
HAL Id: hal-00812341
https://hal.science/hal-00812341

Submitted on 12 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Threshold-based context analysis approach for
ubiquitous systems

Nesrine Khabou, Ismael Bouassida Rodriguez

To cite this version:
Nesrine Khabou, Ismael Bouassida Rodriguez. Threshold-based context analysis approach for ubiqui-
tous systems. Concurrency and Computation: Practice and Experience, 2015, 27 (6), pp. 1378-1390.
�hal-00812341�

https://hal.science/hal-00812341
https://hal.archives-ouvertes.fr


Threshold-based context analysis approach for ubiquitous systems

Nesrine Khabou and Ismael Bouassida Rodriguez

ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia

Email: nesrine.khabou@redcad.org

Email: bouassida@redcad.org

Abstract—In ubiquitous computing systems, applications
must be able to respond to dynamic context changes in order
to provide suitable services to users. A promising solution
consists of developing context aware applications which auto-
matically change their behavior according to the user needs, the
user preferences, the available resources and the surrounding
environment. Furthermore, a context aware application is
characterized by a closed feed back loop (MAPE) with four
phases: Monitoring, Analysis, Planning and Execution. In this
paper, we focus on the second phase of the MAPE loop. We
elaborate a layered approach composed of a context capture
layer, a context management layer and a context adaptation
layer. Our approach enables systems to become pervasive in a
transparent manner handling context monitoring and context
analysis. We focus our work on the second layer (i.e context
management). We propose first a context classification which
takes into acount the context parameters evolution behavior.
Then, we propose a context analysis approach for ubiquitous
systems which aims at analyzing context information and
detecting significant changes. The proposed approach uses a
threshold based technique in order to detect context changes.
When relevant context changes are detected, the context aware
application will be notified to trigger its suitable process
dynamically in order to deal with the changes.

Keywords-Ubiquitous computing, context awareness, adapta-
tion, analysis techniques, tendency, peak.

I. INTRODUCTION

Nowadays, the tremendous development of wireless com-

munication technologies and the widespread of devices

such as laptops, sensors, RFID tags, etc, have led to the

appearance of ubiquitous computing systems that takes place

as the successor of mobile computing systems. The notion

of pervasive/ubiquitous computing refers to user-centric pro-

visionning of services and applications that are adaptive

to user preferences and monitored conditions, namely the

related context information, in order to consistently offer

value-added and high level services [1]. This new paradigm

brings new challenges to the traditional applications. In fact,

ubiquitous computing is distinguished by heterogenous en-

vironments characterized by context changes. These changes

are related for example to the availability of mobile devices

resources, the devices joining or leaving the network, the

network topology varying, the changing execution environ-

ment (temperature, pressure, noise, etc) and the application

execution context (user location, device screen size). Hence,

an application deployed on ubiquitous envrionments needs

to be able to detect these changes in order to adapt its

behavior to these varieties according to the corresponding

context information. This ability to sense and to detect

the environment changes is called “context awareness”.

Moreover, context awareness [2] is considered to be the key

issue for making devices aware of the situation of their users

and their environment.

As a result, the design and the implementation of context

aware applications on top of ubiquitous environments is a

challenging task. First, these applications need to manage

context continuously, including the collection of a multitude

of context information using various technologies such as

sensors, operating systems, widget [3], etc.

Context information includes all aspects of the computing

environments. e.g, the device characteristics such as the

available memory, the available bandwidth, etc. [4] Sec-

ond, a classification of context information into different

categories should be performed in order to facilitate the

context use. Then, the context aware applications analyze

and interpret context information so that being able to detect

the conditions under which adaptation actions are required.

Finally, the context aware applications trigger adaptation

actions when noticing context changes that can affect the

application performance or functionalities.

It become obvious that there is a need to enable the

development of ubiquitous computing environments offering

best adapted services to users according to the changing

context. This paper presents an approach that satisfy the

afformentioned need.

In this paper, we propose a novel resource context classi-

fication taking into account the resource evolution behavior.

Then, we introduce an approach that allows a application

to detect the context changes, trigger notifications when

necessary and adapt its functionalities to the current context.

