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Abstract

We prove some existence (and sometimes also uniqueness) of solutions to some stationary
equations associated to the complex Schrödinger operator under the presence of a singular non-
linear term. Among other new facts, with respect some previous results in the literature for such
type of nonlinear potential terms, we include the case in which the spatial domain is possibly un-
bounded (something which is connected with some previous localization results by the authors),
the presence of possible non-local terms at the equation, the case of boundary conditions different
to the Dirichlet ones and, finally, the proof of the existence of solutions when the right-hand side
term of the equation is beyond the usual L2-space.
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1 Introduction

This paper is concerned by existence of solutions for two kinds of equations related to the complex

Schrödinger operator,

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω), (1.1)

−∆u+ a|u|−(1−m)u+ bu+ cV 2u = F, in L2(Ω), (1.2)

with homogeneous Dirichlet boundary condition

u|Γ = 0, (1.3)

or homogeneous Neumann boundary condition

∂u

∂ν |Γ
= 0, (1.4)

where Ω is a subset of RN with boundary Γ, 0 < m < 1, (a, b, c) ∈ C3 and V ∈ L∞(Ω;R) is a real

potential. Here and in what follows, when Γ is of class C1, ν denotes the outward unit normal vector

to Γ. Moreover, ∆ =
N∑
j=1

∂2

∂x2
j

is the Laplacian in Ω.

In Bégout and Dı́az [1], the authors study the spatial localization property compactness of the support

of solutions of equation (1.1) (see Theorems 3.1, 3.5, 3.6, 4.1, 4.4 and 5.2). Existence, uniqueness and

a priori bound are also established with the homogeneous Dirichlet boundary condition, F ∈ Lp(Ω)

(2 < p < ∞) and (a, b) ∈ C2 satisfying assumptions (2.7) below. In this paper, we give such existence

and a priori bound results but for the weaker assumption F ∈ L2(Ω) (Theorems 2.8 and 2.9) and

also for some different hypotheses on (a, b) ∈ C2 (Theorems 2.1 and 2.3). Additionally, we consider

homogeneous Neumann boundary condition (Theorems 2.8 and 2.9).

In Bégout and Dı́az [2], spatial localization property for the partial differential equation (1.2) associ-

ated to self-similar solutions of the nonlinear Schrödinger equation

iut +∆u = a|u|−(1−m)u+ f(t, x),

is studied.
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In this paper, we prove existence of solutions with homogeneous Dirichlet or Neumann boundary

conditions (Theorems 2.4) and establish a priori bounds (Theorem 2.6), for both equations (1.1) and

(1.2) with any of both boundary conditions (1.3) or (1.4). We also show uniqueness (Theorem 2.10)

and regularity results (Theorem 2.12), under suitable additional conditions. We send the reader to

the long introduction of Bégout and Dı́az [2] for many comments on the frameworks in which the

equation arises (Quantum Mechanics, Nonlinear Optics and Hydrodynamics) and their connections

with some other papers in the literature.

This paper is organized as follows. In the next section, we give results about existence, uniqueness,

regularity and a priori bounds for equations (1.1) and (1.2), with boundary conditions (1.3) or (1.4),

and notations are given in Section 3. Section 4, is devoted to the establishment of a priori bounds for

the different truncated nonlinearities of equations studied in this paper. In Section 5, we prove the

results given in Section 2. In Bégout and Dı́az [1], localization property is studied for equation (1.1).

The results we give require, sometimes, the same assumptions on (a, b) ∈ C2 as in Bégout and Dı́az [1]

but with a change of notation. See Comments 2.7 below for the motivation of this change. In Section 6

we will show the existence of solutions to equation (1.2) for data in a weighted subspace. Finally,

in the last section, we state the principal results obtained in this paper and give some applications.

Existence of solutions for equation (1.2) is used in Bégout and Dı́az [2] while existence of solutions

for equation (1.1) is used in Bégout and Dı́az [3].

2 Main results

Here, we state the main results of this paper.

Theorem 2.1 (Existence). Let Ω an open subset of RN be such that |Ω| < ∞ and assume 0 < m < 1,

(a, b) ∈ C2 and F ∈ L2(Ω). If Re(b) < 0 then assume further that Im(b) 6= 0 or − 1
C2

P
< Re(b), where

CP is the Poincaré’s constant in (4.1) below. Then there exists at least a solution u ∈ H1
0 (Ω) of (1.1).

In addition, Symmetry Property 2.2 below holds.

Symmetry Property 2.2. If furthermore, for any R ∈ SON (R), RΩ = Ω and if F is spherically

symmetric then we may construct a solution which is additionally spherically symmetric. For N = 1,

this means that if F is an even (respectively, an odd) function then u is also an even (respectively, an

odd) function.

Theorem 2.3 (A priori bound). Let Ω an open subset of RN be such that |Ω| < ∞ and assume

0 < m < 1, (a, b) ∈ C2 and F ∈ L2(Ω). If Re(b) < 0 then assume further that Im(b) 6= 0 or
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− 1
C2

P
< Re(b), where CP is the constant in (4.1) below. Let u ∈ H1

0 (Ω) be any solution to (1.1). Then

we have the following estimate.

‖u‖H1
0(Ω) 6 C,

where C = C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m).

Theorem 2.4 (Existence). Let Ω ⊆ RN be an open subset and assume V ∈ L∞(Ω;R), 0 < m < 1,

(a, b, c) ∈ C3 is such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume further that

Im(a) < 0. Then we have the following result.

1) For any F ∈ L2(Ω), there exists at least a solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) to (1.2).

2) If we assume furthermore that Ω is bounded with a C1 boundary then the conclusion 1) still

holds true with u ∈ H1(Ω) and the boundary condition (1.4) instead of u ∈ H1
0 (Ω).

If, in addition, V is spherically symmetric then Symmetry Property 2.2 holds.

Remark 2.5. Here are some comments about boundary condition.

1) If u 6∈ C(Ω) and Ω has not a C0,1 boundary, the condition u|Γ = 0 does not make sense (in

the sense of the trace) and, in this case, has to be understood as u ∈ H1
0 (Ω).

