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S U M M A R Y
Waveforms emerging from correlations of long seismic noise records are extensively used to
investigate the crustal and upper-mantle structure of the Earth. To remove the non-stationary
events that inevitably lie in seismic records, the so-called one-bit normalization is commonly
applied to the noise data. This processing consists of replacing each sample of a record by
its sign. Although it is a strong non-linear operation, it preserves the phase of the signal
emerging from correlation. Some recent studies show that information can also be extracted
from the amplitude of such correlations. In this paper, we develop a theory to understand
these non-intuitive results. A statistical approach is used to get an expression of the one-bit
noise correlation. This expression involves the standard deviations of coherent and incoherent
noise. These two kinds of noise are precisely defined, and explicit expressions of their standard
deviations are given in the case of a uniform distribution of noise sources generating surface
waves on a layered half-space. In this case, we show that the one-bit noise correlation has the
same phase and relative amplitude as the raw noise correlation. This is true in both elastic and
anelastic media. Numerical simulations are performed to support our theory.

Key words: Interferometry; Seismic attenuation; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Seismic noise correlations are now widely used to get information about the structure of the Earth. Prior to correlation, different processing
steps have to be applied to the noise records. One of the most common processings is the one-bit normalization. It consists of retaining only
the sign (+1 or −1) of each sample in the records. It was first introduced in communication theory. Bond & Cahn (1958) demonstrated the
possibility of transmitting a continuous signal over a discrete channel by preserving the occurrence of the zero crossings only. Later, Voelcker
(1966a,b) and Voelcker & Requicha (1973) extended this result to get modulation procedures for representing signals in terms of real and
complex zeros. In seismology, Campillo & Paul (2003) used the one-bit normalization to process seismic coda. In this case, it enhances
multiple scattering and thus improves the signal-to-noise ratio of coda correlations (Larose et al. 2004). In the context of long noise records,
the one-bit normalization enables to remove non-stationary signals like earthquakes or spikes. For examples of applications of this technique,
one can refer to Shapiro & Campillo (2004), Shapiro et al. (2005), Larose et al. (2007) and Yao & van der Hilst (2009). More sophisticated
temporal normalizations can be found in Bensen et al. (2007) and Brooks & Gerstoft (2009).

The most common way to image the Earth interior from ambient seismic noise consists in evaluating dispersion curves of surface waves
emerging from noise correlations. Since most of the noise energy ranges from 5 to 20 s period, the obtained images provide information on
crustal and upper-mantle structure (e.g. Shapiro et al. 2005; Yao et al. 2006; Cho et al. 2007; Lin et al. 2007; Yang et al. 2007; Bensen
et al. 2008; Lin et al. 2008; Yao et al. 2008; Stehly et al. 2009). Several studies also attempted to use the amplitude of noise correlations to
investigate the origin of the seismic noise (Stehly et al. 2006; Pedersen et al. 2007; Yang & Ritzwoller 2008) and retrieve the attenuation of
the Earth (Matzel 2008; Prieto et al. 2009). It is extremely interesting to note that all these works apply one-bit normalization or other strong
non-linear operations to the noise records. In spite of such operations, information contained in both phase and amplitude of the correlations
seems to be preserved. Understanding this non-intuitive phenomenon is the primary motivation for this work.

Voelcker (1966a) showed that zeros are fundamental informational attributes of signals. Therefore, it is not very surprising to retrieve
some interesting information in one-bit noise correlations. Nevertheless, because of the lack of a theory, it is not clear so far what is effectively
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recovered. In this paper, a theoretical development is proposed to explain the full waveform (phase and amplitude) of the one-bit noise
correlation. First, we follow Snieder (2004) to get an expression of the raw noise correlation. Using this expression and a statistical approach
similar to Derode et al. (1999) and Larose et al. (2008), we introduce the concepts of coherent and incoherent noise. These two kinds of
noise are Gaussian and their variances can be evaluated using the central limit theorem. Then, we look at the one-bit noise correlation: we
apply basic laws of probability to the samples of one-bit noise records and we obtain a formula for the correlation. This formula involves the
standard deviations of both coherent and incoherent noise. In this work, we provide explicit expressions for these standard deviations in the
context of surface waves propagating in a layered medium. Extension to body waves and full 3-D cases is discussed at the end of the paper.
Both elastic and anelastic cases are investigated.

2 T H E R AW N O I S E C O R R E L AT I O N

2.1 General expression of the raw noise correlation

Consider two stations A and B that are separated by a distance �. These stations respectively record signals A(t) and B(t) due to random
noise sources acting in the medium. We denote by Ap(t), Bp(t) the signal received in A, B, respectively, from a single point-source P. The
correlation between A(t) and B(t) can thus be written as

CAB(t) =
∑
p, p′

∫
Ap(τ )Bp′ (t + τ )dτ. (1)

We assume that the signals produced by two distinct sources are uncorrelated. Therefore, the cross terms p �= p′ in the double sum
∑

p,p′

vanish and expression (1) can be reduced to

CAB(t) =
∑

p

C p
AB(t), (2)

with

C p
AB(t) =

∫
Ap(τ )Bp(t + τ )dτ. (3)

In the following, the sources and receivers are placed on the surface of a laterally homogeneous half-space (the elastic parameters of the
medium only depend on the depth z). For the sake of simplicity, we work with fundamental mode surface waves, but overtones could be
included by introducing a summation, as done by Snieder (2004), Halliday & Curtis (2008) or Kimman & Trampert (2010). Moreover, we
consider vertical displacements only, but the whole theory developed in this paper could be easily extended to all components of the Green’s
tensor. In the frequency domain, the vertical-vertical component of the fundamental mode surface wave Green’s tensor between two points U
and V is given by (Aki & Richards 2002)

GU V (ω) = exp
[− i

(
k dU V + π

4

)]
√

π

2 k dU V

, (4)

where ω is the angular frequency, k(ω) is the wavenumber and dUV is the horizontal distance between U and V . Using eq. (4) and denoting
by |Sp(ω)|2 the power spectral density of source P, the Fourier transform of cross-correlation (3) becomes

C p
AB(ω) = 2

π
|Sp(ω)|2 exp

[
i k
(
dAP − dB P

)]
k
√

dAP dB P

. (5)

