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ABSTRACT

A new hierarchical representation of general discrete data sets

living on graphs is proposed. The approach takes advantage

of recent works on graph regularization. The different levels

of the hierarchy are discovered as the regularization process is

performed. The role of the merging criterion that is common

to hierarchical representations is greatly reduced due to the

regularization step. This yields a robust representation of data

sets. Moreover, the approach is particularly well adapted to

the processing of digital images, where nonlocal processing

allows to better handle repetitive patterns usually present in

natural images.

Index Terms— Hierarchical representations, Scale-

space, Discrete regularization.

1. INTRODUCTION

Multiresolution representations of digital images are a well

established technique in image processing. We propose in

this work a new multiresolution representation of functions

defined on discrete sets represented by a graph structure. Our

work uses discrete regularization techniques [1] to produce a

hierarchical representation of graphs and functions on graphs.

The hierarchical representation we propose respects the inclu-

sion and causality principles.

Multilevel representations of discrete data sets usually fall

into two categories: multiscale and multiresolution. Scale

space theory [2] provides a systematic and now well estab-

lished theory to provide a multiscale representation of digital

images. Linear scale space consists in successive convolu-

tions of an initial image with a Gaussian kernel of increasing

width. A unifying view of scale-space theory was given in [3]

where it is shown that any scale-space representation can be

obtained through the evolution of a general class of parabolic

diffusion equations. The time evolution is then seen as a scale

evolution. The generalization of these ideas to multispectral

images depends on a discretization choice of the underlying

partial differential equation (PDE). Due to stability require-

ments, semi-implicit schemes are preferred, leading to lin-

ear systems at each time step. In [4], the authors introduce a

multigrid algorithm [5] to produce a scalable algorithm. For

unorganized data sets, the formalism of difference equations

over graphs [1] allows to adapt the PDE formulation to graphs

of arbitrary topologies. Recently, an inverse scale space repre-

sentations of functions on graphs has been proposed using the

same bases [6]. One of the drawbacks of the scale-space the-

ory is that the constructed stack of images does not verify the

inclusion principle [7]. Even in nonlinear scale-space where

the discontinuities are preserved, they are generally displaced

from one level to the other.

Hierarchical representations were first designed to efficiently

handle the multiscale nature of images. They generally com-

bine filtering and subsampling. Regular pyramids keep a con-

stant subsampling rate through the hierarchy. Adaptive pyra-

mids [8], were introduced in order to make a global efficient

interpretation of images. The focus is shifted from pixels to

regions. The construction of the pyramid consists in decimat-

ing some cells while attaching them to surviving cells from

one level to the other. Surviving cells are selected through an

adjacency graph and a merging criterion. The merging crite-

rion generally greatly affects the resulting pyramid. Another

class of hierarchical representations are provided within the

connected morphological filtering framework (see [9] for a

review).

We propose a new hierarchical representation of general data

lying on arbitrary graphs. The proposed algorithm allows to

have a multiresolution representation of any data set that ex-

hibits a graph structure. Furthermore, the merging part of

the algorithm is based on discrete regularization rather than

affection heuristics, which makes it more robust. The main

contribution of this paper is to show how the construction of

a hierarchical representation of data sets can benefit from the

scale-space theory.

2. GRAPH REGULARIZATION

Graph regularization techniques [1] provide a common frame-

work and tools to address the problem of regularization of

discrete data sets. We begin by briefly recalling some of

the notations and definitions that we will use. A weighted

graph G = (V,E,w) consists in a set of vertices V , a set

of undirected edges E ⊆ V × V , and a non-negative sym-

metric weight function w : V × V → R
+ verifying the

condition w(α, β) = 0 if and only if (α, β) /∈ E. The

function w represents a similarity measure between the ver-



tices of the graph G. In the sequel, we will write β ∼ α
if (α, β) ∈ E. We denote H(V ) the set of real functions

over V andH(E) the set of real functions over E. The space

H(V ) is endowed with the usual inner product : (f, g)H(V ) =
∑

α∈V f(α)g(α) for f, g ∈ H(V ). Similarly (F,G)H(E) =
∑

(α,β)∈E F (α, β)G(α, β) for F,G ∈ H(E). The difference

operator dw : H(V )→ H(E) is defined as

(dwf)(α, β) :=
√

w(α, β) (f(β)− f(α)), ∀(α, β) ∈ E .
(1)