2) Assume that Ω is bounded and has a C1,1 boundary. Let u ∈ H1(Ω) be any solution to

(1.2) with the boundary condition (1.4). Then u ∈ H2(Ω) and boundary condition ∂u
∂ν |Γ

= 0

makes sense in the sense of the trace γ
(
∇u.ν

)
= 0. If, in addition, u ∈ C1(Ω) then obviously

for any x ∈ Γ, ∂u
∂ν

(x) = 0. Indeed, since u ∈ H1(Ω), ∆u ∈ L2(Ω) and (1.2) makes sense

almost everywhere in Ω, we have γ
(
∂u
∂ν

)
∈ H− 1

2 (Γ) and by Green’s formula,

Re

∫

Ω

∇u(x).∇v(x)dx−

〈
γ

(
∂u

∂ν

)
, γ(v)

〉

H
−

1
2 (Γ),H

1
2 (Γ)

+Re

∫

Ω

f
(
u(x)

)
v(x)dx = Re

∫

Ω

F (x)v(x)dx, (2.1)

for any v ∈ H1(Ω), where f(u) = a|u|−(1−m)u + bu + cV 2u (see Lemma 4.1, Theorem 4.2

and Corollary 4.1, p.155, in Lions and Magenes [17] and (1,5,3,10) in Grisvard [11], p.62).

This implies that

〈
γ

(
∂u

∂ν

)
, γ(v)

〉

H
−

1
2 (Γ),H

1
2 (Γ)

= 0, (2.2)
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for any v ∈ H1(Ω). Let w ∈ H
1
2 (Γ). Let v ∈ H1(Ω) be such that γ(v) = w (Theorem 1.5.1.3,

p.38, in Grisvard [11]). We then deduce from (2.2) that,

∀w ∈ H
1
2 (Γ),

〈
γ

(
∂u

∂ν

)
, w

〉

H
−

1
2 (Γ),H

1
2 (Γ)

= 0,

and so γ
(
∂u
∂ν

)
= 0. But also u ∈ L2(Ω) and ∆u ∈ L2(Ω). It follows that u ∈ H2(Ω)

(Proposition 2.5.2.3, p.131, in Grisvard [11]). Hence the result.

Theorem 2.6 (A priori bound). Let Ω ⊆ RN be an open subset, let V ∈ L∞(Ω;R), let 0 < m < 1,

let (a, b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume

further that Im(a) < 0. Let F ∈ L2(Ω) and let u ∈ H1(Ω) be any solution to (1.2) with boundary

condition (1.3) or (1.4)1. Then we have the following estimate.

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6 M

(
‖V ‖4L∞(Ω) + 1

)
‖F‖2L2(Ω),

where M = M(|a|, |b|, |c|).

Comments 2.7. In the context of the paper of Bégout and Dı́az [1], we can establish an existence

result with the homogeneous Neumann boundary condition (instead of the homogeneous Dirichlet

condition) and F ∈ L2(Ω)
(
instead of F ∈ L

m+1
m (Ω)

)
. In Bégout and Dı́az [1], we introduced the set,

Ã = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

and assumed that (ã, b̃) ∈ C2 satisfies,

(ã, b̃) ∈ Ã× Ã and





Re(ã)Re(̃b) > 0,

or

Re(ã)Re(̃b) < 0 and Im(̃b) >
Re(̃b)

Re(ã)
Im(ã),

(2.3)

with possibly b̃ = 0, and we worked with

−i∆u+ ã|u|−(1−m)u+ b̃u = F̃ .

Nevertheless, to maintain a closer notation to many applied works in the literature (see, e.g., the

introduction of Bégout and Dı́az [2]), we do not work any more with this equation but with,

−∆u+ a|u|−(1−m)u+ bu = F,

1for which we additionally assume that Ω has a C1 boundary.
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and b 6= 0. This means that we chose, ã = ia, b̃ = ib and F̃ = iF. Then assumptions on (a, b) are

changed by the fact that for z̃ = iz,

Re(z) = Re(−iz̃) = Im(z̃), (2.4)

Im(z) = Im(−iz̃) = −Re(z̃). (2.5)

It follows that the set Ã and (2.3) become,

A = C \
{
z ∈ C; Re(z) 6 0 and Im(z) = 0

}
, (2.6)

(a, b) ∈ A× A and





Im(a)Im(b) > 0,

or

Im(a)Im(b) < 0 and Re(b) >
Im(b)

Im(a)
Re(a).

(2.7)

Obviously,

(
(ã, b̃) ∈ Ã× Ã satisfies (2.3)

)
⇐⇒

(
(a, b) ∈ A× A satisfies (2.7)

)
.

Assumptions (2.7) are made to prove the existence and the localization property of solutions to

equation (1.1). Now, we give some results about equation (1.1) when (a, b) ∈ A× A satisfies (2.7).

Theorem 2.8 (Existence). Let Ω ⊆ RN be an open subset of RN , let 0 < m < 1 and let (a, b) ∈ A2

satisfies (2.7).

1) For any F ∈ L2(Ω), there exists at least a solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) to

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω) + L
m+1
m (Ω). (2.8)

2) If we assume furthermore that Ω is bounded with a C1 boundary then the conclusion 1) still

holds true with u ∈ H1(Ω) and the boundary condition (1.4) instead of u ∈ H1
0 (Ω).

In addition, Symmetry Property 2.2 holds.

Theorem 2.9 (A priori bound). Let Ω ⊆ RN be an open subset of RN , let 0 < m < 1 and let

(a, b) ∈ A2 satisfies (2.7). Let F ∈ L2(Ω) and let u ∈ H1(Ω) ∩Lm+1(Ω) be any solution to (2.8) with

boundary condition (1.3) or (1.4)1. Then we have the following estimate.

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6 M‖F‖2L2(Ω),

where M = M(|a|, |b|).
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Theorem 2.10 (Uniqueness). Let Ω ⊆ RN be an open subset, let V ∈ L∞
loc(Ω;R), let 0 < m < 1

and let (a, b, c) ∈ C3 satisfies one of the three following conditions.

1) a 6= 0, Re(a) > 0, Re(ab) > 0 and Re(ac) > 0.

2) b 6= 0, Re(b) > 0, a = kb, for some k > 0 and Re(bc) > 0.