Our approach is based on thresholds in order to track down

context changes. Moreover, thresholds are configured by

domain experts or application designers and notifications are

then raised by the corresponding entities in order to trigger

appropriate reconfiguration actions.

The remainder of this paper is structured as follows: In

section II, we introduce the context classification research

studies in ubiquitous environments followed by some work

treating methods used for context changes detection in such

environments. Section III presents the case study called



“Entreprise hardware monitoring” that aims at monitoring

resources state and raising appropriate notifications when

resource violations are detected. In section IV, we introduce

the proposed approach that allows for context classification

and context changes analysis in ubiquitous systems using

thresholds. In section V, we motivate and illustrate the

feasibility of our approach through an illustrative scenario

involving a remote hardware maintenance application. The

last section concludes the paper and gives some directions

for future work.

II. RELATED WORK

Since we focus on context classification as well as context

analysis, in the following, we give an overview of some

studies dealing with context and context classification. Then,

we discuss approaches proposed for context analysis (i.e

context changes detection)

A. Context and context classification

Since the advent of context awareness, researchers may

have different understandings of context. So far, there isn’t

a strict definition of context. For that reason, most studies

try to define context through enumerating context examples.

1) Context definitions: Dey et al. [2] defined context

as “any information that can be used to characterize the

situation of an entity. An entity is a person, a place, or an

object that is considered relevant to the interaction between

a user and applications themselves”.

As depicted in the Figure 1, Schilit et al. [5] believe

that the most important aspects of context are defining

by answering the questions: Where you are? whom you

are with? and what resources are nearby? For that reason,

they classify context into three parts: A computing context

comprised of available processors, the communication costs,

the network capacity and the network connectivity. A user

context formed by the user’s location, the collection of

nearby people, the user’s profile, etc. Finally, the physical

context which englobes environmental parameters such as

temperature, noise, humidity, pressure, etc.

In order to achieve a better understanding of context

accross a time span, Chen et al. [6] add time context

englobing the time of a day, week, month, season of the

year, etc. In addition, emotional state, the orientation, the

date and time of the day can define the context [2].

Other studies tailor the contextual information into two

categories. On the one hand, as shown in Figure 1,

Schmidt [7] partitions context into two classes such as

physical environment including the surrounding resources

of computation, and human factors which is formed by the

mental state, the colocation of others, the collaborative tasks,

etc. On the other hand, Mitchell [8] divides the context into

two categories. A personal environment formed by the user’s

interest, the user’s location and an environmental context

formed by the weather forecast. Furthermore, Prekop et

al. [9] consider that context information can be defined by

considering two categories. Internal logical context such as

the emotional state, the general goals, the business process,

and external physical context as lighting, pressure, surround-

ing resources of computation, etc.

Dix et al. [10] proposed to divide context into four classes.

A physical context formed by the nature of the device, the

user’s environment. An infrastructure context which includes

the network connectivity, the communication bandwidth, etc,

the system context composed of the application, the user a,d

finally, a domain context formed by the application domain,

the identification of the user, etc.

Due to the huge amount of context information, the afore-

mentioned context classes are overlapping. Hence, some

studies classify context information according to their ap-

plication domains.

2) Context categorization: Context classification can dis-

cover the entire contextual information easily and simplify

the context manipulation including context analysis.

Rassaque et al. [11] consider two large categorization

viewpoints. A conceptual viewpoint which describes con-

textual space in terms of actors, actions and relationships

between them. In fact, six context classes are identified: The

user context, the physical context, the network context, the

activity context, the device context and the service context.

And a measurement viewpoint that contains continuous

context (the value of context changes continuously), enu-

merative context (the values of context are a set of discrete

values and defined in a list or set) and descriptive context,

physical and virtual context. Other studies categorize context

from the following point of view internal context or external

context, material context or social context and real-time

context or unreal context [12].

Some studies classify context based on the characteristics

of the context. In fact, Soylu et al. [13] investigate some

specific context characteristics. Moreover, they consider that

context can be either static or dynamic. Static context means

that context information remains constant within time. How-

ever, dynamic context means that context information keeps

changing in different frequencies such as age, location, etc.

