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Given g ∈ N, what is the number of numerical semigroups S = a, b in N of genus |N \ S| = g? After settling the case g = 2 k for all k, we show that attempting to extend the result to g = p k for all odd primes p is linked, quite surprisingly, to the factorization of Fermat and Mersenne numbers.

Introduction

A numerical semigroup is a subset S of N containing 0, stable under addition, and with finite complement G(S) = N \ S. The elements of G(S) are called the gaps of S, and their number is denoted g(S) and called the genus of S. The Frobenius number of S is its largest gap. See [START_REF] Ramírez Alfonsín | The Diophantine Frobenius problem[END_REF] for more details. If a 1 , . . . , a r are positive integers with gcd(a 1 , . . . , a r ) = 1, then they generate a numerical semigroup S = Na 1 + • • • + Na r , denoted S = a 1 , . . . , a r . For example, the numerical semigroup S = 4, 5, 7 has gaps G(S) = {1, 2, 3, 6}, whence genus g(S) = 4 and Frobenius number 6. It is well known that every numerical semigroup admits a unique finite minimal generating set [START_REF] Fröberg | On numerical semigroups[END_REF].

Given g ∈ N, what is the number n g of numerical semigroups S of genus g? Maria Bras-Amorós recently determined n g for all g ≤ 50 by computer. On this basis, she made three conjectures suggesting that the numbers n g behave closely like the Fibonacci numbers [START_REF] Bras-Amorós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF][START_REF] Bras-Amorós | Bounds on the number of numerical semigroups of a given genus[END_REF]. For instance, the inequality n g ≥ n g-1 + n g-2 , valid for g ≤ 50, is conjectured to hold for all g.

We propose here the refined problem of counting numerical semigroups S of genus g with a specified number of generators. Notation 1.1 Given g, r ≥ 1, let n(g, r) denote the number of numerical semigroups S of genus g having a minimal generating set of cardinality r.

Of course n g = r≥1 n(g, r). Is there an explicit formula for n(g, r), and might it be true that n(g, r) ≥ n(g -1, r) + n(g -2, r)?

In this paper, we focus on the case r = 2, i.e. on numerical semigroups S = a, b with gcd(a, b) = 1. The genus of S is equal to (a -1)(b -1)/2, by a classical theorem of Sylvester. This allows us to show in Section 2 that n(g, 2) depends on the factorizations of both 2g and 2g -1, and to determine n(g, 2) when 2g -1 is prime. In Section 3, we determine n(g, 2) for g = 2 k and all k ≥ 1. We then tackle the case g = p k for odd primes p in Section 4. On the one hand, we provide explicit formulas for n(p k , 2) when k ≤ 6. On the other hand, we show that obtaining similar formulas for all k ≥ 1 is linked to the factorization of Fermat and Mersenne numbers. We conclude with a few open questions about n(g, 2).

2 Basic properties of n(g, 2)

We will show that n(g, 2) is linked with the factorizations of 2g and 2g -1. For this, we need the following theorem of Sylvester [START_REF] Sylvester | On subinvariants, i.e. semi-invariants to binary quantities of an unlimited order[END_REF]. 

x ∈ G(S) ⇐⇒ ab -a -b -x ∈ S.
In particular, g(S) = (a -1)(b -1)/2.

Link with factorizations of 2g and 2g -1

We first derive that n(g, 2) is the counting function of certain particular factorizations of 2g. As usual, the cardinality of a set X will be denoted |X|. Proposition 2.2 Let g ≥ 1 be a positive integer. Then we have A first consequence is that every g ≥ 1 is the genus of an appropriate 2-generator numerical semigroup.

n(g, 2) = |{(u, v) ∈ N 2 | 1 ≤ u ≤ v, uv = 2g, gcd(u + 1, v + 1) = 1}|.
Corollary 2.3 n(g, 2) ≥ 1 for all g ≥ 1.
Proof. This follows from the factorization 2g = uv with u = 1, v = 2g. Concretely, the numerical semigroup S = 2, 2g + 1 has genus g.

Our next remark shows that n(g, 2) is also linked with the factors of 2g-1.

Lemma 2.4 Let g ≥ 1 be a positive integer, and let 2g = uv with u, v positive integers. Then gcd(u + 1, v + 1) divides 2g -1.

Proof. Set δ = gcd(u + 1, v + 1). Then u ≡ v ≡ -1 mod δ, and therefore 2g = uv ≡ 1 mod δ.