It follows that

CAB(ω) = 2

π

∑
p

|Sp(ω)|2 exp
[
i k
(
dAP − dB P

)]
k
√

dAP dB P

. (6)

Replacing the summation over discrete sources by a surface integration (the variables with index p become functions of the source location
r), we obtain

CAB(ω) = 2

π

∫∫
|S(r; ω)|2 exp

[
i k
(
dA(r) − dB(r)

)]
k
√

dA(r) dB(r)
dr. (7)

2.2 The raw noise correlation in the case of a uniform distribution of sources

When |S(r; ω)|2 is a smooth function of r , the integral in eq. (7) can be evaluated using the stationary phase approximation (Snieder, 2004).
Let us use this approximation in a Cartesian coordinate system. We position receiver A at the origin and receiver B on the positive x-axis.
Then

CAB(ω) = 2

ik

exp
[
i
(
k� + π

4

)]
√

π

2 k�

∫ ∞

�

|S(x, y = 0; ω)|2dx

− 2

ik

exp
[− i

(
k� + π

4

)]
√

π

2 k�

∫ 0

−∞
|S(x, y = 0; ω)|2dx . (8)
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On the one-bit noise correlation 1399

This result shows that the Green’s function (GF) between A and B can emerge from the correlation of random noise records. The first term on
the right-hand side contains the acausal GF and arises because of the noise sources at x > �. The second term contains the causal GF and
arises because of the sources at x < 0. This result is not new. It was first demonstrated by Lobkis & Weaver (2001) using the assumption of
equipartitioning of the Earth’s normal modes. Other proofs followed, invoking the fluctuation-dissipation theorem (van Tiggelen 2003), an
analogy with time-reversal experiments (Derode et al. 2003), the reciprocity theorem (Wapenaar 2004) or the stationary-phase approximation
(Snieder 2004).

Denoting by v(ω) the phase velocity of the fundamental mode Rayleigh wave and considering a uniform distribution of noise sources
such that |S(x , y = 0;ω)|2 = |S(ω)|2, eq. (8) becomes

CAB(ω) = 2D
v(ω)|S(ω)|2

iω

{
exp
[
i
(
k� + π

4

)]
√

π

2 k�
− exp

[−i
(
k� + π

4

)]
√

π

2 k�

}
. (9)

We limit the integration over x to a range bounded by a finite distance D � �. This is to prevent this integration to diverge. In practice, there
is no problem of divergence because of intrinsic attenuation. We study this case in Section 5. Eq. (9) shows that one has to differentiate the
correlation in time to get the GF. Not only the waveform but also the amplitude decay of the GF with distance � is retrieved by the correlation.

Fig. 1 confirms the theory. This figure shows results from a numerical experiment similar to those carried out by Cupillard & Capdeville
(2010). The experiment consists in computing synthetic noise recordings in a spherical earth using a normal mode summation technique
(e.g. Woodhouse & Girnius 1982). 300 sources are randomly positioned on the surface of the Earth. Each source generates a 24-hr random
signal filtered between 66 and 200 s. An array of 12 receivers (n = 0, ..., 11) records the wavefield produced by the noise sources. The
correlations between the vertical displacement at station 0 and the vertical displacement at the other stations are performed. The Earth model
is PREM (Dziewonski & Anderson 1981). The configuration of the experiment is shown in Fig. 1(a). It is repeated 5120 times (64 processors
perform it 80 times each) and all the obtained correlations are then stacked. You can refer to Cupillard & Capdeville (2010) for more details.
Fig. 1(b) compares the time-derivative of the correlation between stations 0 and 6 with the corresponding fundamental mode GF. As predicted
by the theory, the two curves match very well. We also plot the comparison between the amplitude decay of the correlation along the array
and the amplitude decay of the GF. Again, the curves match very well, which confirms the theory.

3 C O H E R E N T A N D I N C O H E R E N T N O I S E

3.1 Definition

From a statistical point of view, cross-correlation (3) can be viewed as an ensemble average over time τ . Thus we can write

C p
AB(t) = σA p σBp ρ

p
AB(t), (10)

where σA p , σBp are the standard deviations of the stationary signals Ap(τ ), Bp(τ ), respectively, and ρ
p
AB (t) is the correlation coefficient between

Ap(τ ) and Bp(t + τ ). The standard deviation σA p , σBp is the square-root of the energy arriving in A, B, respectively, from a point-source P, so

σA p = 1√
dAP

(11)

and

σBp = 1√
dB P

. (12)

Using the inverse Fourier transform of eq. (5) we find the expression of ρ
p
AB.

ρ
p

AB(t) = 2

π

∫ |Sp(ω)|2
k

exp

[
iω

(
t − dB P − dAP

v(ω)

)]
dω. (13)

As σ 2
A p

and σ 2
Bp

are both energies from P, the power spectral density |Sp(ω)|2 should appear in their definitions. Nevertheless, it is possible
and much more practical to put this common factor in the definition of ρ

p
AB. We now substitute eq. (10) into eq. (2) and replace the summation∑

p by a surface integration. This gives us

CAB(t) =
∫∫

σA(r)σB(r)ρAB(r; t) dr, (14)

with

σA(r) = 1√
dA(r)

, (15)

σB(r) = 1√
dB(r)

, (16)

ρAB(r; t) = 2

π

∫ |S(r; ω)|2
k

exp

[
iω

(
t − dB(r) − dA(r)

v(ω)

)]
dω. (17)
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1400 P. Cupillard, L. Stehly and B. Romanowicz

Figure 1. Source and receiver configuration of the simulation (a). Tiny pixels indicate the location of 24 000 noise sources generated by a single processor. All
the sources are on the surface of the Earth. Diamonds represent 11 receivers (n = 1, ..., 11). Two consecutive receivers are separated by 5◦. The synthetic noise
record from each station is correlated with the noise recorded at receiver 0 (white star). The distance between stations 0 and 1 is 10◦. We plot the time-derivative
of the correlation between stations 0 and 6 and the corresponding fundamental mode Rayleigh wave GF (b). We also compare the amplitude decay of the
correlation with the amplitude decay of the GF (c). We see that the correlation fits both waveform and relative amplitude of the GF.

