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A new hierarchical representation of general discrete data sets living on graphs is proposed. The approach takes advantage of recent works on graph regularization. The different levels of the hierarchy are discovered as the regularization process is performed. The role of the merging criterion that is common to hierarchical representations is greatly reduced due to the regularization step. This yields a robust representation of data sets. Moreover, the approach is particularly well adapted to the processing of digital images, where nonlocal processing allows to better handle repetitive patterns usually present in natural images.

INTRODUCTION

Multiresolution representations of digital images are a well established technique in image processing. We propose in this work a new multiresolution representation of functions defined on discrete sets represented by a graph structure. Our work uses discrete regularization techniques [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing[END_REF] to produce a hierarchical representation of graphs and functions on graphs. The hierarchical representation we propose respects the inclusion and causality principles. Multilevel representations of discrete data sets usually fall into two categories: multiscale and multiresolution. Scale space theory [START_REF] Witkin | Scale-Space Filtering[END_REF] provides a systematic and now well established theory to provide a multiscale representation of digital images. Linear scale space consists in successive convolutions of an initial image with a Gaussian kernel of increasing width. A unifying view of scale-space theory was given in [START_REF] Alvarez | Image selective smoothing and edge detection by nonlinear diffusion. ii[END_REF] where it is shown that any scale-space representation can be obtained through the evolution of a general class of parabolic diffusion equations. The time evolution is then seen as a scale evolution. The generalization of these ideas to multispectral images depends on a discretization choice of the underlying partial differential equation (PDE). Due to stability requirements, semi-implicit schemes are preferred, leading to linear systems at each time step. In [START_REF] Duarte-Carvajalino | Multiscale representation and segmentation of hyperspectral imagery using geometric partial differential equations and algebraic multigrid methods[END_REF], the authors introduce a multigrid algorithm [START_REF] Henson | A multigrid tutorial[END_REF] to produce a scalable algorithm. For unorganized data sets, the formalism of difference equations over graphs [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing[END_REF] allows to adapt the PDE formulation to graphs of arbitrary topologies. Recently, an inverse scale space representations of functions on graphs has been proposed using the same bases [START_REF] Hidane | Nonlocal multiscale hierarchical decomposition on graphs[END_REF]. One of the drawbacks of the scale-space theory is that the constructed stack of images does not verify the inclusion principle [START_REF] Horowitz | Picture segmentation by a tree traversal algorithm[END_REF]. Even in nonlinear scale-space where the discontinuities are preserved, they are generally displaced from one level to the other. Hierarchical representations were first designed to efficiently handle the multiscale nature of images. They generally combine filtering and subsampling. Regular pyramids keep a constant subsampling rate through the hierarchy. Adaptive pyramids [START_REF] Jolion | The adaptive pyramid: a framework for 2d image analysis[END_REF], were introduced in order to make a global efficient interpretation of images. The focus is shifted from pixels to regions. The construction of the pyramid consists in decimating some cells while attaching them to surviving cells from one level to the other. Surviving cells are selected through an adjacency graph and a merging criterion. The merging criterion generally greatly affects the resulting pyramid. Another class of hierarchical representations are provided within the connected morphological filtering framework (see [START_REF] Salembier | Connected operators: A review of region-based morphological image processing techniques[END_REF] for a review). We propose a new hierarchical representation of general data lying on arbitrary graphs. The proposed algorithm allows to have a multiresolution representation of any data set that exhibits a graph structure. Furthermore, the merging part of the algorithm is based on discrete regularization rather than affection heuristics, which makes it more robust. The main contribution of this paper is to show how the construction of a hierarchical representation of data sets can benefit from the scale-space theory.