The case where 2g -1 is prime

We can now determine n(g, 2) when 2g -1 is prime. As customary, for n ∈ N we denote by d(n) the number of divisors of n in N.

Proposition 2.5 Let g ≥ 3, and assume that 2g -1 is prime. Then

n(g, 2) = d(2g)/2.
In particular, n(g, 2) = d(g) if g is odd.

Proof. Let 2g = uv be any factorization of 2g in N. We claim that gcd(u + 1, v + 1) = 1. Indeed, by Lemma 2.4 we know that gcd(u

+ 1, v + 1) divides 2g -1. Assume for a contradiction that gcd(u + 1, v + 1) = 1. Then gcd(u + 1, v + 1) = 2g -1, since 2g -1 is assumed to be prime. It follows that u, v ≥ 2g -2, implying 2g = uv ≥ 4(g -1) 2 .
However, the inequality 2g ≥ 4(g -1) 2 , while true at g = 2, definitely fails for g ≥ 3 as assumed here. Thus gcd(u + 1, v + 1) = 1, as claimed. Hence, by Proposition 2.2, we have

n(g, 2) = {(u, v) ∈ N 2 | u ≤ v, 2g = uv} . (1) 
Clearly 2g counts as many divisors u < √ 2g as divisors v > √ 2g. Moreover 2g is not a perfect square. This is clear for g = 3 or 4. If g ≥ 5 and 2g = a 2 with a ∈ N, then a ≥ 3 and 2g -1 = a 2 -1 = (a-1)(a+1), contradicting the primality of 2g -1. We conclude from (1) that n(g, 2) = d(2g)/2. Finally, if g is further assumed to be odd, then clearly d(2g)/2 = d(g).

Proposition 2.5 cannot be extended to g = 2, even though 2g -1 is prime. Indeed n(2, 2) = 1 as easily seen, whereas d(4)/2 is not even an integer.

Since n(g, 2) is controlled by the factorizations of both 2g and 2g -1, its determination is expected to be hard in general, even if the factors of g are known. Nevertheless, below we determine n(g, 2) when g = 2 k for all k ∈ N, despite the fact that the prime factors of 2 k+1 -1 are generally unknown.

The case g = 2 k

Let g = 2 p-1 with p an odd prime, and assume that 2g -1 is prime. 1 Proposition 2.5 then applies, and gives

n(2 p-1 , 2) = d(2 p )/2 = (p + 1)/2.
But we shall now determine n(2 k , 2) for all k ∈ N, and show that its value only depends on the largest odd factor s of k + 1.

Theorem 3.1 Let g = 2 k with k ∈ N. Write k + 1 = 2 µ s with µ ∈ N and s odd. Then n(2 k , 2) = (s + 1)/2.
Proof. Since 2g = 2 k+1 , the only integer factorizations 2g = uv with 1 ≤ u ≤ v are given by u = 2 i , v = 2 k+1-i with 0 ≤ i ≤ (k + 1)/2. In order to determine n(2 k , 2) with Proposition 2.2, we must count those i in this range for which gcd(2 i + 1, 2 k+1-i + 1) = 1. This condition is taken care of by the following claim.

Claim. We have gcd(2 i + 1, 2 k+1-i + 1) = 1 if and only if 2 µ divides i.

The claim is proved by examining separately the cases where 2 µ divides i or not.

• Case 1: 2 µ divides i. Assume for a contradiction that there is a prime p dividing gcd(2 i + 1, 2 k+1-i + 1). Then p is odd, and we have

2 i ≡ 2 k+1-i ≡ -1 mod p.
(

) 2 
It follows that

2 2i ≡ 2 k+1 ≡ 1 mod p. (3) 
Let m denote the multiplicative order of 2 mod p. It follows from (3) that m divides gcd(2i, k + 1). Now, in the present case, we have gcd(2i, k + 1) = gcd(i, k + 1), since 2 µ divides i and k + 1, while 2 µ+1 divides 2i without dividing k + 1. Consequently m divides i, not only 2i. Hence 2 i ≡ 1 mod p, in contradiction with (2). Therefore gcd(2 i + 1, 2 k+1-i + 1) = 1, as desired.