Taking a uniform distribution of noise sources into account, we easily demonstrate (Appendix A) that

C 2
AB(t) =

∫∫
σ 2

A (r)ρAB(r; t) dr

∫∫
σ 2

B (r)ρAB(r; t) dr. (18)

This last expression shows that the instantaneous energy of the correlation is the product of the two functions

�A(t) =
∫∫

σ 2
A (r)ρAB(r; t) dr (19)

and

�B(t) =
∫∫

σ 2
B (r)ρAB(r; t) dr. (20)
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On the one-bit noise correlation 1401

Figure 2. The two coordinate systems used in our derivation. We first consider a simple Cartesian system (x , y). Receivers A and B are positioned in (0, 0) and
(0, �), respectively. The quantity dA(r) − dB(r) is involved in our derivation. This quantity is constant over a hyperbola so we introduce the coordinates (θ , φ)
to work in a more convenient way. θ is the angle between the asymptote of a given hyperbola and the y-axis. φ the curvilinear coordinate along each hyperbola.

Let us study �A(t) and �B(t). Without changing our notations, we replace all the complex time-variables by their respective real part.
Eq. (18) is still valid in this case and the correlation coefficient becomes

ρAB(r; t) = 2

π

∫ |S(r; ω)|2
k

cos

[
ω

(
t − dB(r) − dA(r)

v(ω)

)]
dω. (21)

The value of dB(r) − dA(r) is constant over a hyperbola. Each hyperbola is characterized by θ which is the angle between its asymptotes and
the y-axis (Fig. 2). We denote by φ the curvilinear coordinate along each hyperbola. Following Roux et al. (2005) we make the change of
variables⎧⎪⎪⎨
⎪⎪⎩

x = �

2
sin θ cosh φ + �

2

y = �

2
cos θ sinh φ

with

{
θ ∈ [− π

2 , π

2

]
φ ∈ R.

(22)

It follows

dA(r) = �

2
(cosh φ + sin θ ), (23)

dB(r) = �

2
(cosh φ − sin θ ) (24)

and

dB(r) − dA(r) = −� sin θ. (25)

We neglect the frequency-dependence of the phase velocity [v(ω) = v] and we use the fact that the distribution of noise sources is uniform
so we can rewrite (21) as a function of θ .

ρAB(θ ; t) = 2v

π

∫ |S(ω)|2
ω

cos

[
ω

(
t + � sin θ

v

)]
dω. (26)

To perform the integration over ω, we need to choose an amplitude spectrum |S(ω)|. For the sake of simplicity, we consider a boxcar function
H (ω0 + �ω

2 ) − H (ω0 − �ω

2 ), where H is the Heaviside step function. We obtain

ρAB(θ ; t) = 2v

π

{
ci

[(
ω0 + �ω

2

)(
t + � sin θ

v

)]
− ci

[(
ω0 − �ω

2

)(
t + � sin θ

v

)]}
, (27)

where ci is the cosine-integral special function (Appendix B). This function is defined in the positive real number space R
+∗ but we can

extend it to the set of negative arguments by posing ci(u) = ci(−u) ∀u ∈ R
−∗. Moreover, ci is not defined at u = 0 but the function in braces

in eq. (27) has a finite limit when t → −� sin θ

v
so we can define it at 0 (Appendix B). Let us assume that the boxcar width �ω is very large.
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1402 P. Cupillard, L. Stehly and B. Romanowicz

Figure 3. ρAB as a function of θ for four different values of t in the case of a large �ω = 1.99 ω0 (a). The four curves are positive for all θ . We also plot the
correlation CAB(t) using three different equations (b). The exact solution (eq. 33) is in blue, the solution involving the coherent noise (eq. 34) is in dashed red
and the solution given by the stationary phase approximation (eq. 38) is in dotted green. For the calculation we took f 0 = 0.05 Hz, v = 3 km s−1 and � =
10 λ0 = 600 km.

Then ρAB(θ ;t) is always positive (Fig. 3a). This means that �A(t) and �B(t) can be defined as sums of variances. Each variance in the sum
�A(t), �B(t) is the energy σ 2

A (r), σ 2
B (r), arriving in A, B, respectively, due to a noise point-source r weighted by a positive value ρAB(θ ;t).

Therefore, according to the central limit theorem, there exist for each lag time t two Gaussian signals At (τ ) and Bt (τ ) with zero mean and
variance σ 2

At = �A(t) and σ 2
Bt = �B(t), respectively, such that At (τ ) and Bt (t + τ ) are perfectly correlated and give rise to CAB(t). In other

words,

CAB(t) =
∫

At (τ )Bt (t + τ )dτ = σAt σBt . (28)

We call At (τ ) and Bt (τ ) coherent noise at lag time t. We also define incoherent noise:

At (τ ) = A(τ ) − At (τ ) (29)

and

Bt (τ ) = B(τ ) − Bt (τ ), (30)

with variances σ 2
At and σ 2

Bt . From eqs (28) to (30), it follows that∫
At (τ )Bt (t + τ )dτ +

∫
At (τ )Bt (t + τ )dτ +

∫
At (τ )Bt (t + τ )dτ = 0. (31)

3.2 Comparing three different expressions of the raw noise correlation

Fig. 3(b) shows the correlation CAB(t) computed in three different ways.

(i) Using eqs (23), (24) and (27) and the Jacobian of the change of variable (22)

J =
(

�

2

)2

(cosh2φ − sin2θ ), (32)

we can rewrite the exact solution (14) as

CAB(t) = v�

π

∫ π
2

− π
2

∫ φ0

0

√
cosh2φ − sin2θ{ci+ − ci−}dφdθ, (33)
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On the one-bit noise correlation 1403

where ci+ = ci[(ω0 + �ω

2 )(t + � sin θ

v
)], ci− = ci[(ω0 − �ω

2 )(t + � sin θ

v
)] and φ0 � 1 is a finite value we introduce to bound the integration

over φ (such as D in eq. 9). A numerical calculation of the double integral gives the curve in blue.
(ii) Using again eqs (23), (24), (27) and (32) we can express �A(t) and �B(t) as a function of θ and φ0. Then we can rewrite (28).

