦ α0(〈ξ|η〉A) = 〈(β0 ⊗ id) ◦ β0(ξ)|(β0 ⊗ id) ◦ β0(η)〉A⊗Q0⊗Q0
∈ A ⊗ Im µ.

Thus we also have (α0 ⊗ id) ◦ α0(A) ⊂ A ⊗ Im µ, and we define:

αK = (id ⊗ µ−1) ◦ (α0 ⊗ id) ◦ α0 : A → A ⊗ U/K.

We know from (3) that βK extends (id⊗πK)◦βu and from (4) that for all ξ, η ∈ E, αK(〈ξ|η〉A) =

〈βK(ξ)|βK(η)〉A⊗U/K .

⋆ Let us check that αK preserves τ . We have for all a ∈ A:

(τ ⊗ id) ◦ αK(x) = (τ ⊗ idU/K) ◦ (idA ⊗ µ−1) ◦ (α0 ⊗ idQ0
) ◦ α0(x)

= µ−1 ◦ (τ ⊗ idQ0
⊗ idQ0

) ◦ (α0 ⊗ idQ0
) ◦ α0(x)

= µ−1 ◦ (τ(·)1Q0
⊗ idQ0

) ◦ α0(x) = µ−1 (1Q0
⊗ (τ ⊗ idQ0

) ◦ α0(x))

= µ−1 (1Q0
⊗ τ(x)1Q0

) = τ(x)1U/K .

⋆ We have for ξ ∈ E and a ∈ A:

βK(ξ.a) = (id ⊗ µ−1) ◦ (β0 ⊗ id)(β0(ξ.a)) = (id ⊗ µ−1) ◦ (β0 ⊗ id)(β0(ξ).α0(a))

= (id ⊗ µ−1) ((β0 ⊗ id) ◦ β0(ξ).(α0 ⊗ id) ◦ α0(a)) = βK(ξ).αK(a).

⋆ Moreover, we have on E0:

(J ⊗ ∗) ◦ βK = (J ⊗ ∗) ◦ (idE ⊗ µ−1) ◦ (β0 ⊗ id) ◦ β0 = (idE ⊗ µ−1) ◦ (J ⊗ ∗ ⊗ ∗) ◦ (β0 ⊗ id) ◦ β0

= (idE ⊗ µ−1) ◦ (β0 ⊗ id) ◦ (J ⊗ ∗) ◦ β0 = (idE ⊗ µ−1) ◦ (β0 ⊗ id) ◦ β0 ◦ J = βK ◦ J.

and βK(ξ0) = (idE ⊗ µ−1) ◦ (β0 ⊗ id) ◦ β0(ξ0) = (idE ⊗ µ−1) ◦ (β0 ⊗ id)(ξ0 ⊗ 1)

= (idE ⊗ µ−1)(ξ0 ⊗ 1 ⊗ 1) = ξ0 ⊗ 1.

So K ∈ I and I0 is indeed a Woronowicz C∗-ideal. We denote by ∆0 the coproduct on Q0.

In order to show that Q0 ∈ C(E, τ, (Vi)i∈I , J, ξ0) it only remains to check that α0 and β0 are

coassociative and that span{α0(A).(1 ⊗ Q0)} and span{β0(E).(1 ⊗ Q0)} are respectively dense in

A ⊗ Q0 and E ⊗ Q0.

⋆ We have seen (cf. (3)) that for all i, j, (β0 ⊗ id) ◦ β0(eij) = (id ⊗ π0 ⊗ π0) ◦ (id ⊗ ∆U ) ◦ βu(eij).

But (π0 ⊗ π0) ◦ ∆U = ∆0 ◦ π0. Thus:

(β0 ⊗ id) ◦ β0(eij) = (id ⊗ ∆0) ◦ (id ⊗ π0) ◦ βu(eij) = (id ⊗ ∆0) ◦ β0(eij).
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We deduce that (β0 ⊗ id) ◦ β0 = (id ⊗ ∆0) ◦ β0 on E.

Hence for ξ, η ∈ E:

(α0 ⊗ idQ0
) ◦ α0(〈ξ|η〉A) = 〈(β0 ⊗ idQ0

) ◦ β0(ξ)|(β0 ⊗ idQ0
) ◦ β0(η)〉A⊗Q0⊗Q0

= 〈(idE ⊗ ∆0) ◦ β0(ξ)|(idE ⊗ ∆0) ◦ β0(η)〉A⊗Q0⊗Q0

= (idA ⊗ ∆0)
(
〈β0(ξ)|β0(η)〉A⊗Q0

)

= (idA ⊗ ∆0) ◦ α0(〈ξ|η〉A),

which shows (by density of 〈E|E〉A in A) that α0 is coassociative as well.