GRAPH REGULARIZATION

Graph regularization techniques [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing[END_REF] provide a common framework and tools to address the problem of regularization of discrete data sets. We begin by briefly recalling some of the notations and definitions that we will use. A weighted graph G = (V, E, w) consists in a set of vertices V , a set of undirected edges E ⊆ V × V , and a non-negative symmetric weight function w : V × V → R + verifying the condition w(α, β) = 0 if and only if (α, β) / ∈ E. The function w represents a similarity measure between the ver-tices of the graph G. In the sequel, we will write β ∼ α if (α, β) ∈ E. We denote H(V ) the set of real functions over V and H(E) the set of real functions over E. The space H(V ) is endowed with the usual inner product :

(f, g) H(V ) = α∈V f (α)g(α) for f, g ∈ H(V ). Similarly (F, G) H(E) = (α,β)∈E F (α, β)G(α, β) for F, G ∈ H(E). The difference operator d w : H(V ) → H(E) is defined as (d w f )(α, β) := w(α, β) (f (β) -f (α)), ∀(α, β) ∈ E .
(1) At each vertex, a discrete gradient norm can be computed

|(∇ w f )(α)| = β∼α w(α, β)(f (α) -f (β)) 2 .
(

) 2 
The divergence operator div w : H(E) → H(V ) is defined in a similar way to the continuous setting:

(d w f, G) H(E) = -(f, div w G) H(V ) . Its expression is given by (div w G)(α) = β∼α w(α, β)(G(α, β) -G(β, α)). Let f 0 ∈ H(V ).
The regularization procedure is expressed as the minimization of an energy function

E(u; f 0 , λ) = α∈V |(∇ w f )(α)| p + λ 2 α∈V (u α -f 0 α ) 2 . ( 3 
)
Motivated by the analogy to the continuous total variation (TV) minimization [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], we use the energy (3) with p = 1.

The minimization of the function ( 3) with p = 1 can be viewed as a nonlocal/graph extension of the classical TV minimization. The latter model is strictly convex but non-smooth. A first approach is to introduce a regularization of the nonsmooth term and to apply an iterative scheme to approximate the solution of the resulting system of nonlinear equations [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing[END_REF]. An alternative approach is to use a graph extension of Chambolle's algorithm [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]. The extension of the algorithm in [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] to a non-local setting has first been introduced in [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF]. In our setting the characterization of the minimizer is the following

u = f -π λ -1 K (f 0 ) , (4) 
K = {v ∈ H(V ) : ∃p ∈ H(E), v = div w (p), |p(α, .)| ≤ 1 , ∀α ∈ V } , (5) 
where π λ -1 K is the orthogonal projection onto the closed convex set K and |p(α, .)| = β∼α p(α, β) 2 . The projection is computed through the following fixed-point algorithm

   p 0 = 0 , p n+1 (α, β) = p n (α, β) + τ d w (div w p n -λf )(α, β) 1 + τ |d w (div w p n -λf )(α, .)| .
(6) Let div w denote the norm of the divergence operator induced by . H(V ) and . H(E) :

div w = sup{ div w (p) H(V ) , p ∈ H(E), p H(E) ≤ 1}. (7) 
If 0 < τ ≤ 1 divw 2 , then the iterative scheme in (6) converges to p * and we have u = f + λ -1 div w (p * ) . In this work we use the algorithm [START_REF] Hidane | Nonlocal multiscale hierarchical decomposition on graphs[END_REF]as it avoids to introduce a regularizing term.

HIERARCHICAL CLUSTERING

We present in this section our hierarchical clustering algorithm which is based on the tools presented in Section 2. The algorithm operates on a discrete data set whose structure is modeled by a weighted graph G 0 = (V 0 , E 0 , w 0 ). The original data is defined as a function f 0 ∈ H(V 0 ). The bottom level of the hierarchy consists in the original graph G 0 and is denoted as level 0. Alternatively, to reduce the computational complexity, one can start with an initial partition such as super-pixels [START_REF] Ren | Learning a Classification Model for Segmentation[END_REF] for images. The partition at level i + 1 is generated from the partition at level i by first smoothing the data f i ∈ H(V i ) following ( 6). This data driven diffusion process yields simplification of the current data and thus allows to identify the possible mergings. Several criteria can then be applied. In this paper, we consider adjacent nodes whose smoothed values are within a given tolerance ǫ to be merged in the same cluster. Vertices at level i belonging to a same cluster are then aggregated into one vertex at level i + 1. Two nodes at level i + 1 are connected by an edge if they have two representatives at level i that are connected by an edge. The function data f i+1 is chosen here as the average value of each cluster. This average value is then used as a distance measure between nodes at level i + 1. Finally, the distance is transformed into a similarity, typically by using a Gaussian function:

w(u, v) = e d(u,v) 2 σ 2
. The process is stopped when a predetermined number of clusters is reached. We now move one to some remarks concerning the algorithm. First, the identification of clusters is driven by the diffusion process. This has two important consequences. The first one concerns the sensitivity of the merging criterion which is greatly reduced. The second one concerns the nature of the merging decision. Depending on the graph structure, this decision may reflect nonlocal interactions between spatially distant vertices. The approach is summarized in Algorithm 1.