3) c 6= 0, Re(c) > 0, a = kc, for some k > 0 and Re(bc) > 0.

Let F ∈ L1
loc(Ω). If there exist two solutions u1, u2 ∈ H1(Ω) ∩ Lm+1(Ω) of (1.2) with the same

boundary condition (1.3) or (1.4)1 such that V u1, V u2 ∈ L2(Ω) then u1 = u2.

Remark 2.11. Here are some comments about Theorems 2.1, 2.4, 2.8 and 2.10.

1) Assume F is spherically symmetric. Since we do not know, in general, if we have uniqueness

of the solution, we are not able to show that any solution is radially symmetric.

2) In Theorem 5.2 in Bégout and Dı́az [1], uniqueness for equation

−i∆u+ ã|u|−(1−m)u+ b̃u = F̃ ,

holds if ã 6= 0, Im(ã) > 0 and Re(ãb̃) > 0. By (2.4)–(2.5), those assumptions are equivalent

to 1) of Theorem 2.10 above for equation (1.1) (of course, c = 0). It follows that Theorem 2.10

above extends Theorem 5.2 of Bégout and Dı́az [1].

3) In 2) of the above theorem, if we want to make an analogy with 1), assumption a = kb, for

some k > 0 has to be replaced with Re(ab) > 0 and Im(ab) = 0. But,

(
Re(ab) > 0 and Im(ab) = 0

)
⇐⇒

(
∃k > 0/a = kb

)
.

In the same way,

(
Re(ac) > and Im(ac) = 0

)
⇐⇒

(
∃k > 0/a = kc

)
.

4) In the case of real solutions (with F ≡ 0 and (a, b, c) ∈ R × R × {0}), it is well-known that

if b < 0 then it may appear multiplicity of solutions (once m ∈ (0, 1) and a > 0). For more

details, see Theorem 1 in Dı́az and Hernández [7].

Theorem 2.12 (Regularity). Let Ω ⊆ RN be an open subset, let V ∈ Lr
loc(Ω;C), for any 1 < r < ∞,

let 0 < m < 1, let a ∈ C, let F ∈ L1
loc(Ω), let 1 < q < ∞ and let u ∈ Lq

loc(Ω) be any local solution to

−∆u+ a|u|−(1−m)u+ V u = F, in D
′(Ω). (2.9)

Let q 6 p < ∞ and let α ∈ (0,m].
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1) If F ∈ Lp
loc(Ω) then u ∈ W 2,p

loc (Ω). If (F, V ) ∈ C0,α
loc (Ω)× C0,α

loc (Ω) then u ∈ C2,α
loc (Ω).

2) Assume further that Ω is bounded with a C1,1 boundary, F ∈ Lp(Ω), V ∈ Lr(Ω;C), for

any 1 < r < ∞, u ∈ Lq(Ω) and γ(u) = 0. Then u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω). If (F, V ) ∈

C0,α(Ω)× C0,α(Ω) then u ∈ C2,α(Ω) ∩ C0(Ω).

3) Assume further that Ω is bounded with a C1,1 boundary, F ∈ Lp(Ω), V ∈ Lr(Ω;C), for any

1 < r < ∞, u ∈ Lq(Ω) and γ
(
∂u
∂ν

)
= 0. Then u ∈ W 2,p(Ω). If (F, V ) ∈ C0,α(Ω) × C0,α(Ω)

then u ∈ C2,α(Ω) and for any x ∈ Γ, ∂u
∂ν

(x) = 0.

Remark 2.13. Assume Ω is bounded and has a C1,1 boundary. Let V ∈
⋂

1<r<∞
Lr(Ω;C), 0 <

m < 1, (a, b) ∈ C2, 1 < q 6 p < ∞, F ∈ Lp(Ω) and let u ∈ Lq(Ω) be any solution to (2.9). Let

T : u −→
{
γ(u), γ

(
∂u
∂ν

)}
be the trace function defined on D(Ω). By density of D(Ω) in Dq(∆)

def
=

{
u ∈ Lq(Ω);∆u ∈ Lq(Ω)

}
, T has a linear and continuous extension from Dq(∆) into W− 1

q
,q(Γ) ×

W−1− 1
q
,q(Γ) (Hörmander [12], Theorem 2 p.503; Lions and Magenes [17], Lemma 2.2 and Theorem 2.1

p.147; Lions and Magenes [18], Propositions 9.1, 9.2 and Theorem 9.1 p.82; Grisvard [11], p.54). Since

u ∈ Lq(Ω), it follows from equation (2.9) and Hölder’s inequality that u ∈ Dq(∆), so that “γ(u) = 0”

and “γ
(
∂u
∂ν

)
= 0” make sense.

The main difficulty to apply Theorem 2.12 is to show that such a solution of (2.9) verifies some

boundary condition. In the following result, we give a sufficient condition.

Proposition 2.14 (Regularity). Let Ω be a bounded open subset of RN with a C1,1 boundary, let

V ∈ LN (Ω;C) (V ∈ L2+ε(Ω;C), for some ε > 0, if N = 2 and V ∈ L2(Ω;C) if N = 1), let 0 < m < 1,

let a ∈ C and let F ∈ L2(Ω).

1) Let u ∈ H1
0 (Ω) be any solution to (2.9). Then u ∈ H2(Ω) and γ(u) = 0.

2) Let u ∈ H1(Ω) be any solution to (2.9) and (1.4). Then u ∈ H2(Ω) and γ
(
∂u
∂ν

)
= 0.

Remark 2.15. Any solution given by Theorems 2.1, 2.4 or 2.8 belongs to H2
loc(Ω) (Theorem 2.12).