CAB(t) = σAt σBt

=
√

�A(t)
√

�B(t)

=
√

v�

π

∫ π
2

− π
2

(sinhφ0 − φ0 sinθ){ci+ − ci−}dθ

√
v�

π

∫ π
2

− π
2

(sinhφ0 + φ0 sinθ ){ci+ − ci−}dθ.

(34)

The two integrations over θ are performed numerically. We obtain the dashed red curve in Fig. 3(b). We see that this curve is indistinguishable
from the blue curve, which confirms expression (18). It is actually very easy to give another proof, different from Appendix A, of this
expression. Indeed, φ0 is large so both �A(t) and �B(t) reduce to

�A(t) = �B(t) = v�eφ0

2π

∫ π
2

− π
2

{ci+ − ci−}dθ. (35)

Eq. (33) also reduces to

CAB(t) = v�eφ0

2π

∫ π
2

− π
2

{ci+ − ci−}dθ (36)

so

C2
AB(t) = �A(t)�B(t). (37)

(iii) The expression of the correlation obtained using the stationary phase approximation is also plotted in Fig. 3(b) (dotted green). It
corresponds to the real part of the inverse Fourier transform of eq. (9).

CAB(t) = 2Dv

∫ ω0+ �ω
2

ω0− �ω
2

1

ω

[
cos
(
ωt + k� − π

4

)
√

π

2 k�
+ cos

(
ωt − k� + π

4

)
√

π

2 k�

]
dω. (38)

This approximate solution is good but not excellent. This is because �ω is large. Very low frequencies are therefore involved and the
exponential in the integrand in eq. (7) does not oscillate much.

3.3 Studying the case of narrow band sources

In practice, �ω is not large; most of the ambient noise energy is concentrated between 5 and 20 s (Longuet-Higgins 1950; Friedrich et al.
1998; Schulte-Pelkum et al. 2004; Stehly et al. 2006; Gerstoft & Tanimoto 2007; Pedersen et al. 2007; Kedar et al. 2008; Stutzmann et al.
2009), so �ω ∼ ω0. In this case, ρAB(θ ;t) can be negative (Fig. 4a) and �A(t) and �B(t) as expressed in (19) and (20) are no longer sums of
variances. Nevertheless, the stationary phase approximation can be used to rewrite these equations.

�A(t) =
∫ D+ �

2

�

σ 2
A (x, y = 0)ρAB(x, y = 0; t)dx

{
1 + o

[
(�/D)0

]}

+
∫ 0

�
2 −D

σ 2
A (x, y = 0)ρAB(x, y = 0; t)dx

{
1 + o

[
(�/D)0

]} (39)

and

�B(t) =
∫ D+ �

2

�

σ 2
B (x, y = 0)ρAB(x, y = 0; t)dx

{
1 + o

[
(�/D)0

]}

+
∫ 0

�
2 −D

σ 2
B (x, y = 0)ρAB(x, y = 0; t)dx

{
1 + o

[
(�/D)0

]}
, (40)

with

ρAB(x, y = 0; t) = v
√

x(x − �)
∫ ω0+ �ω

2

ω0− �ω
2

1

ω

[
cos
(
ωt + k� − π

4

)
√

π

2 k�
+ cos

(
ωt − k� + π

4

)
√

π

2 k�

]
dω. (41)

These expressions are easily obtained using eqs (A5)–(A8). Eq. (41) shows that the sign of ρAB is a constant over x for a given lag time t, so
we can define coherent noise At (τ ) and Bt (τ ) with variances σ 2

At and σ 2
Bt , respectively, as we did in the previous paragraph. We have

σ 2
At = sgn [ρAB(x, y = 0; t)] �A(t) (42)

=
∫ D+ �

2

�

σ 2
A (x, y = 0)|ρAB(x, y = 0; t)|dx

{
1 + o

[
(�/D)0

]}

+
∫ 0

�
2 −D

σ 2
A (x, y = 0)|ρAB(x, y = 0; t)|dx

{
1 + o

[
(�/D)0

]}
, (43)
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1404 P. Cupillard, L. Stehly and B. Romanowicz

Figure 4. ρAB as a function of θ for four different values of t in the case of a small �ω = ω0 (a). Unlike the case of a large �ω shown in Fig. 3, the four curves
can be positive or negative depending on θ . The correlation CAB(t) is also plotted using three different equations (b). The exact solution (eq. 33) is in blue, the
solution involving the coherent noise (eq. 46) is in dashed red and the solution given by the stationary phase approximation (eq. 38) is in dotted green. For the
calculation we took f 0 = 0.05 Hz, v = 3 km s −1 and � = 10 λ0 = 600 km.

σ 2
Bt = sgn [ρAB(x, y = 0; t)] �B(t) (44)

=
∫ D+ �

2

�

σ 2
B (x, y = 0)|ρAB(x, y = 0; t)|dx

{
1 + o

[
(�/D)0

]}

+
∫ 0

�
2 −D

σ 2
B (x, y = 0)|ρAB(x, y = 0; t)|dx

{
1 + o

[
(�/D)0

]}
(45)

and

CAB(t) =
∫

At (τ )Bt (t + τ )dτ = sgn [ρAB(x, y = 0; t)] σAt σBt . (46)

In the last equation we see that the sign of ρAB indicates if At (τ ) and Bt (t + τ ) are perfectly correlated or perfectly anticorrelated. Of course
we can also define incoherent noise.