• Case 2: 2 µ does not divide i. We may then write i = 2 ν j with j odd and ν < µ. Set q = 2 2 ν + 1, and note that q ≥ 3. We claim that q divides gcd(2 i + 1, 2 k+1-i + 1). Indeed, observe that 2 2 ν ≡ -1 mod q, by definition of q. Since i = 2 ν j with j odd, we have

2 i + 1 = (2 2 ν ) j + 1 ≡ (-1) j + 1 ≡ 0 mod q.
Similarly, we have k + 1 -i = 2 ν j ′ where j ′ = 2 µ-ν s -j. Then j ′ is odd, since µ -ν > 0 and j is odd. As above, this implies that

2 k+1-i = (2 2 ν ) j ′ + 1 ≡ 0 mod q.
It follows that q divides gcd(2 i + 1, 2 k+1-i + 1), thereby settling the claim.

We may now conclude the proof. Indeed, the above claim yields

n(2 k , 2) = {i | 0 ≤ i ≤ (k + 1)/2, i ≡ 0 mod 2 µ } = {j | 0 ≤ j ≤ (k + 1)/2 µ+1 } = (k + 1)/2 µ+1 + 1 = (s + 1)/2.
Corollary 3.2 For every N ≥ 1, there are infinitely many g ≥ 1 such that n(g, 2) = N .

Proof. Let s = 2N -1. Then s is odd, and for all k = 2 µ s -1 with µ ∈ N, we have n(2 k , 2) = (s + 1)/2 = N by Theorem 3.1.

In particular, there are infinitely many g ≥ 1 for which n(g, 2) = 1. Since n(h, 2) ≥ 1 for all h ≥ 1, the inequality n(g, 2) ≥ n(g -1, 2) + n(g -2, 2) fails to hold infinitely often. This says nothing, of course, about the original conjecture n g ≥ n g-1 + n g-2 of Bras-Amorós. [START_REF] Gimps | Great Internet Mersenne Prime Search[END_REF] The case g = p k for odd primes p

We have determined n(2 k , 2) for all k ≥ 1. Attempting to similarly determine n(p k , 2) for odd primes p leads to a somewhat paradoxical situation. Indeed, while the case where k is small is relatively straightforward, formidable difficulties arise when k grows. This Jekyll-and-Hyde behavior is shown below.

When k is small

Given positive integers q 1 , . . . , q t , we denote by

ρ q 1 ,...,qt : Z → Z/q 1 Z × • • • × Z/q t Z
the canonical reduction morphism ρ q 1 ,...,qt (n) = (n mod q 1 , . . . , n mod q t ), and shall write n ≡ ¬a mod q instead of n ≡ a mod q. For example, the condition ρ 3,5,17 (p) = (2, ¬3, ¬8) means that p ≡ 2 mod 3, p ≡ 3 mod 5 and p ≡ 8 mod 17.

where either polynomial f or g is constant. Polynomials are used here precisely for allowing such degree considerations. Since gcd(p i + 1, 2p j + 1) is odd, we may equivalently work in the rings

Z[2 -1 ] or Z[2 -1 , x],
where 2 is made invertible. Note that these rings are still unique factorization domains. We obtain the following table, with a method explained below. For simplicity, we write (f, g) rather than gcd(f, g), and 1 whenever either f or g is invertible in the ring Z[2 -1 , x]. The cases i = 0 and j = 0 are not included, since then x i + 1 and 2x j + 1 are already constant, respectively.

gcd 2x + 1 2x 2 + 1 2x 3 + 1 2x 4 + 1 2x 5 + 1 2x 6 + 1 x + 1 1 (x + 1, 3) 1 (x + 1, 3) 1 (x + 1, 3) x 2 + 1 (2x + 1, 5) 1 (2x -1, 5) (x 2 + 1, 3) (2x + 1, 5) 1 x 3 + 1 (2x + 1, 7) (x -2, 9) 1 (2x -1, 9) (x + 2, 7) (x 3 + 1, 3) x 4 + 1 (2x + 1, 17) (2x 2 + 1, 5) (x -2, 17) 1 (2x -1, 17) (2x 2 -1, 5) x 5 + 1 (2x + 1, 31) (x + 4, 33) (4x + 1, 31) (x -2, 33) 1 (2x -1, 33) x 6 + 1 (2x + 1, 65) (2x 2 + 1, 7) (2x 3 + 1, 5) (x 2 -2, 9) (x -2, 65) 1
Table 1: Reduction of gcd(x i + 1, 2x j + 1) for 1 ≤ i, j ≤ 6.