At each vertex, a discrete gradient norm can be computed

|(∇wf)(α)| =
√

∑

β∼α

w(α, β)(f(α)− f(β))2 . (2)

The divergence operator divw : H(E) → H(V ) is defined

in a similar way to the continuous setting: (dwf,G)H(E) =
−(f, divwG)H(V ). Its expression is given by (divwG)(α) =
∑

β∼α

√

w(α, β)(G(α, β)−G(β, α)). Let f0 ∈ H(V ). The

regularization procedure is expressed as the minimization of

an energy function

E(u; f0, λ) =
∑

α∈V

|(∇wf)(α)|p +
λ

2

∑

α∈V

(uα − f0
α)

2 . (3)

Motivated by the analogy to the continuous total variation

(TV) minimization [10], we use the energy (3) with p = 1.

The minimization of the function (3) with p = 1 can be

viewed as a nonlocal/graph extension of the classical TV min-

imization. The latter model is strictly convex but non-smooth.

A first approach is to introduce a regularization of the non-

smooth term and to apply an iterative scheme to approximate

the solution of the resulting system of nonlinear equations [1].

An alternative approach is to use a graph extension of Cham-

bolle’s algorithm [11]. The extension of the algorithm in [11]

to a non-local setting has first been introduced in [12]. In our

setting the characterization of the minimizer is the following

u = f − πλ−1K(f0) , (4)

K = {v ∈ H(V ) : ∃p ∈ H(E), v = divw(p),

|p(α, .)| ≤ 1 , ∀α ∈ V } , (5)

where πλ−1K is the orthogonal projection onto the closed

convex set K and |p(α, .)| =
√

∑

β∼α p(α, β)2. The projec-

tion is computed through the following fixed-point algorithm







p0 = 0 ,

pn+1(α, β) =
pn(α, β) + τdw(divwp

n − λf)(α, β)

1 + τ |dw(divwpn − λf)(α, .)| .

(6)

Let ‖divw‖ denote the norm of the divergence operator in-

duced by ‖.‖H(V ) and ‖.‖H(E) :

‖divw‖ = sup{‖divw(p)‖H(V ), p ∈ H(E), ‖p‖H(E) ≤ 1}.
(7)

If 0 < τ ≤ 1
‖divw‖2 , then the iterative scheme in (6) converges

to p∗ and we have u = f+λ−1divw(p
∗) . In this work we use

the algorithm (6)as it avoids to introduce a regularizing term.

3. HIERARCHICAL CLUSTERING

We present in this section our hierarchical clustering algo-

rithm which is based on the tools presented in Section 2. The

algorithm operates on a discrete data set whose structure is

modeled by a weighted graph G0 = (V0, E0, w0). The orig-

inal data is defined as a function f0 ∈ H(V0). The bottom

level of the hierarchy consists in the original graph G0 and

is denoted as level 0. Alternatively, to reduce the computa-

tional complexity, one can start with an initial partition such

as super-pixels [13] for images. The partition at level i + 1
is generated from the partition at level i by first smoothing

the data fi ∈ H(Vi) following (6). This data driven diffusion

process yields simplification of the current data and thus al-

lows to identify the possible mergings. Several criteria can

then be applied. In this paper, we consider adjacent nodes

whose smoothed values are within a given tolerance ǫ to be

merged in the same cluster. Vertices at level i belonging to a

same cluster are then aggregated into one vertex at level i+1.

Two nodes at level i+1 are connected by an edge if they have

two representatives at level i that are connected by an edge.

The function data fi+1 is chosen here as the average value

of each cluster. This average value is then used as a distance

measure between nodes at level i + 1. Finally, the distance

is transformed into a similarity, typically by using a Gaussian

function: w(u, v) = e
d(u,v)2

σ2 . The process is stopped when a

predetermined number of clusters is reached.

We now move one to some remarks concerning the algorithm.

First, the identification of clusters is driven by the diffusion

process. This has two important consequences. The first

one concerns the sensitivity of the merging criterion which

is greatly reduced. The second one concerns the nature of

the merging decision. Depending on the graph structure, this

decision may reflect nonlocal interactions between spatially

distant vertices. The approach is summarized in Algorithm 1.