Moreover, Soylu et al. [13] have categorized context from

the application point of view into low level context and

high level context. Low level context is usually sensed by

sensors or collected by means of application logs. Contrary,

high level context information can be derived from low level

context information. Context can be also classified from the

collection point of view into two classes: direct context

that means also sensed context and indirect context (by

means of inferring from direct context). Soylu et al. propose

also a classification from the temporal point of view which

contains static and dynamic context. They propose then

their own classification of context. The authors categorize

the context into eight categories. A user context formed by

internal parameters such as the user’s feelings and external



Figure 1. Context classification

paramaters like the user’s name, his weight, his height, etc.

Then, a device context which comprises its physical prop-

erties (CPU, memory, etc)(hard) and the available software

in the device (soft), an application context, an information

context, an environmental context, a time context, an his-

torical context and finally a relational context. Han et al.

[14], introduce a human centric classification of context.

Indeed, they categorize context into three classes. A physical

context which refers to real world, nearby user, making

up of physical things, such as computer, print, fax. An

internal context which refers to inside people such as feeling,

thought, task, action and finally social context formed by the

user’s social surrounding (i.e, social relationship of the user).

Kim et al. [15] classify the context information into

three types. Profiled, sensed and derived according to the

context acquisition methods. Sensed context means that

context information are accessed direclty from the surround-

ing environments via sensors. Derived context refers to

context information that are derived from sensed context

information through some transformation or interpretations.

The profiled context means that context information are ac-

quired using the context providers directly. For example, the

users preferences can be obtained when they are explicitly

communicated to the requesting application [12].

All the mentioned studies propose different classification

of contextual information according to different points of

view. However, the proposed classifications don’t cover all

the context parameters. In fact, they are restricted to their

application domains.

B. Context changes detection techniques in ubiquitous envi-

ronments

In the context changes detection research direction, sev-

eral techniques and models are proposed in order to track

context changes. Ciora et al. [16] propose a self adapting

algorithm that can automatically detect the context changes

and decide how the application should react once changes

are detected. The self adapting algorithm is characterized

by the MAPE loop with its four phases. In the analysis

phase, the authors use the context entropy concept for

detecting the context changes and determining the degree

of fulfilling a predefined set of policies. The system context

entropy measures the level of the system’s self and execution

environment disorder by evaluating the degree of fulfilling

the policies. If the evaluated system context entropy exceeds

a predefined threshold �� , then all the policies are respected

and adaptation is not needed. Otherwise, the system must

trigger adaptation action in order to keep the system entropy

below �� . Despite the rich functionalities offered by the

algorithm, it doesn’t cover all context parameters. In fact,

only temperature, humidity and light are considered.

Malatras et al. [1] propose a context aware framework that

enables adaptation in pervasive computing environments.

The adaptation is based on the monitored context informa-

tion. The proposed framework is composed of three different

layers. A device context management component. This com-

ponent is responsible for collecting Data from the sensors



that are attached to a device and processing it into high-

level context that can be later utilized to enable pervasive

environments. Second, a user context management compo-

nent which handles collectively the various user devices and

performs relevant adaptation and coordination tasks. Finally,

a space context management containing a user monitor

and a space monitor used to monitor the context sources.

They consider that adaptation in pervasive environments is

guided by the enforcement of policies that are triggered by

context information. Using the framework, context analysis

is performed using thresholds. Indeed, adaptation is launched

whenever context parameters exceed or fall below a certain

threshold for a particular device. The proposed context aware

framework allows an application to execute adaptation based

on monitored context information. But the technique used to

trigger adaptation is based on predefined thresholds which

may lead to false detections. Moreover, only the network

connectivity is considered as context parameter.

Birje et al. [17] propose a multiagent model to monitor

the resource availability and control the device state. The

mobile agent models aims to provide not only a resource

monitoring scheme to keep track of all devices and their

resource utilization at any instant but also a device state

control such that avoiding an overloaded state. For that

reason, they consider three resource states: overload/poor

state, an underload/excellent state and a normal state. To

decide the resource state, the authors define two thresholds.

A minimum threshold ���� and a maximum threshold

����. If the current resource utilization is less than ����,

then the resource is in an underload condition. If the current

resource utilization exceeds ����, then the resource is in an

overload condition. The resource is in a normal condition if

the current resource utilization is between ���� and ����.