3 Notations

We indicate here some of the notations used throughout this paper which have not been defined yet

in the introduction (Section 1). We write i2 = −1. We denote by z the conjugate of the complex

number z, Re(z) its real part and Im(z) its imaginary part. For 1 6 p 6 ∞, p′ is the conjugate of p

defined by 1
p
+ 1

p′
= 1. The symbol Ω always indicates a nonempty open subset of RN (bounded or

not); its closure is denoted by Ω and its boundary by Γ. For A ∈ {Ω;Ω}, the space C(A) = C0(A)
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is the set of continuous functions from A to C and Ck(A) (k ∈ N) is the space of functions lying in

C(A) and having all derivatives of order lesser or equal than k belonging to C(A). For 0 < α 6 1

and k ∈ N0
def
= N ∪ {0}, Ck,α

loc (Ω) =

{
u ∈ Ck(Ω); ∀ω ⋐ Ω,

∑
|β|=k

Hα
ω (D

βu) < +∞

}
, where Hα

ω (u) =

sup
{

(x,y)∈ω2

x 6=y

|u(x)−u(y)|
|x−y|α . The notation ω ⋐ Ω means that ω is a bounded open subset of RN and ω ⊂ Ω. In

the same way, Ck,α(Ω) =

{
u ∈ Ck(Ω);

∑
|β|=k

Hα
Ω(D

βu) < +∞

}
. The space C0(Ω) consists of functions

belonging to C(Ω) and vanishing at the boundary Γ, D(Ω) is the space of C∞ functions with compact

support and D(Ω) is the restriction to Ω of functions lying in D(RN ). The trace function defined

on D(Ω) is denoted by γ. For 1 6 p 6 ∞ and m ∈ N, the usual Lebesgue and Sobolev spaces are

respectively denoted by Lp(Ω) and Wm,p(Ω), Wm,p
0 (Ω) is the closure of D(Ω) under the Wm,p-norm,

Hm(Ω) = Wm,2(Ω) and Hm
0 (Ω) = Wm,2

0 (Ω). For a Banach space E, its topological dual is denoted by

E⋆ and 〈. , .〉E⋆,E ∈ R is the E⋆−E duality product. In particular, for any T ∈ Lp′

(Ω) and ϕ ∈ Lp(Ω)

with 1 6 p < ∞, 〈T, ϕ〉Lp′(Ω),Lp(Ω) = Re
∫
Ω

T (x)ϕ(x)dx. We write, W−m,p′

(Ω) = (Wm,p
0 (Ω))

⋆
(p < ∞)

andH−m(Ω) = (Hm
0 (Ω))⋆ . Unless if specified, any function belonging in a functional space

(
Wm,p(Ω),

Ck(Ω), etc
)
is supposed to be a complex-valued function

(
Wm,p(Ω;C), Ck(Ω;C), etc

)
. We denote by

SON (R) the special orthogonal group of RN . Finally, we denote by C auxiliary positive constants,

and sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate that the constant

C continuously depends only on a1, . . . , an (this convention also holds for constants which are not

denoted by “C”).

4 A priori estimates

The proofs of the existence theorems relies on a priori bounds, in order to truncate the nonlinearity

and pass to the limit. These bounds are formally obtained by multiplying the equation by u and iu,

integrate by parts and by making some linear combinations with the obtained results. Now, we recall

the well-known Poincaré’s inequality. If |Ω| < ∞ then,

∀u ∈ H1
0 (Ω), ‖u‖L2(Ω) 6 CP‖∇u‖L2(Ω). (4.1)

where CP = CP(|Ω|, N). We will frequently use Hölder’s inequality in the following form. If |Ω| < ∞

and 0 6 m 6 1 then L2(Ω) →֒ Lm+1(Ω) and

∀u ∈ L2(Ω), ‖u‖m+1
Lm+1(Ω) 6 |Ω|

1−m
2 ‖u‖m+1

L2(Ω). (4.2)
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Finally, we recall the well-known Young’s inequality. For any real x > 0, y > 0 and µ > 0, one has

xy 6
µ2

2
x2 +

1

2µ2
y2. (4.3)

Lemma 4.1. Let Ω an open subset of RN be such that |Ω| < ∞, let ω an open subset of RN be such

that ω ⊆ Ω, let 0 6 m 6 1, let (a, b) ∈ C2, let α, β > 0 and let F ∈ L2(Ω). Let u ∈ H1
0 (Ω) satisfies

∣∣∣‖∇u‖2L2(Ω) +Re(a)
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)

+Re(b)
(
‖u‖2L2(ω) + β‖u‖L1(ωc)

) ∣∣∣ 6
∫

Ω

|Fu|dx, (4.4)

∣∣∣Im(a)
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ Im(b)

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)∣∣∣ 6
∫

Ω

|Fu|dx. (4.5)

Here, ωc = Ω \ ω. Assume that one of the three following assertions holds.

1) Re(b) > 0. If Re(a) < 0 and |ω| < |Ω| then assume further that α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc).

2) Re(b) < 0 and Im(b) 6= 0. If |ω| < |Ω| then assume further that α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc),

F ∈ L∞(Ω) and −α|Im(a)|+ β
2 |Im(b)| > ‖F‖L∞(Ω).

3) −C−2
P < Re(b) < 0, where CP is the constant in (4.1), α‖u‖L1(ωc) 6 ‖u‖m+1

Lm+1(ωc) and

β‖u‖L1(ωc) 6 ‖u‖2L2(ωc).

Then we have the following estimate.

‖u‖H1
0(Ω) 6 C, (4.6)

where C = C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m).

Remark 4.2. Obviously, if |ω| = |Ω| then α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc) and β‖u‖L1(ωc) 6 ‖u‖2L2(ωc).

Proof of Lemma 4.1. By Poincaré’s inequality (4.1), it is sufficient to establish

‖∇u‖L2(Ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m). (4.7)

Moreover, it follows from (4.3) and (4.1),

∫

Ω

|Fu|dx 6
C2

P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω). (4.8)

Finally, it follows from (4.2) and (4.1) that if α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc) then one has,

‖u‖m+1
Lm+1(ω) + α‖u‖L1(ωc) 6 ‖u‖m+1

Lm+1(Ω) 6 Cm+1
P |Ω|

1−m
2 ‖∇u‖m+1

L2(Ω). (4.9)
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We divide the proof in 3 steps.

Step 1. Proof of (4.7) with Assumption 1).

Assume hypothesis 1) holds true. If Re(a) > 0 then (4.7) follows from (4.4) and (4.8), while if

Re(a) < 0 we then deduce from (4.4), (4.8) and (4.9) that,

(
‖∇u‖1−m

L2(Ω) − 2|Re(a)|Cm+1
P |Ω|

1−m
2

)
‖∇u‖m+1

L2(Ω) 6 C2
P‖F‖2L2(Ω).