Again, we plot CAB(t) using three different equations (Fig. 4b). (i) The exact solution (33) is represented in blue. (ii) The result from the
stationary phase approximation (eq. 38) is the dotted green curve. We see that it perfectly fits the blue curve, meaning that the approximation
is very good when �ω = ω0. (iii) The dashed red curve corresponds to eq. (46). In this last equation, σAt and σBt are obtained putting
expression (41) in (43) and (45). This gives

σAt = σBt =
√√√√2Dv

∣∣∣∣∣
∫ ω0+ �ω

2

ω0− �ω
2

1

ω

[
cos
(
ωt + k� − π

4

)
√

π

2 k�
+ cos

(
ωt − k� + π

4

)
√

π

2 k�

]
dω

∣∣∣∣∣ (47)

=
√

|CAB(t)| (48)

The fact that both σAt and σBt are equal to the square root of the correlation is not surprising. Indeed, expressions (39) and (40) have been
obtained using the zeroth-order version (o[(�/D)0]) of eqs (A6) and (A8). In this case, both �A(ω) and �B(ω) are equal to CAB(ω). This
explains why the blue and the dashed red curves are identical in the figure.
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4 T H E O N E - B I T N O I S E C O R R E L AT I O N

4.1 General expression of the one-bit noise correlation

One-bit normalization consists of retaining only the sign of the raw signal by replacing all positive amplitudes with a 1 and all negative
amplitudes with a −1. The one-bit noise correlation C ob

AB (t) between A(t) and B(t) can be written

C ob
AB(t) =

∫
sgn[A(τ )] sgn[B(t + τ )] dτ (49)

= n1(t) − n−1(t), (50)

where n1(t) and n−1(t) are the number of samples for which sgn[A(τ )] = sgn[B(t + τ )], and sgn[A(τ )] �= sgn[B(t + τ )], respectively.
For some samples τ, |At (τ )| > |At (τ )| or |Bt (t +τ )| > |Bt (t +τ )|: at one of the two stations, the incoherent noise has a larger amplitude

than the coherent noise and so controls the sign of the sample at this station. In this case, the two events sgn[A(τ )] = sgn[B(t + τ )] and
sgn[A(τ )] �= sgn[B(t + τ )] have the same probability. This is because of the incoherency of the random signals At (τ ) and Bt (t + τ ) (cf.
eq. 31). Therefore we have n1(t) = n−1(t) for this population of samples, which means that there is no contribution from this population to
the value of C ob

AB (t).
For the other samples, |At (τ )| < |At (τ )| and |Bt (t + τ )| < |Bt (t + τ )|: the coherent noise controls the sign of both A(τ ) and B(t +

τ ), so sgn[A(τ )] = sgn[At (τ )] and sgn[B(t + τ )] = sgn[Bt (t + τ )]. Because of the perfect correlation or anticorrelation between At (τ ) and
Bt (t + τ ) (cf. eqs 28 and 46) we have sgn[Bt (t + τ )] = sgn[At (τ )] ∀τ (so n−1(t) = 0) or sgn[Bt (t + τ )] �= sgn[At (τ )] ∀τ (so n1(t) = 0).
Therefore, we can write

|C ob
AB(t)| = n Pt

A Pt
B, (51)

where n is the total number of samples in the correlation, Pt
A is the probability that |At (τ )| > |At (τ )| and Pt

B is the probability that
|Bt (τ )| > |Bt (τ )|.

Coherent and incoherent noise are both Gaussian so we are able to express Pt
A and Pt

B (Appendix C). Denoting by σAt and σBt the
standard deviation of At (τ ) and Bt (τ ), respectively, we find

|C ob
AB(t)| = n

[
1 − 2

π
arctan

(
σAt

σAt

)][
1 − 2

π
arctan

(
σBt

σBt

)]
. (52)

Eq. (52) is the most important result of this paper. It gives the expression of the one-bit noise correlation and shows how it is related to
physical parameters. The involved physical parameters are the standard deviations of coherent and incoherent noise. More precisely, the ratio
wRt = σRt /σRt at each receiver R is the argument of an inverse tangent function. At a given time t, if there is no coherent noise at one of the
receivers, then no signal emerges from the correlation: C ob

AB (t) = 0 because wRt tends to infinity so 1 − 2
π

arctan(wRt ) = 0. On the contrary,
if the coherent energy is large with respect to the incoherent energy at both receivers, then most of the n samples contribute to the correlation
so |C ob

AB (t)| is large. As long as coherent and incoherent noise exist, eq. (52) is valid. In Section 3 we defined these two kinds of noise in the
case of a uniform distribution of sources. One can reasonably think that they also exist in the case of other distributions.

4.2 The one-bit noise correlation in the case of a uniform distribution of sources

Now we study what (52) becomes in the case of a uniform distribution of noise sources. From eqs (29) and (30) we have

σ 2
At = σ 2

A − σ 2
At , (53)

σ 2
Bt = σ 2

B − σ 2
Bt , (54)

respectively, where σ 2
A and σ 2

B are the variance of A(t) and B(t), respectively. Then

|C ob
AB(t)| =

[
1 − 2

π
arctan

√
σ 2

A

σ 2
At

− 1

][
1 − 2

π
arctan

√
σ 2

B

σ 2
Bt

− 1

]
. (55)

In this last expression, we normalized the correlation by the number of samples. The distribution of sources is uniform so σ 2
A = σ 2

B = σ 2,
where σ 2 = CUU (t = 0) is the autocorrelation peak at any point U at the surface of the medium. Moreover, eq. (48) (and also eqs 35 and 36
in the case of a large �ω) shows that

σ 2
At = σ 2

Bt = |CAB(t)|, (56)

so (55) becomes

|C ob
AB(t)| =

[
1 − 2

π
arctan

√
σ 2

|CAB(t)| − 1

]2

. (57)
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1406 P. Cupillard, L. Stehly and B. Romanowicz

Figure 5. Comparison between raw noise correlations and one-bit noise correlations obtained by numerical simulation (cf. Fig. 1a). The time-derivatives of
the two waveforms from the pair of stations 0 and 6 are very similar (a). The amplitude decays along the array of receivers also match very well (b).

Noting that σ 2 � |CAB(t)| and arctan 1
x = π

2 − arctan x, ∀x ∈ R
+∗, we obtain

|C ob
AB(t)| =

[
2

π
arctan

√
|CAB(t)|

σ 2

]2

. (58)

The argument of the arctan function is close to zero so the first term of its Taylor series (arctan x = x) can be used as a good linear
approximation. It follows that

|C ob
AB(t)| =

(
2

πσ

)2

|CAB(t)|. (59)

This equation sets the equality between the raw and the one-bit noise correlations in the case of a uniform distribution of noise sources
generating fundamental mode surface waves. Of course, the absolute amplitudes are not the same but the waveforms and the relative amplitudes
are identical. Previous works (Derode et al. 1999; Larose et al. 2004) showed the emergence of a signal from a one-bit noise correlation and
studied its signal-to-noise ratio, but it is the first time that the equality (59) is demonstrated. Correlations from the numerical simulation (cf.
Fig. 1a) illustrate our result. One-bit noise correlations are compared to raw noise correlations (Fig. 5). We see that the waveforms and the
amplitude decays are the same.