The proposed multi agent model monitors and controls

the resource utilization, the resource availability, the device

mobility and the device state. In order to achieve this goal,

different thresholds are used to detect changes. Although the

proposed approach takes into account various parameters,

the use of predefined thresholds can lead to false or missing

detections.

In other studies, context changes are picked up by com-

paring a context value saved in a repository with a new

context value. In fact, Zheng et al. [18] have addressed the

issue of context change detection by proposing a context-

aware middleware which conforms to the CORBA com-

ponent model. The proposed middleware is composed of

context aware services such as a context collector, a context

interpreter, a context repository and a context analyzer. The

latter is in charge of filtering and analyzing context infor-

mation to determine relevant context changes and notifies

the application afterwards. Furthermore, context filtering is

based on a comparison of the context values saved in the

context repository with the new context value in order to

detect context changes. The proposed middleware enables to

save the scare resources. In fact, the component deployment

is performed “just-in-time”. However, this middleware does

not specify context information to take into account.

Another approach for dynamic context management is

proposed by Taconet et al. [19]. The authors present CA3M,

a context aware middleware, which enables applications to

adapt their behavior by dynamically taking into account

context changes.

They model the application by “entities”, which represent

a physical or logical phenomenon (person, concept, etc.) and

“observable”, which defines something to observe. For in-

stance, a mobile device state is an example of an observable

which may take a finite number of values (e.g low battery,

almost low battery or normal battery). They consider that

the change of an “observable” state or even the observation

goes past a given threshold from the last notified value leads

to a different application behavior.

Bouassida et al. [20] proposed a model driven approach

for collaborative ubiquitous systems. In order to detect con-

text changes, they specify predefined thresholds. Then, once

context values remain below/under the threshold values, a

notification is raised. Although this approach enables to de-

tect instantly context changes, it may cause false detections

as well as missing alarms by using fixed thresholds.

III. CASE STUDY: ENTREPRISE HARDWARE

MONITORING

We present in this section an example of an M2M ap-

plication named “Entreprise Hardware Monitoring” (EHM)

shown in Figure 2 that aims at controlling and monitoring the

entreprise resources and acting accordingly when detecting

indesirable situations.

In the EHM case study, we focus on some context param-

eters which we find relevent to our work. We consider the

battery level, the available bandwidth, the available memory,

the CPU load, etc.

Figure 2. Entreprise hardware monitoring use case



The EHM application depicted in Figure 2 involves three

kinds of participants: Controlling M2M servers, M2MSrv1

and M2MSrv2, gateways such as GW1 and GW2 conntected

to the M2M servers via communication links, some meters(

Power meter and bandwidth meter) used to monitor respec-

tively the power consumption and the available bandwidth

of the communication links and heterogeneous devices such

as PDA, Camera, Laptop that communicate information to

the controlling servers via the gateways.

The application components and their possible values are

illustrated in Table 3

Application component Type Possible values

Temperature Sensor x Celsuis

Power Meter x Watt

Face recongnition Camera (Known, Unknown)

Bandwidth Meter x Bit/s

Figure 3. The application components description

The M2M servers implement analysis algorithms, and

process monitored data received from meters in order to

analyze them. Once results are obtained, the corresponding

M2M servers notify the device and/or act to reconfigure the

architecture by switching or disabling the affected device(s).

For example, the M2M servers send requests to the power

meter connected to the gateway GW1 in order to monitor the

available battery level of some devices. Another bandwidth

meter is used to calculate the connection speed between the

different devices. In fact, the bandwidth meter is able to

perform the bandwidth measurement. On the other hand,

at the operating system level, a probe is able to measure

the state of hardware resources such as the available RAM.

Thus, the corresponding device have to send a report to

the appropriate M2M controlling server in order to notify

it about its current state as well as its emergency degree.

IV. THE PROPOSED APPROACH

The proposed approach aims at detecting context changes

and raising notifications when context changes occur in order

to adapt the application behavior accordingly.

Furthermore, in order to adapt an application to the

changing context, the application should perform the fol-

lowing steps. It should collect context information. Context

information includes computing context parameters such as

available bandwidth, available memory, bettery level, etc.

After being monitored using sensors, widgets, operating sys-

tem, etc. contextual data are analyzed and finally adaptation

actions are triggered when context changes are detected. Our

approach depicted in Figure 4 is structured around this issue.