Hence (4.7).

Step 2. Proof of (4.7) with Assumption 2).

As for Step 1, it follows from (4.5), (4.2), (4.3) and Hölder’s inequality that

|Im(b)|
(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6 |Im(a)||Ω|

1−m
2 ‖u‖m+1

L2(ω) + α|Im(a)|‖u‖L1(ωc)

+
1

2|Im(b)|
‖F‖2L2(ω) +

|Im(b)|

2
‖u‖2L2(ω) + ‖F‖L∞(ωc)‖u‖L1(ωc).

Recalling that when |ω| < |Ω|, −α|Im(a)|+ β
2 |Im(b)| > ‖F‖L∞(Ω), the above estimate yields

(
|Im(b)|‖u‖1−m

L2(ω) − 2|Im(a)||Ω|
1−m

2

)
‖u‖m+1

L2(ω) + β|Im(b)|‖u‖L1(ωc) 6
1

|Im(b)|
‖F‖2L2(ω). (4.10)

If |Im(b)|‖u‖1−m
L2(ω) − 2|Im(a)||Ω|

1−m
2 6 1 then

‖u‖L2(ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m)
not.
= C0, (4.11)

and it follows from (4.5), (4.2), (4.11) and Hölder’s inequality that,

(
β|Im(b)| − α|Im(a)|

)
‖u‖L1(ωc) 6 C(C0) + ‖F‖L∞(ωc)‖u‖L1(ωc)

6 C(C0) +

(
β

2
|Im(b)| − α|Im(a)|

)
‖u‖L1(ωc),

so that,

β‖u‖L1(ωc) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m)
not.
= C1. (4.12)

But if |Im(b)|‖u‖1−m
L2(ω) − 2|Im(a)||Ω|

1−m
2 > 1 then (4.11) and (4.12) come from (4.10).

Finally, by (4.4), (4.8), (4.9), (4.11) and (4.12), one obtains

‖∇u‖2L2(Ω) 6 |Re(a)|Cm+1
P |Ω|

1−m
2 ‖∇u‖m+1

L2(Ω) + C(C0, C1) +
C2

P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω).

It follows that
(
‖∇u‖1−m

L2(Ω) − C
)
‖∇u‖m+1

L2(Ω) 6 C + C2
P‖F‖2L2(Ω), from which we easily deduce (4.7).

Step 3. Proof of (4.7) with Assumption 3).

Let µ > 0. By Assumption 3), (4.1), (4.3) and (4.9)

‖∇u‖2L2(Ω) 6 C‖∇u‖m+1
L2(Ω) +

(
|Re(b)|C2

P +
C2

P

2µ2

)
‖∇u‖2L2(Ω) +

µ2

2
‖F‖2L2(Ω),
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where C = C(|Ω|, |a|, N,m). We then deduce,

((
1− |Re(b)|C2

P −
C2

P

2µ2

)
‖∇u‖1−m

L2(Ω) − C

)
‖∇u‖m+1

L2(Ω) 6
µ2

2
‖F‖2L2(Ω).

Since |Re(b)| < C−2
P , there exists µ0 > 0 such that C2

def.
= 1 − |Re(b)|C2

P −
C2

P

2µ2
0
> 0. For such a µ0,(

C2‖∇u‖1−m
L2(Ω) − C

)
‖∇u‖m+1

L2(Ω) 6
µ2
0

2 ‖F‖2L2(Ω), from which (4.7) follows.

Corollary 4.3. Let (Ωn)n∈N a sequence of open subsets of RN be such that sup
n∈N

|Ωn| < ∞, let 0 <

m < 1, let (a, b) ∈ C2 and let (Fn)n∈N ⊂ L∞(Ωn) be such that sup
n∈N

‖Fn‖L2(Ωn) < ∞. If Re(b) < 0 then

assume further that Im(b) 6= 0 or − 1
C2

P
< Re(b), where CP is the constant in (4.1). Let (un

ℓ )(n,ℓ)∈N2 ⊂

H1
0 (Ωn) be a sequence satisfying

∀n ∈ N, ∀ℓ ∈ N, −∆un
ℓ + fℓ

(
un
ℓ

)
= Fn, in L2(Ωn), (4.13)

where for any ℓ ∈ N,

∀u ∈ L2(Ωn), fℓ(u) =





a|u|−(1−m)u+ bu, if |u| 6 ℓ,

aℓm
u

|u|
+ bℓ

u

|u|
, if |u| > ℓ.

(4.14)

Then there exists a diagonal extraction
(
un
ϕ(n)

)
n∈N

of (un
ℓ )(n,ℓ)∈N2 such that the following estimate

holds.

∀n ∈ N,
∥∥un

ϕ(n)

∥∥
H1

0 (Ωn)
6 C,

where C = C

(
sup
n∈N

‖Fn‖L2(Ωn), sup
n∈N

|Ωn|, |a|, |b|, N,m

)
.

Proof. Choosing un
ℓ and iun

ℓ as test functions, we get

‖∇un
ℓ ‖

2
L2(Ωn)

+ Re(a)
(
‖un

ℓ ‖
m+1
Lm+1({|un

ℓ
|6ℓ}) + ℓm‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)

+Re(b)
(
‖un

ℓ ‖
2
L2({|un

ℓ
|6ℓ}) + ℓ‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)
= Re

∫

Ωn

Fnun
ℓ dx,

Im(a)
(
‖un

ℓ ‖
m+1
Lm+1({|un

ℓ
|6ℓ}) + ℓm‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)

+ Im(b)
(
‖un

ℓ ‖
2
L2({|un

ℓ
|6ℓ}) + ℓ‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)
= Im

∫

Ωn

Fnun
ℓ dx,

for any (n, ℓ) ∈ N2. We first note that,

∀(n, ℓ) ∈ N2,




ℓm‖un

ℓ ‖L1({|un
ℓ
|>ℓ}) 6 ‖un

ℓ ‖
m+1
Lm+1({|un

ℓ
|>ℓ}),

ℓ‖un
ℓ ‖L1({|un

ℓ
|>ℓ}) 6 ‖un

ℓ ‖
2
L2({|un

ℓ
|>ℓ}),

(4.15)
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For each n ∈ N, we choose ϕ(n) ∈ N large enough to have ϕ(n)1−m > 2
‖Fn‖L∞(Ωn)+|Im(a)|

|Im(b)| , when

Im(b) 6= 0 and ϕ(n) = n, when Im(b) = 0. Thus for any n ∈ N, as soon as Im(b) 6= 0, one has

‖Fn‖L∞(Ωn) < −ϕ(n)m|Im(a)|+
ϕ(n)

2
|Im(b)|. (4.16)

With help of (4.15) and (4.16), we may apply Lemma 4.1 to un
ϕ(n), for each n ∈ N, with ω ={

x ∈ Ωn;
∣∣∣un

ϕ(n)(x)
∣∣∣ 6 ϕ(n)

}
, α = ϕ(n)m and β = ϕ(n).