⋆ Finally, to show that span{α0(A).(1 ⊗ Q0)} and span{β0(E).(1 ⊗ Q0)} are respectively dense

in A ⊗ Q0 and E ⊗ Q0, we can proceed in the same way as in the proof of lemma 3.4, by checking

that for all i, j:
di∑

k=1

β0(eik)(1 ⊗ π0(u
(i)∗
jk )) = eij ⊗ 1

and for all i, j, m, n:

di∑

k=1

dj∑

l=1

α0(〈eik|ejl〉A).
(
1 ⊗ π0

(
u

(j)∗
nl x

(i)
mk

))
= 〈eim|ejn〉A ⊗ 1,

where x(i) = (s(i))−1u(i)ts(i) is the inverse of u(i). Thus (α0, β0) is a filtration preserving coaction

of Q0 on E.

It remains to see that Q0 is in fact an initial object in the category C(E, τ, (Vi)i∈I , J, ξ0). Let

I ⊂ U be a Woronowicz C∗-ideal such that there exists a filtration preserving coaction (αI , βI)

of U/I on E such that βI extends (id ⊗ πI) ◦ βu. We get in particular I ∈ I , thus I0 ⊂ I and

pI : Q0 → U/I is then a morphism in C(E, τ, (Vi)i∈I , J, ξ0).

Such a morphism is unique. Indeed, if η is a morphism from Q0 to U/I then (id ⊗ η) ◦ β0 = βI ,

so for all i, j, k, η ◦ π0(u
(k)
ij ) = πI(u

(k)
ij ). Hence η ◦ π0 = πI , and η = pI follows from uniqueness in

the factorization theorem.

Finally, according to lemmas 3.4 and 3.6, we conclude that (Q0, ∆0, α0, β0) is an initial object in

C(E, τ, (Vi)i∈I , J, ξ0).

Remarks 3.8 − As in [4], we can make the following remarks:

• If Q ∈ C(E, τ, (Vi)i∈I , J, ξ0) coacts faithfully on E, then the morphism µ : Q0 → Q is onto. So

that the quantum group associated with Q is a quantum subgroup of the one associated with

Q0.

• If (Wj)j∈J is a subfiltration of (Vi)i∈I (that is (Wj)j∈J is an orthogonal filtration of E,

such that ∀j ∈ J , there exists i ∈ I such that Wj ⊂ Vi) then the quantum symmetry

group of (E, τ, (Wj)j∈J , J, ξ0) is a quantum subgroup of the quantum symmetry group of

(E, τ, (Vi)i∈I , J, ξ0).

16



4. Examples

4.1 Example of a C
∗-algebra equipped with an orthogonal filtration

We recall from [4] the construction of the quantum symmetry group of a C∗-algebra equipped with

an orthogonal filtration.

Definition 4.1 − Let (A, τ, (Vi)i∈I) be a C∗-algebra equipped with an orthogonal filtration (see

Example 2.5 for the definition). We say that a Woronowicz C∗-algebra Q coacting on A coacts in a

filtration preserving way, if the coaction α : A → A⊗Q of Q on A satisfies for all i ∈ I, α(Vi) ⊂ Vi⊙Q.

Theorem 4.2 ([4]) − Let (A, τ, (Vi)i∈I) be a C∗-algebra equipped with an orthogonal filtration. The

category of Woronowicz C∗-algebras coacting on A in a filtration preserving way admits an initial

object. The quantum group corresponding to that universal object is called the quantum symmetry

group of (A, τ, (Vi)i∈I).

Setting E = A, ξ0 = 1A and J = a 7→ a∗, it is easy to see that the quantum symmetry group of

(E, τ, (Vi)i∈I , J, ξ0) coincides with the one constructed in the previous theorem (if (Q, ∆, α) coacts on

(A, τ, (Vi)i∈I) in a filtration preserving way then (τ ⊗id)◦α = τ(·)1A is automatic since V0 = C.1A).

In fact our construction allows to see that the category of Woronowicz C∗-algebras coacting on

(A, τ, (Vi)i∈I) in a filtration preserving way admits an initial object, even when the assumption “A0

is a ∗-subalgebra of A” is dropped.

In particular, we see that our construction generalizes the one of [6] in the sense that if (A, H, D)

is an admissible spectral triple and if we set:

• E = A = A
L(H)

,

• τ =





a 7→
T rω(a|D|−p)

T rω(|D|−p)
if H is infinite dimensional,

the usual trace otherwise,

where T rω denotes the Dixmier trace and p is the metric dimension of (A, H, D),

• the (Vi)i∈N are the eigenspaces of the ‘noncommutative Laplacian’,

• ξ0 and J are respectively the unit and the involution of A,

then we recover the quantum isometry group of (A, H, D) in the sense of [6].