We distiguish three layers of our proposed approach. These

layers include: “Context Providing” responsible for provid-

ing context information. A second component, a “Context

Figure 4. The proposed approach

Management” is in charge of managing context information.

The third layer illustrate the “Context Adapter” responsible

for adapting the application based on monitored context

information. We focus our work on the second layer (i.e.

Context Management). In fact, the management of context

information in ubiquitous environments can be decomposed

into four stages: Context collection, context interpretation,

context storage and context analysis.

Context acquisition from different sources (physical or

logical sensors) is the first stage of context management.

This task is performed by the “Context Collector”. Acquired

context information may include information about the cur-

rent weather condition (temperature, humidity, etc.), current

user location, etc.

Context information captured by sensors is usually low-

level and valueless. High level and meaningfull context

information are generated using the context interpretor that

can deduce useful high-level context information by com-

bining a number of atomic, low-level context information.

Once achieved, processed context information are stored in

a “Context Database” which is used finally by the “Context

Analyzer”.

The “Context Analyzer” is responsible for analyzing

stored context information and detect context changes.

In this paper, we focus on context information analy-

sis performed by the “Context Analyzer”. The “Context

Analyzer” retrieves context information from the context

database, analyzes it and tracks down the context changes us-

ing thresholds. Afterwards, the “Context Analyzer” notifies

the application in order to execute the appropriate adaptation

actions.

In our work, we consider computing context called re-

source context. Resource context constitutes the constraints

imposed by the surrounding environment. For instance,

the battery level, the available memory, the CPU load are

examples of resource context.



A. Resource context classification

The diversity and the heterogeneity of devices and the

network connectivity that ubiquitous environments provide,

open the door to different resource context classification

methods where context resources are combined in different

ways to exploit.

A first classification divides resource context into two

categories: Resource context related to the devices and

resource context related to the network communication.

� Resource context related to the device

This category corresponds to the resources which char-

acterize the device such as the available memory, the

CPU frequency, the CPU load and the battery level.

� Resource context related to the network communica-

tion

This category deals with the resources that characterize

the network communications as the network bandwidth,

the network connectivity, the communication link load,

the loss rate and the latency.

Despite the simplicity and the ease of this classification,

it remains inappropriate to use. Furthermore, this context

categorisation doesn’t cover all the context parameter types.

Moreover, this classification doesn’t take into account the re-

source behavior which is necessary especially in ubiquitous

environment that are characterized by an important evolution

of the resource behavior and impredictable context changes.

Second, we recall that our purpose is to define an approach

that aims to detect context changes based on thresholds.

As a result, our idea consists on classifying resource

context according to the resource context evolution behavior.

This classification divides the resource context into two

categories: Resources whose behavior is characterized by a

tendency and resources whose behavior is characterized by

peaks. In the following, we present each family separately.

1) Resources with behavior characterized by a tendency:

This family concerns resources whose model roughly coin-

cides to a trendline as denoted in the Figure 5. In this class,

we are interested to the resource tendency.

This class includes resources whose behavior evolves

(increase, decrease) in a constant way within time.

The battery level mentioned in the case study detailed

previously is an example of this category. For example,

the battery level of a laptop device when not plugged,

decreases within time as illustrated in Figure 5. The available

memory, the latency belong also to this class resource

context classification.

2) Resources with behavior characterized by peaks:

In this category described by the Figure 6 the resource

evolution behavior is characterized by abrupt changes called

also peaks such as CPU load, link load, etc. The available

bandwidth mentioned in the case study detailed before be-

longs to this family. For instance, as described in Section III,

each M2M server recieves information via the gateways to

Figure 5. Battery level evolution within time

analyze them. Hence, the CPU load of the M2M Servers

can rise reaching high values causing an overload. When

overloaded, the M2M server can delay some requests in its

queue causing thereby an augmentation of the transmission

latency.

Figure 6. Link load evolution within time

B. Threshold calculation

We have proposed a resource context classification which

takes into account the resource evolution behavior.

Since we base our approach on thresholds for detecting

context changes, we present the threshold calculation for

each resource category.