5 W H AT H A P P E N S I N A N A N E L A S T I C M E D I U M

We now introduce intrinsic attenuation in the medium. The fundamental mode Rayleigh wave GF between two points U and V then is

GU V (ω) = exp
[−i
(
k dU V + π

4

)]
√

π

2 k dU V

exp

(
−k dU V

2Q

)
, (60)

where Q is the quality factor of the medium. Therefore, the raw noise correlation between A(t) and B(t) can be written in the frequency domain
as

CAB(ω) = 2

π

∫∫
|S(r; ω)|2 exp [i k (dA(r) − dB(r))]

k
√

dA(r) dB(r)
exp

[
− k

2Q
(dA(r) + dB(r))

]
dr. (61)

We assume that |S(r ;ω)|2 is a smooth function of r so we can use the stationary phase approximation. For the sake of simplicity, we consider
the signal emerging from the sources at x < 0 only. We obtain

CAB(ω) = − 2

ik

exp
[−i
(
k � + π

4

)]
√

π

2 k �
exp

(
− k�

2Q

)∫ 0

−∞
|S(x, y = 0; ω)|2 exp

(
kx

Q

)
dx . (62)

Expression (62) shows that the correlation contains the GF of the anelastic medium, including geometrical spreading as well as intrinsic
attenuation. We assume a uniform distribution of noise so we get

CAB(ω) = −2L
v(ω)|S(ω)|2

iω

exp
[−i
(
k� + π

4

)]
√

π

2 k�
exp

(
− k�

2Q

)
, (63)

where L = Q
k is a factor also found by Snieder (2004). Eq. (63) shows that, again, the correlation has to be differentiate in time to match the

GF. To check eq. (63), we carry out a new numerical experiment in which an anelastic PREM is considered. Results are shown in Fig. 6. We
see that the time-derivative of the correlation fits both the waveform and the amplitude decay of the GF.
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On the one-bit noise correlation 1407

Figure 6. Comparison between the GF and the raw noise correlation in an anelastic earth. We use the pair of stations 0 and 6 to compare the waveforms (a).
We see they are very similar. We also compare the amplitude decays (b). They are the same.

Following what we developed in Section 3, we introduce the functions σ A(r) and σ B(r) to write the correlation CAB in the time domain
as

CAB(t) =
∫∫

σA(r)σB(r)ρAB(r; t) dr. (64)

In an anelastic medium, we have

σA(r) =
exp
(

−k dA (r )
2Q

)
√

dA(r)
(65)

and

σB(r) =
exp
(

−k dB (r )
2Q

)
√

dB(r)
. (66)

Using the inverse Fourier transform of eq. (61), we then find that the correlation coefficient ρAB is the same than in the pure elastic case (cf.
eq. 17).

ρAB(r; t) = 2

π

∫ |S(r; ω)|2
k

exp

[
iω

(
t − dB(r) − dA(r)

v(ω)

)]
dω. (67)

The question now is to know if eq. (18) is still valid with the new definition of σ A(r) and σ B(r) (expressions 65 and 66). If so, then we will
be able to define coherent and incoherent noise, and the general formula for the one-bit noise correlation (52) (and also 55) will be usable.
Appendix D shows that

�A(t) =
∫∫

σ 2
A (r)ρAB(r, t) dr

= −2 � �

(
1

2

)∫
v(ω)|S(ω)|2

iω
U

(
1

2
, 2;

k�

Q

)
exp
[
i
(
ωt − k� − π

4

)]
√

π

2 k�
dω (68)

and

�B(t) =
∫∫

σ 2
B (r)ρAB(r, t) dr

= −2 � �

(
3

2

)∫
v(ω)|S(ω)|2

iω
U

(
3

2
, 2;

k�

Q

)
exp
[
i
(
ωt − k� − π

4

)]
√

π

2 k�
exp

(
−k�

Q

)
dω. (69)

Considering the real part of these equations and assuming that v(ω) = v and |S(ω)| = H (ω0 + �ω

2 ) − H (ω0 − �ω

2 ), we get

�A(t) = 2 � v �

(
1

2

)∫ ω0+ �ω
2

ω0− �ω
2

U

(
1

2
, 2;

k�

Q

)
cos
(
ωt − k� + π

4

)
ω
√

π

2 k�
dω (70)

and

�B(t) = 2 � v �

(
3

2

)∫ ω0+ �ω
2

ω0− �ω
2

U

(
3

2
, 2;

k�

Q

)
cos
(
ωt − k� + π

4

)
ω
√

π

2 k�
exp

(
−k�

Q

)
dω. (71)
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1408 P. Cupillard, L. Stehly and B. Romanowicz

In Fig. 7, we plot the two normalized functions �A(t) and �B(t) for two different values of �ω (1.99ω0 and ω0) and two different values of
Q (50 and 500). When Q is high, the two curves (plain blue for �A, red dashed for �B) are hardly distinguishable. This is not surprising: the
intrinsic attenuation is small so we are close to the elastic case and we have �A(t) ∝ �B(t) (the absolute amplitudes are different so there is
no equality). When Q is small, the effect of the intrinsic attenuation is significant and breaks the proportionality between the two functions.
In the same figure, we also plot the product �A(t)�B(t) and we compare the result with the square of the correlation (63) written in the time
domain.