Lemma 4.4. Let Ω ⊆ RN be an open subset, let ω an open subset of RN be such that ω ⊆ Ω, let

m > 0 and let (a, b, c) ∈ C3 be such that Im(b) 6= 0. If Re(a) 6 0 then assume further that Im(a) 6= 0.

Let α, β,R > 0, let F ∈ L2(Ω) and let

A =





max
{
1, 1+|b|+R2|c|

|Im(b)| , |Re(a)|
|Im(a)|

}
, if Re(a) 6 0,

max
{
1, 1+|b|+R2|c|

|Im(b)|

}
, if Re(a) > 0.

If |ω| < |Ω| then assume further that F ∈ L∞(Ω) and β > 2A‖F‖L∞(Ω) + 1. Let u ∈ H1(Ω) satisfies

‖∇u‖2L2(Ω) +Re(a)
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)

− (|b|+R2|c|)
(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6

∫

Ω

|Fu|dx, (4.17)

|Im(a)|
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ |Im(b)|

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6

∫

Ω

|Fu|dx. (4.18)

Then there exists a positive constant M = M(|a|, |b|, |c|) such that,

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) + ‖u‖m+1
Lm+1(ω) + ‖u‖L1(ωc) 6 M(R4 + 1)‖F‖2L2(Ω). (4.19)

Proof. Let A be as in the lemma. We multiply (4.18) by A and sum the result to (4.17). This yields,

‖∇u‖2L2(Ω) +A0

(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ ‖u‖2L2(ω) + β‖u‖L1(ωc) 6 2A

∫

Ω

|Fu|dx,

where A0 = A|Im(a)|+Re(a). Applying Hölder’s inequality and (4.3), we get

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) +A0‖u‖
m+1
Lm+1(ω) + β‖u‖L1(ωc)

6 2A‖F‖L∞(Ω)‖u‖L1(ωc) + 2A2‖F‖2L2(Ω) +
1

2
‖u‖2L2(ω),

from which we deduce the result if |ω| = |Ω|. Now, suppose |ω| < |Ω|. The above estimate leads to,

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) +A0‖u‖
m+1
Lm+1(ω) +

(
β − 2A‖F‖L∞(Ω)

)
‖u‖L1(ωc) 6 4A2‖F‖2L2(Ω),

from which we prove the lemma since β − 2A‖F‖L∞(Ω) > 1.
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Lemma 4.5. Let (a, b) ∈ A2 satisfies (2.7). Then there exists δ⋆ = δ⋆(|a|, |b|) ∈ (0, 1], L = L(|a|, |b|)

and M = M(|a|, |b|) satisfying the following property. If δ ∈ [0, δ⋆] and C0, C1, C2, C3, C4 are six

nonnegative real numbers satisfying

∣∣C1 + δC2 +Re(a)C3 +
(
Re(b)− δ

)
C4

∣∣ 6 C0, (4.20)

∣∣Im(a)C3 + Im(b)C4

∣∣ 6 C0, (4.21)

then

0 6 C1 + LC3 + LC4 6 MC0. (4.22)

Proof. We split the proof in 4 cases. Let γ > 0 be small enough to be chosen later. Note that when

Im(a)Im(b) > 0 then estimate (4.21) can be rewritten as

|Im(a)|C3 + |Im(b)|C4 6 C0. (4.23)

Case 1. Re(a) > 0, Re(b) > 0 and Im(a)Im(b) > 0. We add (4.23) with (4.20) and obtain,

C1 +
(
Re(a) + |Im(a)|

)
C3 +

(
Re(b)− δ⋆ + |Im(b)|

)
C4 6 2C0.

Case 2.
(
Re(a) > 0, Re(b) < 0 and Im(a)Im(b) > 0

)
or

(
Im(a)Im(b) < 0

)
. Then,

C1 +
Re(a)Im(b)− Re(b)Im(a) + γIm(a)

Im(b)
C3 + (γ − δ⋆)C4 6

|Re(b)|+ |Im(b)|+ γ

|Im(b)|
C0.

where we computed (4.20)− Re(b)−γ

Im(b) (4.21).

Case 3. Re(a) < 0, Re(b) > 0 and Im(a)Im(b) > 0. By computing (4.20)− Re(a)−γ

Im(a) (4.21), we get,

C1 + γC3 +

(
Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
− δ⋆

)
C4 6

|Re(a)|+ |Im(a)|+ γ

|Im(a)|
C0.

Case 4. Re(a) < 0, Re(b) < 0 and Im(a)Im(b) > 0. Note that since (a, b) ∈ A2 then necessarily

Im(a)Im(b) 6= 0. Thus, we can compute (4.20) + max
{

|Re(a)|+γ

|Im(a)| , |Re(b)|+γ

|Im(b)|

}
(4.23) and obtain,

C1 + γC3 + (γ − δ⋆)C4 6

(
|Re(a)|+ |Im(a)|+ γ

|Im(a)|
+

|Re(b)|+ |Im(b)|+ γ

|Im(b)|

)
C0.

In both cases, we may choose γ > 0 small enough to have





Re(a)Im(b)− Re(b)Im(a) + γIm(a)

Im(b)
> 0, in Case 2,

Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
> 0, in Case 3.
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Then we choose 0 < δ⋆ < min
{
1, γ, |Im(b)|+ |Re(b)|

}
such that

δ⋆ <
Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
, in Case 3.

This ends the proof.