We propose to attribute for each resource parameter be-

longing to a category, n thresholds, then for each threshold,

we assign a notification or a signal. This notification, defined

by an expert, corresponds to an emergency degree or a need

for adaptation that depends on the need of the expert or the

application itself.

The thresholds can be either predefined or adaptive ones.

Afterwards, we give some elements about threshold cal-

culation for each category detailed previously.

1) Threshold calculation for the resources whose evo-

lution behavior is characterized by a tendency: For this

category, we remind that the resource evolution behavior is

described by a tendency. In order to avoid false detections as

well as missing alarms, we need to define thresholds which

are uncorrelated with the resource tendency evolution be-

havior. Thus, a notification is raised whenever the tendency

curve crosses the threshold one.



(a) Fixed Threshold (b) Adaptive Threshold (c) Step Function Threshold

Figure 7. Threshold calculation for the resource whose evolution behavior is characterized by a tendency

So, different kinds of thresholds can be applied for this

category, such as fixed thresholds, adaptive thresholds and

step function thresholds as illustrated in Figure 7.

For instance, fixed thresholds may be defined by the

application designer according to the resource characteristic.

Then, a notification is raised once the resource crosses the

threshold as depicted in the Figure 7(a).

For the adaptive threshold denoted in the Figure 7(b),

mathematical methods can be applied in order to update

threshold values at runtime such as the EWMA, Exponential

Weighted Moving Average technique, [21] used by Lahyani

et al. [22]. This techniques aims to update the threshold

according to an observation window. However, for this kind

of resource context characterized by a tendency, adaptive

threshold must be uncorrelated with the resource evolution

behavior in order to avoid false detections and missing

alarms. Finally, for the step function threshold described

in the Figure 7(c), thresholds are defined per period and

notifications are raised when the resource behavior crosses

the thresholds.

Let’s consider the example of the battery level depicted in

the section III. In this example, whenever the battery level

values remain under the threshold, a notification is raised.

In the Figure 7(c), we use the thresholds modeled as a step

function. Hence, we raise different level depending on the

battery state. For example, in Figure 7(a), Figure 7(b), when

the battery level values decrease until reaching a critical

value under the threshold, an alarm is forwarded to the M2M

server in order to switch the corresponding device.

2) Threshold calculation for the resources whose evo-

lution behavior is characterized by peaks: In the second

category of resource context whose evolution behavior is

characterized by abrupt changes, specifying adaptive thresh-

olds that are correlated with the resource evolution behavior

tendency is an appropriate method for setting thresholds.

Indeed, in this family, peaks characterize sudden changes

form a normal behavior to an abnormal one. For that reason,

adaptive thresholds correlated with the resource evolution

behavior remain under the resource shape. Furthermore, a

violation of the threshold reveals a context change.

Figure 8. Threshold calculation for the resources whose evolution behavior
is characterized by a peak

V. ILLUSTRATIVE SCENARIO

We illustrate the feasibility and the efficiency of our ap-

proach through a remote hardware maintenance application.

The scenario highlight the ability of the application to adapt

its behavior according to the context changes and taking into

consideration the pervasive nature of ubiquitous environ-

ments such as resources constraints, devices heterogeneity,

devices mobility, etc.

The scenario involves a computer campany owning dif-

ferent and heterogenous devices and sensors. These devices

may be laptops, PCs, PDAs, cellphones, etc. Each device

embeds an analysis entity that implements our approach

which enables detecting context changes such as devices

mobility, device overload, battery level changes, memory

consumption, available bandwidth, etc. The main target of

this campany is to ensure healthy state of its devices as

well as the communication links by monitoring resource

utilization at any instant of time. For that reason, the

manager decides to control daily the devices state and the

communication links. The employee selected to perform this

task brings his mobile device (PDA, smart phone) which

contains a notebook application, equipped with a logical

sensor enabling it to capture some context parameters and

connected to a power meter allowing for monitoring the

battery level of its device as well as the other devices in the

campany. In order to monitor the devices state (ON,OFF)

and to check the network connectivity, the employee broad-

casts periodic messages from its personal device through the



network. Once a timestamp is elapsed without receiving a

signal or a response from the devices, then, the employee

is notified of a bad connection causing lossy links or faulty

devices or both. Afterwards, a bandwidth meter connected to

the employee’s personal device as depicted in the Figure 2

starts monitoring the communication links by analyzing the

available bandwidth. So, at each moment, the message num-

ber transmitted through a link l1 for example is recorded.