Given a spectral triple, we have seen in example 2.5 another way to attach an Hilbert module

equipped with an orthogonal filtration to it (induced by D instead of the Laplacian). For an

admissible spectral triple (A, H, D) satisfying conditions of example 2.5.(4), the quantum symmetry

group of H∞ and the quantum isometry group of (A, H, D) in the sense of Goswami both exist. We

do not know if they coincide in this situation. But in the case of the spectral triple of a Riemannian

compact manifold the question is partially solved in the next paragraph.
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4.2 Example of the bundle of exterior forms on a Riemannian manifold

Let M be a compact Riemannian manifold. Set A = C(M), τ =

∫
· dvol where dvol denotes the

Riemannian density of M and set E = Γ(Λ∗M) equipped with its canonical Hilbert C(M)-module

structure. We denote by D = d + d∗ : L2(Λ∗M) → L2(Λ∗M) the de Rham operator. D is self-

adjoint and has compact resolvent. So that sp(D) can be written as: sp(D) = {λi ; i ∈ N},

with lim
i→+∞

|λi| = +∞ and where each λi is a real eigenvalue of D with finite multiplicity. For

i ∈ N we denote by Vi the subspace associated with λi and by di the dimension of Vi. Note that

Vi ⊂ Γ∞(Λ∗M), so Vi ⊂ E.

Clearly, the family (Vi)i∈N is an orthogonal filtration of E, E is full and H = L2(Λ∗M).

We denote by ξ0 = m 7→ 1Λ∗

mM ∈ E and by J : E → E the canonical involution.

Comparison with the quantum isometry group of M as defined in [6]:

Let (α, β) be a filtration preserving coaction of a Woronowicz C∗-algebra Q on E. For φ a state on

Q, the map id⊗φ : L2(Λ∗M)⊙Q → L2(Λ∗M) extends to a map id⊗φ : L2(Λ∗M)⊗Q → L2(Λ∗M).

We set βφ = (id ⊗ φ) ◦ β : L2(Λ∗M) → L2(Λ∗M). Since β preserves the filtration, βφ commutes

with D on E0. This implies that ∀k ∈ N, βφ(Dom(Dk)) ⊂ Dom(Dk) and βφ ◦ Dk = Dk ◦ βφ on

Dom(Dk). Thus βφ(Γ∞(Λ∗M)) ⊂ Γ∞(Λ∗M) and βφ commutes with D2 on Γ∞(Λ∗M). Now for

f ∈ C∞(M), we have βφ(f) = βφ(f.ξ0) = αφ(f).ξ0 = αφ(f), where αφ = (id ⊗ φ) ◦ α. Thus

αφ(C∞(M)) ⊂ C∞(M) and αφ commutes with L (the Laplacian on functions) on C∞(M). This

shows that α is an isometric coaction of Q on C(M) in the sense of [6]. In particular, the quantum

symmetry group of (Γ(Λ∗M), τ, (Vi)i∈N, J, ξ0) is a quantum subgroup of the quantum isometry group

of M in the sense of [6]. We do not know if these quantum groups are in fact equal.

Comparison with the isometry group of M :

Let G be a compact group and let γ : M × G → M be an isometric action of G on M . Then it

is well known that

α : C(M) → C(M × G) ∼= C(M) ⊗ C(G)

f 7→ f ◦ γ

is a coaction of C(G) on C(M).

For g ∈ G we set

γg : M → M

m 7→ mg

and β : Γ(Λ∗M) → C(G, Γ(Λ∗M)) ∼= Γ(Λ∗M) ⊗ C(G)

ω 7→ (g 7→ γ∗
g(ω))

where γ∗
g : Γ(Λ∗M) → Γ(Λ∗M) denotes the pullback by γg. It is then easy to see that (α, β) is a

filtration preserving coaction of C(G) on Γ(Λ∗M).

Assume conversely that (α, β) is a filtration preserving coaction of a commutative Woronowicz

C∗-algebra Q on Γ(Λ∗M). We will show that α and β are of the previous form, so that they arise

from an action of a compact group G on M . Since α is a coaction of Q on C(M), there exists a
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compact group G such that Q ∼= C(G) and a continuous action γ : M × G → M of G on M such

that:

α = C(M) → C(M × G) ∼= C(M) ⊗ C(G)

f 7→ f ◦ γ.

For g ∈ G we set βg = (id ⊗ evg) ◦ β and αg = (id ⊗ evg) ◦ α = f 7→ f ◦ γg. We have seen in the

previous paragraph that C∞(M) is stable under αg and that αg commutes with the Laplacian on

C∞(M), so that γg is an isometry of M . Now we have to check that βg = ω 7→ γ∗
g(ω). We already

know that βg and αg coincide on C(M), so βg = ω 7→ γ∗
g (ω) on C(M).