In order to construct this table, we use the most basic trick for computing gcd's in a unique factorization domain A, namely:

g 1 ≡ g 2 mod f ⇒ gcd(f, g 1 ) = gcd(f, g 2 ) (5) 
for all f, g 1 , g 2 ∈ A. As an illustration, let us reduce gcd(x 2 + 1, 2x 3 + 1) to the form (4) in the ring

Z[2 -1 , x]. We have gcd(x 2 + 1, 2x 3 + 1) = gcd(x 2 + 1, -2x + 1) (6) = gcd(2 -2 + 1, -2x + 1) (7) = gcd(1 + 2 2 , 2x -1), (8) 
where steps ( 6) and ( 7) follow from ( 5) and the respective congruences

x 2 ≡ -1 mod (x 2 + 1), x ≡ 2 -1 mod (-2x + 1).
Hence gcd(x 2 + 1, 2x 3 + 1) = gcd(2x -1, 5), as displayed in Table 4.1.

When k grows

When k grows arbitrarily, the task of determining n(p k , 2) for all odd primes p using Proposition 2.2 becomes much more complicated, and turns out to be linked to hard problems. Let us focus on one specific factorization of 2p k , namely 2p k = uv with

u = p k-1 , v = 2p.
In order to find when this factorization contributes 1 to n(p k , 2), we need to decide when gcd(p k-1 + 1, 2p + 1) is equal to 1. Here is the key reduction.

Lemma 4.3 Let p be an odd prime and let m ∈ N. Then

gcd(p m + 1, 2p + 1) = gcd(2 m + 1, 2p + 1) if m is even, gcd(2 m -1, 2p + 1) if m is odd.
Proof. As earlier, we will reduce gcd(x m + 1, 2x + 1) in Z[2 -1 , x] to the form gcd(f, g), where either f or g is a constant polynomial. Since x ≡ -2 -1 mod (2x + 1), trick (5) yields gcd(x m + 1, 2x + 1) = gcd((-2) -m + 1, 2x + 1) = gcd(2 m + (-1) m , 2x + 1).

Substituting x = p gives the stated formula.

Hence, in order to determine when gcd(p m + 1, 2p + 1) equals 1, we need to know the prime factors of 2 m + 1 for m even, and of 2 m -1 for m odd. This is an ancient open problem. It is not even known at present whether there are finitely or infinitely many Fermat or Mersenne primes, i.e. primes of the form F t = 2 2 t + 1 or M q = 2 q -1 with t ≥ 0 and q prime, respectively.

• Assume for instance that k = 2 t + 1 for some t ≥ 1. Then k -1 is even, and thus Lemma 4.3 yields gcd(p k-1 + 1, 2p + 1) = gcd(F t , 2p + 1).

(10) Therefore, as long as the prime factors of the Fermat number F t remain unknown, we cannot determine those primes p for which the gcd in (10) equals 1, and hence write down an exact formula for n(p k , 2) in the spirit of Proposition 4.1. For the record, as of 2010, the prime factorization of F t is completely known for t ≤ 11 only [START_REF] Keller | Prime factors k • 2 n + 1 of Fermat numbers F m and complete factoring status[END_REF].

• Assume now that k = q + 1 for some large prime q. Then k -1 = q is odd, and Lemma 4.3 yields gcd(p k-1 + 1, 2p + 1) = gcd(2 q -1, 2p + 1).

(11)

Here again, we do not know the prime factors of M q = 2 q -1 in general; it may even happen that 2 q -1 hits some unknown Mersenne prime. Thus, we will not know for which primes p the gcd in (11) equals 1, i.e. when the specific factorization 2p k = p k-1 • 2p contributes 1 to n(p k , 2). For the record, the largest prime currently known is the Mersenne prime p = 2 43,112,609 -1, found in August 2008 [START_REF] Gimps | Great Internet Mersenne Prime Search[END_REF].

The above difficulties concern the specific factorization 2p k = p k-1 • 2p. However, most other ones will also lead to trouble for some exponents k. For instance, consider the factorization 2p k = p k-2 • 2p 2 , and let k = 2 t+1 + 2. Then, a computation as in the proof of Lemma 4.3 yields gcd(p k-2 + 1, 2p 2 + 1) = gcd(F t , 2p 2 + 1).

Once again, not knowing the prime factors of F t = 2 2 t + 1 prevents us to know for which primes p this gcd equals 1.

Concluding remarks and open questions

We have determined n(g, 2) when 2g -1 is prime, for g = 2 k for all k ≥ 1, and for g = p k for all odd primes p and k ≤ 6. The general case is probably out of reach. However, here are a few questions which might be more tractable, yet which we cannot answer at present. 1. Is there an explicit formula for n(3 k , 2) as a function of k? Is it true that n(3 k , 2) goes to infinity as k does?