CAB(t) = 2 Q v2

∫ ω0+ �ω
2

ω0− �ω
2

cos
(
ωt − k� + π

4

)
ω2
√

π

2 k�
exp

(
− k�

2Q

)
dω. (72)

The two curves (plain blue for �A(t)�B(t), red dashed for C2
AB(t)) are normalized. In each case, they match very well. This is a nice result

because it shows that eq. (18) still holds (up to a constant) in the anelastic case. We are not able to demonstrate this result analytically but the
extreme values of Q (50 and 500 correspond to extremely low and high magnitudes in the Earth) and �ω we use are good grounds to assess
it, at least to first order. Finally, we plot �A(t)�B(t) and C2

AB(t) at t = t0 = �

2 − π

ω04 as a function of the interstation distance � ranging from
3λ0 to 20λ0. Again, the curves match very well. This means that the proportionality constant between �A(t)�B(t) and C2

AB(t) is not a function
of �. In other words, the amplitude decay of �A(t)�B(t) is the same as the amplitude decay of C2

AB(t). We are now allowed to write

C 2
AB(t) � α�A(t)�B(t), (73)

where α is a positive constant over t and �. As the expression of ρAB(r;t) used in the definition of �A(t) and �B(t) is the same as the one in
the elastic case (cf. eqs 17 and 67), we can take advantage of all the properties detailed in Section 3 and define coherent and incoherent noise.
Therefore, formula (55) can be used to express the one-bit noise correlation. Putting the constant α into σ 2

At , we find

|C ob
AB(t)| =

⎡
⎣1 − 2

π
arctan

√
σ 2

A

α|�A(t)| − 1

⎤
⎦
⎡
⎣1 − 2

π
arctan

√
σ 2

B

|�B(t)| − 1

⎤
⎦ . (74)

The distribution of noise sources is uniform so, again, we can use the fact that σ 2
A = σ 2

B = σ 2 = CUU (t = 0) � �A,B(t) to reduce (74) to

|C ob
AB(t)| =

(
2

πσ

)2√
α|�A(t)|

√
|�B(t)|. (75)

�A(t) and �B(t) have same sign so (75) becomes

|C ob
AB(t)| =

(
2

πσ

)2√
α�A(t)�B(t) (76)

�
(

2

πσ

)2

|CAB(t)|. (77)

Similarly to the elastic case, we find that the one-bit noise correlation is equal to the raw noise correlation. This is confirmed by numerical
results. In Fig. 8 we compare the waveforms and the amplitude decays of raw and one-bit noise correlations. We see they are the same.

6 D I S C U S S I O N A N D C O N C LU S I O N S

We provided an expression for the one-bit noise correlation. This expression involves the standard deviations of coherent and incoherent
noise. For a given lag time t, the coherent noise At (τ ) at a receiver A is a Gaussian signal that one can extract from the full noise record A(τ )
and that perfectly correlates with the coherent noise Bt (t + τ ) from another full noise record B(t + τ ) at a receiver B. Then, the correlation
of the coherent noises is exactly the correlation of the full noise records:

∫
A(τ )B(t + τ )dτ = ∫ At (τ )Bt (t + τ )dτ . The incoherent noise is

the difference between the full noise record and the coherent noise. As long as you can define these two kinds of noise, our expression of the
one-bit noise correlation is valid.

In this work, we detailed the coherent and incoherent standard deviations in the case of a uniform distribution of noise sources generating
surface waves on a laterally homogeneous half-space. In this case, we showed that the one-bit noise correlation is equal to the raw noise
correlation and so contains the GF. This property has been known for a long time. It is true in both elastic and anelastic media and it has been
extensively used so far (e.g. Shapiro & Campillo 2004; Shapiro et al. 2005; Larose et al. 2007; Yao & van der Hilst 2009). Nevertheless,
there was no theoretical proof of it. We here give one for the first time. An important result is that the equality does not only hold for the
waveform but also for the relative amplitude: both geometrical spreading and intrinsic attenuation of the GF are retrieved by the one-bit noise
correlation when the distribution of noise sources is uniform. This means that information can be extracted from the amplitude of one-bit
noise correlations, which is not obvious because one-bit normalization is a very strong operation on the amplitude of noise recordings. In
the case of a non-uniform distribution of sources, one has to study the coherent and incoherent standard deviations which correspond to the
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On the one-bit noise correlation 1409

Figure 7. Comparison between �A(t) and �B(t) (left-hand side column), �A(t)�B(t) and C 2
AB (t) (middle column) and �A(t0)�B(t0) and C 2

AB (t0) as a
function of � (right-hand side column) for two different values of �ω: 1.99 ω0 (a) and ω0 (b). The medium is anelastic. Two different values of Q are tested:
50 and 500. The other parameters are f 0 = 0.05 Hz and v = 3 km s−1. All the waveforms (functions of t) are computed using � = 10 λ0 = 600 km.
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1410 P. Cupillard, L. Stehly and B. Romanowicz

Figure 8. Same as Fig. 5 in an anelastic earth.

given distribution to estimate both the waveform and the relative amplitude of one-bit noise correlations. This is in agreement with numerical
studies carried out by Cupillard & Capdeville (2010).

In pure elastic media, eq. (18) is rigorously demonstrated. This equation is at the basis of our theory. It relates the square of the raw
noise correlation C2

AB(t) and the variances �A(t) and �B(t). In anelastic media, C2
AB(t) is plotted and compared with the product �A(t) ×

�B(t) to check if the expression is valid (Fig. 7, middle column) but no rigorous demonstration is provided. On the four plots, the curves are
very similar but they are not exactly the same. It is particularly visible when �ω = ω0 and Q = 50. This means that eq. (18) is only true to
first order when using the expressions we found for the coherent variances in the anelastic case. Further investigations are needed to check
if exact expressions of the variances exist in this case. Here, we use approximate expressions and we assume that the small discrepancies in
the amplitude decays (Fig. 7, right-hand side column) are due to these approximations. If it is not the case (i.e. if the small discrepancies are
effective in practice), then measurements of intrinsic attenuation from one-bit noise correlations will give approximate values of Q.

The derivation shown in this paper involves surface waves. It should be easy to write it for body waves as well. The GF between two
points U and V would be

GU V (ω) = exp(−ikdU V )

dU V
, (78)

and the coherent noise could be defined using the following correlation coefficient:

ρAB(θ ; t) =
∫ ω0+ �ω

2

ω0− �ω
2

cos

[
ω

(
t + � sin θ

v

)]
dω (79)

= �ω sinc

[
�ω

2

(
t + � sin θ

v

)]
cos

[
ω0

(
t + � sin θ

v

)]
. (80)

This last expression is very similar to the correlation coefficient introduced in the review paper by Larose (2006). This means that our
definition of coherency is actually the same as previous definitions (Snieder 2004; Roux et al. 2005; Sabra et al. 2005). Here, we just go into
the details of the concept to extract the properties we need to understand the one-bit noise correlation.