Then, by executing the analysis approach, the algorithm

detects that the message number exceeds the corresponding

threshold. For that reason, the employee decides that the

link l1 is overloaded so that the bandwidth is in a critical

state which engenders lossy links. Since the device state

is affected by various parameters like the battery power,

the device mobility, etc. the employee decides to moni-

tor the battery level in order to assess his device state.

Different thresholds are defined for this resource context.

Since the battery level belongs to the first category detailed

in section IV, three thresholds are defined. Each threshold

corresponds to an emergency degree: “Normal Battery”,

“Almost Low Battery” and “Low Battery”. When the power

meter attached to his mobile device detects that the battery

level reaches the low battery state, then the mobile device

switches to a poor mode omitting pictures and reducing

contrast. The above scenario justifies the context awareness

of the application in order to cope with different resource

constraints and to adapt its behavior accordingly.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach for the

context changes detection in ubiquitous environments. Our

approach is composed of two major components. A “Context

Provider” and a “Context Manager”. The “Context Provider”

is out of the scope of this paper. In fact, we focus on the

“Context Manager”. The latter is divided into four compo-

nents such as a “Context Collector”, a “Context Interpreter”,

a “Context Database” and a “Context Analyzer”. The “Con-

text Analyzer” is the key component of our approach.

Indeed, it is responsible for analyzing context information,

detecting the context changes and forwarding notifications

to the application when necessary. The “Context Analyzer”

relies on thresholds in order to detect context changes. In our

work, we have considered computing context to deal with as

we have focused on resource context. Furthermore, we have

presented a two classification of resource context according

to the resource evolution behavior. A first category deals

with resources whose behavior is modeled by a trendline.

A second category concerns resources whose behavior is

characterized by abrupt changes.

The proposed approach deals with the resource context.

Although it allows detecting context changes, some issues

are still challenging. Indeed, a detailed analysis of real ap-

plications should be performed in order to evaluate more the

approach. Furthermore, the apporach should focus also on

other context parameters (light, temperature, user’s location,

etc.) rather than the resource context parameters.

As future work, we plan to implement our analysis

approach and to integrate it into the framework FACUS [23].

Then we intend to use ontologies in order to model context

information.

ACKNOWLEDGMENT

This research is supported by the ITEA2’s A2NETS

(Autonomic Services in M2M Networks) project1.

REFERENCES

[1] A. Malatras and B. Hirsbrunner, “A context-aware framework
to enable adaptation in pervasive computing environments,”
in Network-Based Information Systems, 2009. NBIS ’09.
International Conference on, Aug 2009, pp. 182 –187.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a better understanding of context
and context-awareness,” in Proceedings of the 1st interna-
tional symposium on Handheld and Ubiquitous Computing,
ser. HUC ’99. London, UK: Springer-Verlag, Sept 1999, pp.
304–307.

[3] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual frame-
work and a toolkit for supporting the rapid prototyping of
context-aware applications,” Hum.-Comput. Interact., vol. 16,
no. 2, pp. 97–166, Dec. 2001.

[4] A. K. Dey, “Understanding and using context,” Personal
Ubiquitous Comput., vol. 5, no. 1, pp. 4–7, Jan. 2001.

[5] B. Schilit, N. Adams, and R. Want, “Context-aware com-
puting applications,” in In Proceedings of the Workshop on
Mobile Computing Systems and Applications, 1994, pp. 85–
90.

[6] P. J. Brown, J. D. Bovey, and X. Chen, “Context-aware ap-
plications: from the laboratory to the marketplace,” Personal
Communications, IEEE [see also IEEE Wireless Communi-
cations], vol. 4, no. 5, pp. 58–64, 1997.

[7] A. Schmidt, “Ubiquitous computing - computing in context,”
Ph.D. dissertation, Computing Department, Lancaster Univer-
sity, England, U.K., 2002.

[8] K. Mitchell, “Supporting the development of mobile context-
aware computing,” Ph.D. dissertation, Lancaster University,
2002.