Algorithm 1 Hierarchical representation

1: INITIALIZATION : G current = G 0 , f current = f 0 2: for i = 0 to n do 3: f curr ← regularization(f i , λ) 4: G i+1 ← merging(G i , f curr , merging criterion) 5: f i+1 ← average(f curr , G i+1 ) 6: end for
Step 3 of Algorithm 1 is the regularization step described in Section 2, which updates the data on the graph nodes. Step 4 is the merging step described above, based on any criterion. Finally, Step 5 computes the function on the coarse graph, based on the representatives of each vertex.

The hierarchical clustering algorithm is based on fusion criterion, in our case the parameter ǫ, and a scale parameter t through the evolutions described in [START_REF] Hidane | Nonlocal multiscale hierarchical decomposition on graphs[END_REF]. Both scale-space approach and irregular pyramids can be re-casted into this framework. Namely, when the tolerance parameter ǫ = 0, and the fidelity parameter λ = 0, no aggregation is performed, and a scale-space stack is constructed. If there is no evolution of the scale parameter, an irregular pyramid is constructed.

EXPERIMENTS

In this section, we show the benefits of our proposal for obtaining a scale-space based hierarchical representation of discrete data. Several different types of discrete data sets are considered: digital images, image databases and point clouds. Each data set is represented by a specific graph: grid graph or nonlocal patch-based graphs for digital images, and neighborhood graphs for image databases and point clouds. First, we present results on digital images and show the benefits of using nonlocal patch-based graphs. In the case of digital images, our algorithm yields a hierarchy of partitions. It can be used for region-based segmentation as well as for image filtering. Figure 1 shows the scale-space based hierarchical representation of a color image at different resolution levels. Images in second and third rows represent the colorization of the regions obtained with our algorithm.

The second row of Figure 1 presents results when considering a 8-connectivity grid-graph weighted by a Gaussian kernel (σ = 20) with distances between pixels measured as the Euclidean distance between their color vectors. The threshold is fixed to √ 3. Two main effects are obtained as one progresses in the hierarchy: the graph topology is modified along the levels with the number of vertices decreasing, and the function attached to vertices is simplified by regularization. However one can remark that such a local processing cannot efficiently manage textured areas. The hierarchical representation degenerates as one progresses in the hierarchy and incorrect groupings are obtained. The third row of Figure 1 presents results with a 10-nearest neighbors graph with 5x5 patches. With our introduction of regularization on non-local patch-based graph (i.e. vertices non spatially close become neighbors and the similarity between vertices is measured using patches), the textured areas are much better handled. Indeed, vertices that represent similar textures are merged resulting in a much compact and accurate hierarchical representation. This stresses the interest of using regularization with non-local patch-based graphs for the generation of a hierarchical representation of images.

Second, we present results on point clouds. a factor 2 across levels. One can see that the regularization facilitates the grouping of vertices across levels resulting in a small hierarchy that respects the initial repartition of the data.

Finally, we consider image databases. To each image is associated a vertex and one has F : V → R 28×28 (which is the size of each image). The same experimental conditions than for point clouds are considered but with an initial threshold of 4. One can again see how our approach succeeds in generating a scale-space based hierarchical representation: images are simplified by regularization and grouped across levels.

CONCLUSION

In this paper, we have presented a new algorithm for the hierarchical representation of functions defined over the set of vertices of arbitrary graphs. It builds upon the techniques of discrete regularization to propose a robust approach. We showed the relevance of the approach to the representation of digital images, point clouds and image databases. 
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 711 Fig. 1. Hierarchical representation of the top row image with local (second row) and nonlocal (third row) configurations. Numbers under images indicate the number of vertices at each level.
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 23 Fig. 2. Hierarchical representation of an image database. The bottom level represents the original data (level 0). The following levels range from 1 to 5.