Algorithm 1 Hierarchical representation

1: INITIALIZATION : Gcurrent = G0, fcurrent = f0
2: for i = 0 to n do

3: fcurr ← regularization(fi, λ)
4: Gi+1 ← merging(Gi, fcurr,merging criterion)
5: fi+1 ← average(fcurr, Gi+1)

6: end for

Step 3 of Algorithm 1 is the regularization step described in

Section 2, which updates the data on the graph nodes. Step 4

is the merging step described above, based on any criterion.

Finally, Step 5 computes the function on the coarse graph,

based on the representatives of each vertex.



The hierarchical clustering algorithm is based on fusion cri-

terion, in our case the parameter ǫ, and a scale parameter

t through the evolutions described in (6). Both scale-space

approach and irregular pyramids can be re-casted into this

framework. Namely, when the tolerance parameter ǫ = 0, and

the fidelity parameter λ = 0, no aggregation is performed,

and a scale-space stack is constructed. If there is no evolution

of the scale parameter, an irregular pyramid is constructed.

4. EXPERIMENTS

In this section, we show the benefits of our proposal for ob-

taining a scale-space based hierarchical representation of dis-

crete data. Several different types of discrete data sets are

considered: digital images, image databases and point clouds.

Each data set is represented by a specific graph: grid graph or

nonlocal patch-based graphs for digital images, and neigh-

borhood graphs for image databases and point clouds. First,

we present results on digital images and show the benefits of

using nonlocal patch-based graphs. In the case of digital im-

ages, our algorithm yields a hierarchy of partitions. It can

be used for region-based segmentation as well as for image

filtering. Figure 1 shows the scale-space based hierarchical

representation of a color image at different resolution levels.

Images in second and third rows represent the colorization of

the regions obtained with our algorithm.

The second row of Figure 1 presents results when consid-

ering a 8-connectivity grid-graph weighted by a Gaussian ker-

nel (σ = 20) with distances between pixels measured as the

Euclidean distance between their color vectors. The thresh-

old is fixed to
√
3. Two main effects are obtained as one

progresses in the hierarchy: the graph topology is modified

along the levels with the number of vertices decreasing, and

the function attached to vertices is simplified by regulariza-

tion. However one can remark that such a local processing

cannot efficiently manage textured areas. The hierarchical

representation degenerates as one progresses in the hierarchy

and incorrect groupings are obtained. The third row of Figure

1 presents results with a 10-nearest neighbors graph with 5x5

patches. With our introduction of regularization on non-local

patch-based graph (i.e. vertices non spatially close become

neighbors and the similarity between vertices is measured us-

ing patches), the textured areas are much better handled. In-

deed, vertices that represent similar textures are merged re-

sulting in a much compact and accurate hierarchical represen-

tation. This stresses the interest of using regularization with

non-local patch-based graphs for the generation of a hierar-

chical representation of images.

Second, we present results on point clouds. Figure 2.

presents a 3D-projection of a points dataset. The data is rep-

resented by a 7-nearest neighbor graph weighted by w = 1/d
where d is the Euclidean distance between feature vectors. To

generate the scale-space based hierarchical representation, a

threshold of 0.01 is considered and this threshold evolves by

original

|V0| = 65536
level 1 level 4 level 7

|V1| = 11981 |V4| = 2407 |V7| = 871

|V1| = 8929 |V4| = 908 |V7| = 289

Fig. 1. Hierarchical representation of the top row image with

local (second row) and nonlocal (third row) configurations.

Numbers under images indicate the number of vertices at each

level.

a factor 2 across levels. One can see that the regularization

facilitates the grouping of vertices across levels resulting in a

small hierarchy that respects the initial repartition of the data.

Finally, we consider image databases. To each image is

associated a vertex and one has F : V → R
28×28 (which

is the size of each image). The same experimental condi-

tions than for point clouds are considered but with an initial

threshold of 4. One can again see how our approach succeeds

in generating a scale-space based hierarchical representation:

images are simplified by regularization and grouped across

levels.

5. CONCLUSION

In this paper, we have presented a new algorithm for the hi-

erarchical representation of functions defined over the set of

vertices of arbitrary graphs. It builds upon the techniques

of discrete regularization to propose a robust approach. We

showed the relevance of the approach to the representation of

digital images, point clouds and image databases.



Fig. 2. Hierarchical representation of an image database. The bottom level represents the original data (level 0). The following

levels range from 1 to 5.

original

level 1 level 2

level 3 level 5

Fig. 3. Hierarchical representation of a point cloud.
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