[9] P. Prekop and M. Burnett, “Activities, context and ubiquitous
computing,” Comput. Commun., vol. 26, no. 11, pp. 1168–
1176, Jul. 2003.

[10] A. Dix, T. Rodden, N. Davies, J. Trevor, A. Friday, and
K. Palfreyman, “Exploiting space and location as a de-
sign framework for interactive mobile systems,” ACM Trans.
Comput.-Hum. Interact., vol. 7, no. 3, pp. 285–321, Sep.
2000.

1https://a2nets.erve.vtt.fi/



[11] P. N. MA Razzaque, S Dobson, “Categorization and mod-
elling of quality in context information,” in Proceedings of the
IJCAI 2005 Workshop on AI and Autonomic Communications,
2005.

[12] W. Liu, X. Li, and D. Huang, “A survey on context aware-
ness,” in Computer Science and Service System (CSSS), 2011
International Conference on, Jun 2011, pp. 144 –147.

[13] A. Soylu, P. De Causmaecker, and P. Desmet, “Context
and adaptivity in context-aware pervasive computing envi-
ronments,” in Ubiquitous, Autonomic and Trusted Computing,
2009. UIC-ATC ’09. Symposia and Workshops on, Jul 2009,
pp. 94 –101.

[14] L. Han, S. Jyri, J. Ma, and K. Yu, “Research on context-aware
mobile computing,” in Advanced Information Networking
and Applications - Workshops, 2008. AINAW 2008. 22nd
International Conference on, Mar 2008, pp. 24 –30.

[15] E. Kim and J. Choi, “A context management system for
supporting context-aware applications,” in Embedded and
Ubiquitous Computing, 2008. EUC ’08. IEEE/IFIP Interna-
tional Conference on, vol. 2, Dec 2008, pp. 577 –582.

[16] T. Cioara, I. Anghel, I. Salomie, M. Dinsoreanu, G. Copil, and
D. Moldovan, “A self-adapting algorithm for context aware
systems,” in Roedunet International Conference (RoEduNet),
2010 9th, Jun 2010, pp. 374 –379.

[17] M. Birje and S. Manvi, “Multiagent model for device state
control in the wireless grid,” in Electronics Computer Tech-
nology (ICECT), 3rd International Conference on, vol. 3, Apr
2011, pp. 456 –460.

[18] D. Zheng, J. Wang, W. Han, Y. Jia, and P. Zou, “Towards
a context-aware middleware for deploying component-based
applications in pervasive computing,” in Proceedings of the
Fifth International Conference on Grid and Cooperative
Computing, ser. GCC ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 454–457.

[19] C. Taconet, Z. Kazi-Aoul, M. Zaier, and D. Conan, “Ca3m: A
runtime model and a middleware for dynamic context man-
agement,” in Proceedings of the Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE 2009 on On the
Move to Meaningful Internet Systems: Part I, ser. OTM ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 513–530.

[20] I. Bouassida Rodriguez, G. Sancho, T. Villemur, S. Tazi, and
K. Drira, “A model-driven adaptive approach for collaborative
ubiquitous systems,” in Proceedings of the 3rd workshop on
Agent-oriented software engineering challenges for ubiqui-
tous and pervasive computing, ser. AUPC 09. New York,
NY, USA: ACM, 2009, pp. 15–20.

[21] J. M. Lucas, M. S. Saccucci, R. V. Baxley, Jr., W. H. Woodall,
H. D. Maragh, F. W. Faltin, G. J. Hahn, W. T. Tucker, J. S.
Hunter, J. F. MacGregor, and T. J. Harris, “Exponentially
weighted moving average control schemes: properties and
enhancements,” Technometrics, vol. 32, pp. 1–29, Jan 1990.

[22] I. Lahyani, N. Khabou, and M. Jmaiel, “Qos monitoring and
analysis approach for publish/subscribe systems deployed on
manet,” in Parallel, Distributed, and Network-Based Process-
ing, Euromicro Conference on. Los Alamitos, CA, USA:
IEEE Computer Society, Feb 2012, pp. 120–124.

[23] G.Sancho, “Adaptation d’architectures logicielles collabora-
tives dans les environnements ubiquitaires. contribution è
l’interopérabilité par la sémantique,” Ph.D. dissertation, Uni-
versité de Toulouse, 2010.