Then we show by induction on k ∈ N that βg(ω) = γ∗
g (ω) for all ω ∈ Γ(ΛkM):

Let k ∈ N such that for all l 6 k and all ω ∈ Γ(ΛlM), βg(ω) = γ∗
g(ω). Let f0 be in C(M) and

f1, . . . , fk+1 be in C∞(M). Then:

βg(df1 ∧ . . . ∧ dfk+1) + βg(d∗(f1df2 ∧ . . . ∧ dfk+1)) = βg(D(f1df2 ∧ . . . ∧ dfk+1))

= D(βg(f1df2 ∧ . . . ∧ dfk+1)) = Dγ∗
g (f1df2 ∧ . . . ∧ dfk+1)

= γ∗
gD(f1df2 ∧ . . . ∧ dfk+1)

= γ∗
g(df1 ∧ . . . ∧ dfk+1) + γ∗

g(d∗(f1df2 ∧ . . . ∧ dfk+1)).

But since d∗(f1df2 ∧ . . . ∧ dfk+1) is a (k − 1)-form, we have:

βg(d∗(f1df2 ∧ . . . ∧ dfk+1)) = γ∗
g(d∗(f1df2 ∧ . . . ∧ dfk+1))

by the induction hypothesis. Thus βg(df1 ∧ . . . ∧ dfk+1) = γ∗
g(df1 ∧ . . . ∧ dfk+1). Finally:

βg(f0df1 ∧ . . . ∧ dfk+1) = (f0 ◦ γg)γ∗
g(df1 ∧ . . . ∧ dfk+1) = γ∗

g(f0df1 ∧ . . . ∧ dfk+1).

But any (k +1)-form is a linear combination of such forms, so that ∀ω ∈ Γ(Λk+1M), βg(ω) = γ∗
g (ω),

which ends the induction.

Thus each isometric action of a compact group on M leads to a filtration preserving coaction of

a commutative Woronowicz C∗-algebra on Γ(Λ∗M) and conversely. This shows that the quantum

symmetry group of Γ(Λ∗M) might be a coherent quantum analog of the isometry group of M .

4.3 Basic example: free orthogonal quantum groups

Let n be in N. We set A = C, E = C
n equipped with its canonical Hilbert space structure,

ξ0 = 0 and V0 = C
n. Let J : Cn → C

n be any invertible antilinear map. We denote by P the

matrix of J in the canonical basis and by Ao(P ) the universal Woronowicz C∗-algebra generated

by a multiplicative and unitary matrix u = (uij)16i,j6n, satisfying the relation u = PuP −1 (the

quantum group associated with Ao(P ) is a so-called free orthogonal quantum group, see [2]). We

denote by αP : C → C ⊗ Ao(P ) the trivial coaction and by βP : Cn → C
n ⊗ Ao(P ) the linear map

given by β(ei) =
n∑

k=1
ek ⊗ uki where (ek)16k6n is the canonical basis of C

n. We can easily check

that (idC, (V0), J, ξ0) is an orthogonal filtration of E and that (αP , βP ) is a coaction of Ao(P ) on
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E. To see that (αP , βP ) is a filtration preserving coaction, the only nontrivial point is to check that

(J ⊗ ∗) ◦ βP = βP ◦ J. We have for all i in {1, . . . , n}:

(J ⊗ ∗) ◦ βP (ei) =
n∑

k=1

J(ek) ⊗ u∗
ki =

n∑

k,l=1

Plkel ⊗ u∗
ki =

n∑

l=1

el ⊗

(
n∑

k=1

Plku∗
ki

)

=
n∑

l=1

el ⊗

(
n∑

k=1

ulkPki

)
(since Pu = uP )

=
n∑

k=1

PkiβP (ek) = βP ◦ J(ei).

So (αP , βP ) is a filtration preserving coaction of Ao(P ) on C
n. Now we show that it is a universal ob-

ject in the category C(E, idC, (V0), J, ξ0). Let (α, β) be a filtration preserving coaction of a Woronow-

icz C∗-algebra Q on E and let v = (vij)16i,j6n ∈ Mn(Q) be characterized by β(ei) =
n∑

k=1
ek ⊗ vki.

By lemma 3.4 we already know that v is unitary. Furthermore, by a similar computation to the

previous one, we see that (J ⊗∗)◦β = β ◦J leads to the equality Pv = vP . Thus by universal prop-

erty of Ao(P ) we get the existence of a morphism µ : Ao(P ) → Q such that for all i, j ∈ {1, . . . , n},

µ(uij) = vij , which is clearly a morphism in the category C(E, idC, (V0), J, ξ0). Consequently the

quantum symmetry group of E is the free orthogonal quantum group associated with P .
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