Here are the values of this function for k = 1, 2, . . . , 20:

2, 3, 4, 4, 5, 7, 8, 9, 8, 9, 11, 13, 11, 15, 16, 14, 14, 18, 20, 21.

2. Can one characterize those integers g ≥ 1 for which n(g, 2) = 1?

In special cases, we know enough to get a complete answer, for instance when g is prime using Proposition 4.1, or when g = 2 k using Theorem 3.1. However, the general case seems to be very hard. Using the above methods, and a classical theorem of Dirichlet, it is fairly easy to show that, independently of the parity of k, the function n(p k , 2) attains its maximal value k + 1 infinitely often.

Theorem 2 . 1

 21 Let a, b be coprime positive integers, and let S = a, b . Then max G(S) = ab -a -b, and for all x ∈ {0, 1, . . . , ab -a -b}, one has

  Proof. Indeed, let S = a, b with 1 ≤ a ≤ b and gcd(a, b) = 1, and assume that g(S) = g. By Theorem 2.1, we have g = (a -1)(b -1)/2, i.e. 2g = (a -1)(b -1). The claim follows by setting u = a -1, v = b -1.

  As an appetizer, let us mention that a prime p satisfies n(p 21 , 2) = 1 if and only if p ≡ 8 mod 3 • 5 • 17 • 257 • 65537; the smallest such prime is p = 12, 884, 901, 893. 3. Let r ∈ N, r ≥ 1. Does n(p 1 • • • p r , 2) attain every value i ∈ {1, 2, . . . , 2 r } for suitable distinct primes p 1 , . . . , p r , and infinitely often so? 4. Let l ∈ N, l ≥ 1. Does n(p 2l-1 , 2) attain every value i ∈ {1, 2, . . . , 2l} for suitable odd primes p, and infinitely often so? 5. In contrast, is it true that min{n(p 2l , 2) | p odd prime} goes to infinity with l?

In fact a Mersenne prime, since

2g -1 = 2 p -1. See also Section 4.2.

Proposition 4.1 Let p be an odd prime number. Then we have:

With the Chinese Remainder Theorem, the above result implies that n(p 3 , 2) depends on the class of p modulo 15, and that n(p 4 , 2), n(p 5 , 2) and n(p 6 , 2) depend on the class of p modulo 7, 255 and 31, respectively.

Proof. Let k ≤ 6. We determine n(p k , 2) using Proposition 2.2. As p is an odd prime, counting the factorizations 2p k = uv with u ≤ v and gcd(u + 1, v + 1) = 1 amounts to count the number of exponents i in the range 0 ≤ i ≤ k satisfying the condition

A convenient way to ease the computation of this gcd is to replace p by a variable x and to reduce, in the polynomial ring Z[x], the greatest common divisor of x i + 1 and 2x j + 1 to the simpler form

Now, from that table, it is straightforward to determine those pairs of exponents i, j with i + j ≤ 6 and those odd primes p for which gcd(p i + 1, 2p j + 1) = 1, and hence to obtain the stated formulas for n(p k , 2). Consider, for instance, the case k = 3. We shall count those exponents i ∈ {0, 1, 2, 3} for which gcd(p i + 1, 2p 3-i + 1) = 1.

(9) i = 0: Condition (9) is always satisfied.

i = 1: Table 4.1 gives gcd(p+1, 2p 2 +1) = gcd(p+1, 3), which equals 1 exactly when p ≡ 2 mod 3.

i = 2: Table 4.1 gives gcd(p 2 + 1, 2p + 1) = gcd(2p + 1, 5), which equals 1 exactly when p ≡ 2 mod 5.

i = 3: Finally, we have gcd(p 3 + 1, 3) = 1 exactly when p ≡ 2 mod 3.

It follows that n(p 3 , 2) is entirely determined by the classes of p mod 3 and 5, with a value ranging from 1 to 4 depending on whether ρ 3,5 (p) equals (2, 2), (2, ¬2), (¬2, 2) or (¬2, ¬2), as stated.

The cases k = 1, 2, 4, 5, 6 are similar and left to the reader.

We leave the determination of n(p 7 , 2) as an exercise to the reader. Let us just mention that the value of this function depends on the class of the prime p mod 3 • 5 • 11 • 13 • 17, and that its range is equal to {1, 2, . . . , 8}. The case k = 8 is much simpler. We state the result without proof. That was the gentle side of the story. Here comes the harder one.
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