Corollary 4.6. Let Ω ⊆ RN be an open subset, let V ∈ L∞(Ω;R), let 0 < m < 1 and let (a, b, c) ∈ C3

be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume further that Im(a) < 0.

Let δ > 0. Let (Fn)n∈N ⊂ L∞(Ω)∩L2(Ω) be bounded in L2(Ω) and let (un
ℓ )(n,ℓ)∈N2 ⊂ H1(Ω)∩Lm+1(Ω)

be a sequence satisfying

∀n ∈ N, ∀ℓ ∈ N, −∆un
ℓ + δun

ℓ + fℓ
(
un
ℓ

)
= Fn, in L2(Ω), (4.24)

with boundary condition (1.3) or (1.4), where for any ℓ ∈ N,

∀u ∈ L2(Ω), fℓ(u) =





a|u|−(1−m)u+ (b− δ)u + cV 2u, if |u| 6 ℓ,

aℓm
u

|u|
+ (b − δ)ℓ

u

|u|
+ cV 2ℓ

u

|u|
, if |u| > ℓ.

(4.25)

For (1.4), Ω is assumed to have a C1 boundary. Then there exist M = M
(
‖V ‖L∞(Ω), |a|, |b|, |c|

)
and

a diagonal extraction
(
un
ϕ(n)

)
n∈N

of (un
ℓ )(n,ℓ)∈N2 for which,

∥∥∇un
ϕ(n)

∥∥2
L2(Ω)

+
∥∥un

ϕ(n)

∥∥2
L2

({
∣

∣

∣
un
ϕ(n)

∣

∣

∣
6ϕ(n)

}) +
∥∥un

ϕ(n)

∥∥m+1

Lm+1
({

∣

∣

∣un
ϕ(n)

∣

∣

∣6ϕ(n)
})

+
∥∥un

ϕ(n)

∥∥
L1

({
∣

∣

∣
un
ϕ(n)

∣

∣

∣
>ϕ(n)

}) 6 M sup
n∈N

‖Fn‖
2
L2(Ω),

for any n ∈ N. The same is true if we replace the conditions on (a, b, c) by (a, b, c) ∈ A × A × {0}

satisfies (2.7) and δ 6 δ⋆, where δ⋆ is given by Lemma 4.5. In this case, M = M(|a|, |b|).

Proof. Choosing un
ℓ and iun

ℓ as test functions, we obtain

‖∇un
ℓ ‖

2
L2(Ω) +Re(a)

(
‖un

ℓ ‖
m+1
Lm+1({|un

ℓ
|6ℓ}) + ℓm‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)

+
(
Re(b)− ‖V ‖2L∞(Ω)|Re(c)|

) (
‖un

ℓ ‖
2
L2({|un

ℓ
|6ℓ}) + ℓ‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)
6 Re

∫

Ω

Fnun
ℓ dx, (4.26)

Im(a)
(
‖un

ℓ ‖
m+1
Lm+1({|un

ℓ
|6ℓ}) + ℓm‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)
+ Im(b)

(
‖un

ℓ ‖
2
L2({|un

ℓ
|6ℓ}) + ℓ‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)

+ Im(c)
(
‖V u‖2L2({|un

ℓ
|6ℓ})) + ℓ‖V 2u‖L1({|un

ℓ
|>ℓ}))

)
= Im

∫

Ω

Fnun
ℓ dx, (4.27)

for any (n, ℓ) ∈ N2. If (a, b, c) ∈ A× A× {0} satisfies (2.7), then we obtain

‖∇un
ℓ ‖

2
L2(Ω) + δ‖un

ℓ ‖
2
L2(Ω) +Re(a)

(
‖un

ℓ ‖
m+1
Lm+1({|un

ℓ
|6ℓ}) + ℓm‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)

+
(
Re(b)− δ

) (
‖un

ℓ ‖
2
L2({|un

ℓ
|6ℓ}) + ℓ‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)
= Re

∫

Ω

Fnun
ℓ dx, (4.28)
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Im(a)
(
‖un

ℓ ‖
m+1
Lm+1({|un

ℓ
|6ℓ}) + ℓm‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)

+ Im(b)
(
‖un

ℓ ‖
2
L2({|un

ℓ
|6ℓ}) + ℓ‖un

ℓ ‖L1({|un
ℓ
|>ℓ})

)
= Im

∫

Ω

Fnun
ℓ dx, (4.29)

for any (n, ℓ) ∈ N2. For this last case, it follows from Lemma 4.5, Hölder’s inequality and (4.3) that

‖∇un
ℓ ‖

2
L2(Ω) +

L

2
‖un

ℓ ‖
2
L2({|un

ℓ
|6ℓ}) + L

∥∥un
ℓ

∥∥m+1

Lm+1({|un
ℓ |6ℓ})

+
(
Lℓ−M‖Fn‖L∞(Ω)

)
‖un

ℓ ‖L1({|un
ℓ
|>ℓ}) 6

M2

2L
‖Fn‖

2
L2(Ω).

Then the result follows by choosing for each n ∈ N, ϕ(n) ∈ N large enough to have Lϕ(n) −

M‖Fn‖L∞(Ω) > 1. Now we turn out to the case (4.26)–(4.27). Let M and A be given by Lemma 4.4

with R = ‖V ‖L∞(Ω). For each n ∈ N, let ϕ(n) ∈ N be large enough to have ϕ(n) > 2A‖Fn‖L∞(Ω) +1,

if |ω| < |Ω| and ϕ(n) = n, if |ω| = |Ω|. For each n ∈ N, with help of (4.26) and (4.27), we may apply

Lemma 4.4 to un
ϕ(n) with ω =

{
x ∈ Ω;

∣∣∣un
ϕ(n)(x)

∣∣∣ 6 ϕ(n)
}
, α = ϕ(n)m, β = ϕ(n) and R = ‖V ‖L∞(Ω).

Hence the result.

5 Proofs of the main results

Proof of Theorem 2.12. Property 1) follows from Proposition 4.5 in Bégout and Dı́az [1] while

Property 2) comes from Remark 4.7 in Bégout and Dı́az [1]. It remains to establish Property 3).