The analytical expressions of the standard deviations we provide in this work are obtained in the case of a 1-D layered medium. An
extension of these expressions to a full 3-D case is not straightforward. It would require a description of complex GFs, and scattering should
be taken into account (Halliday & Curtis 2009). Scatterers act as secondary noise sources and drastically change the size of the coherent
and incoherent hyperbolas. When dealing with coda recordings, these hyperbolas depend on the part of the coda that is in use because such
recordings are non-stationary. In this case, our statistical model would need standard deviations which depend on the time in the noise record,
as suggested by Derode et al. (1999) and Larose et al. (2008). To study full 3-D cases, numerical simulations are actually necessary. Using
numerical tools to evaluate standard deviations and understand what the one-bit noise correlation exactly contains in complex media will be
the topic of future work.
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A P P E N D I X A : P RO O F O F E X P R E S S I O N ( 1 8 )

The goal of this appendix is to demonstrate that, in the case of a uniform distribution of noise sources, we have

�A(t)�B(t) = C 2
AB(t), (A1)

with

�A(t) =
∫∫

σ 2
A (r)ρAB(r, t) dr (A2)

and

�B(t) =
∫∫

σ 2
B (r)ρAB(r, t) dr. (A3)

We start from the Fourier transform of �A(t):

�A(ω) = 2

πk

∫∫ |S(r; ω)|2
dA(r)

exp [i k (dA(r) − dB(r))] dr. (A4)

When |S(r ;ω)|2 is a smooth function of r , this integral can be evaluated using the stationary phase approximation:

�A(ω) = 2

ik

exp
[
i
(
k� + π

4

)]
√

π

2 k�

∫ ∞

�

|S(x, y = 0; ω)|2
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k� + π

4

)]
√

π

2 k�

∫ 0

−∞
|S(x, y = 0; ω)|2

√
x − �

x
dx . (A5)

Assuming a uniform distribution of noise sources (|S(x , y = 0;ω)|2 = |S(ω)|2), it follows that

�A(ω) = 2D
v(ω)|S(ω)|2

iω
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)]
, (A6)

where D � � is a distance we introduce to perform the integration over x and prevent this integration to diverge.
In the same way we find
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Writing (A6) and (A8) in the time domain, we finally get

�A(t)�B(t) = 4D2

{∫
v(ω)|S(ω)|2

iω

[
exp
[
i
(
k� + π

4

)]
√

π
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− exp

[−i
(
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(
�

D
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. (A9)

We recognize the first term on the right-hand side to be the square of the inverse Fourier transform of eq. (9), that is to say the square of the
correlation between A(t) and B(t).
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A P P E N D I X B : P R E C I S I O N S O N E Q. ( 2 7 )

The cosine-integral special function ci is defined in R
+∗ by (Abramowitz & Stegun 1972).

ci(u) = −
∫ ∞

u

cos x

x
dx . (B1)

The extension of the definition of ci to R
−∗ is straightforward. Indeed, the change of variable y = −x in eq. (B1) yields

ci(u) = −
∫ −∞

−u

cos y

y
dy, (B2)

so it is natural to pose ci(u) = ci(−u) ∀u ∈ R
−∗.

To fully describe expression (27), we now have to define the function ci[(ω0 + �ω

2 )(t + α)] − ci[(ω0 − �ω

2 )(t + α)] in 0. To do so, we
evaluate the limit of this function when t → −α. By definition we have

ci
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2
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]
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2
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ω
dω, (B3)

so
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t→−α
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2
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ω
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= ln
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2

ω0 − �ω

2

)
. (B5)

The limit exists and is finite, so eq. (27) is defined and continuous in 0.

A P P E N D I X C : P RO O F O F E Q. ( 5 2 )

The probability density function of the random variables At (τ ) and At (τ ) is

f (x) = 1

σAt

√
2π

exp

( −x2

2 σ 2
At

)
(C1)

and

g(x) = 1

σAt

√
2π

exp

(
−x2

2 σ 2
At

)
, (C2)

respectively.
Pt

A is the probability that |At (τ )| > |At (τ )| so

Pt
A =

∫ ∞

0
2g(x)

∫ ∞

x
2 f (y) dy dx (C3)

= 1 − 2√
π

∫ ∞

0
e−x2

erf

(
σAt

σAt
x

)
dx . (C4)

This last integral can be calculated following Gradshteyn & Ryzhik (2007). Then

Pt
A = 1 − 2

π
arctan

(
σAt

σAt

)
. (C5)

In the same way we find the probability that |Bt (τ )| > |Bt (τ )|:

Pt
B = 1 − 2

π
arctan

(
σBt

σBt

)
. (C6)

Finally, we obtain

|C ob
AB(t)| = n

[
1 − 2

π
arctan

(
σAt
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)][
1 − 2

π
arctan

(
σBt
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)]
. (C7)

A P P E N D I X D : �A A N D �B I N T H E A N E L A S T I C C A S E

�A(ω) = 2

πk

∫∫ |S(r; ω)|2 exp
(

−k dA(r )
Q

)
dA(r)

exp [i k (dA(r) − dB(r))] dr. (D1)
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Using the stationary phase approximation in the Cartesian coordinate system shown in Fig. 2, we can reduce this expression to

�A(ω) = − 2

ik

exp
[−i
(
k� + π

4

)]
√

π

2 k�

∫ 0

−∞
|S(x, y = 0; ω)|2 exp

(
kx

Q

)√
x − �

x
dx . (D2)

To get this expression, we considered the signal emerging from the sources at x < 0 only. Assuming a uniform distribution of noise sources
(|S(x , y = 0;ω)|2 = |S(ω)|2), we are able to perform the integral over x following Gradshteyn & Ryzhik (2007). Expression (D2) then becomes

�A(ω) = −2�

ik
�

(
1

2

)
|S(ω)|2 U

(
1

2
, 2;

k�

Q
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exp
[−i
(
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4

)]
√

π

2 k�
, (D3)

where � is the gamma function and U is the confluent hypergeometric function of the second kind (Abramowitz & Stegun 1972). Writing
eq. (D3) in the time domain, we get

�A(t) = −2 � �
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1

2
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ik
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In the same way we find

�B(t) = −2 � �

(
3

2
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