Assume first that F ∈ Lp(Ω) and V ∈
⋂

1<r<∞
Lr(Ω). It follows from the equation that for any ε ∈

(0, q−1), ∆u ∈ Lq−ε(Ω). We now recall an elliptic regularity result. If for some 1 < s < ∞, u ∈ Ls(Ω)

satisfies ∆u ∈ Ls(Ω) and γ(∇u.ν) = 0 then u ∈ W 2,s(Ω) (Proposition 2.5.2.3, p.131, in Grisvard [11]).

Since for any ε ∈ (0, q − 1), u,∆u ∈ Lq−ε(Ω) and γ(∇u.ν) = 0 (by assumption), by following the

bootstrap method of the proof p.52 of Property 1) of Proposition 4.5 in Bégout and Dı́az [1], we

obtain the result. Indeed, therein, it is sufficient to apply the global regularity result in Grisvard [11]

(Proposition 2.5.2.3, p.131) in place of the local regularity result in Cazenave [6] (Proposition 4.1.2,

p.101-102). Now, you turn out to the Hölder regularity. Assume F ∈ C0,α(Ω) and V ∈ C0,α(Ω). By

global smoothness property in W 2,p proved above, we know that u ∈ W 2,N+1(Ω) and γ(∇u.ν) = 0

in LN+1(Γ). It follows from the Sobolev’s embedding, W 2,N+1(Ω) →֒ C1, 1
N+1 (Ω) →֒ C0,1(Ω), that for

any x ∈ Γ, ∂u
∂ν

(x) = 0 and u ∈ C0,1(Ω). A straightforward calculation yields,

∀(x, y) ∈ Ω
2
,
∣∣∣|u(x)|−(1−m)u(x)− |u(y)|−(1−m)u(y)

∣∣∣ 6 5|u(x)− u(y)|m 6 5|x− y|m.
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Setting, g = F − (a|u|−(1−m)u + (b − 1)u + cV u), we deduce that g ∈ C0,α(Ω). Let v ∈ C2,α(Ω) be

the unique solution to



−∆v + v = g, in Ω,
∂v

∂ν
= 0, on Γ,

(see, for instance, Theorem 3.2 p.137 in Ladyzhenskaya and Ural’tseva [16]). It follows that u and

v are two H1-solutions of the above equations and since uniqueness holds in H1(Ω) (Lax-Milgram’s

Theorem), we deduce that u = v. Hence u ∈ C2,α(Ω). This concludes the proof2.

Proof of Proposition 2.14. We first establish Property 1). Since Ω has C0,1 boundary and

u ∈ H1
0 (Ω), it follows that γ(u) = 0. Moreover, Sobolev’s embedding and equation (2.9) imply that

∆u ∈ L2(Ω). We then obtain that u ∈ H2(Ω) (Grisvard [11], Corollary 2.5.2.2, p.131). Hence

Property 1). We turn out to Property 2). It follows from equation (2.9) that ∆u ∈ L2(Ω), so that

(2.9) makes sense a.e. in Ω. Then Property 2) comes from the arguments of 2) of Remark 2.5.

Lemma 5.1. Let O ⊂ RN be a bounded open subset, let V ∈ L∞(Ω;C), let 0 < m < 1, let (a, b, c) ∈ C3

and let F ∈ L2(O). Let δ ∈ [0, 1]. Then for any ℓ ∈ N, there exist a solution u1
ℓ ∈ H1

0 (O) to

−∆uℓ + δuℓ + fℓ(uℓ) = F, in L2(O), (5.1)

with boundary condition (1.3) and a solution u2
ℓ ∈ H1(O) to (5.1) with boundary condition (1.4) (in

this case, O is assumed to have a C1 boundary and δ > 0), where

∀u ∈ L2(Ω), fℓ(u) =





a|u|−(1−m)u+ (b− δ)u + cV 2u, if |u| 6 ℓ,

aℓm
u

|u|
+ (b − δ)ℓ

u

|u|
+ cV 2ℓ

u

|u|
, if |u| > ℓ.

(5.2)

If, in addition, V is spherically symmetric then Symmetry Property 2.2 holds.

Proof. We proceed with the proof in two steps. Let H = H1
0 (O), in the homogeneous Dirichlet case,

and H = H1(O), in the homogeneous Neumann case. Let δ ∈ [0, 1]
(
with additionally δ > 0 and Γ of

class C1 if H = H1(O)
)
. Step 1 below being obvious, we omit the proof.

Step 1. ∀G ∈ L2(O), ∃!u ∈ H s.t. −∆u + δu = G. Moreover, ∃α > 0 s.t. ∀G ∈ L2(O),
∥∥(−∆+ δI)−1G

∥∥
H1(O)

6 α‖G‖L2(O). Finally, Symmetry Property 2.2 holds.

Step 2. Conclusion.

For each ℓ ∈ N, we define gℓ = −fℓ+F ∈ C
(
L2(O);L2(O)

)
. With help of the continuous and compact

2More directly, we could have said that since u ∈ W 2,N+1(Ω), γ(∇u.ν) = 0 and ∆u ∈ C0,α(Ω) (by the estimate of
the nonlinearity) then by Theorem 6.3.2.1, p.287, in Grisvard [11], u ∈ C2,α(Ω). But this theorem requires Ω to have a
C2,1 boundary.
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embedding i : H →֒ L2(O) and Step 1, we may define a continuous and compact sequence of mappings

(Tℓ)ℓ∈N of H as follows. For any ℓ ∈ N, set

Tℓ : H
i
→֒ L2(O)

gℓ−→ L2(O)
(−∆+δI)−1

−−−−−−−→ H

u 7−→ i(u) = u 7−→ gℓ(u) 7−→ (−∆+ δu)−1(gℓ)(u)

Set ρ = 2α(|a|+ |b|+ |c|+ 1)
((

‖V ‖2L∞(Ω) + 2
)
ℓ|O|

1
2 + ‖F‖L2(O)

)
. Let u ∈ H. It follows that,

‖Tℓ(u)‖H1(O) =
∥∥(−∆+ δI)−1(gℓ)(u)

∥∥
H1(O)

6 α‖gℓ(u)‖L2(O) 6 ρ.

Existence comes from the Schauder’s fixed point Theorem applied to Tℓ. The Symmetry Property 2.2

is obtained by working in Hrad in place of H
(
and in Heven and Hodd for N = 1

)
.

Proof of Theorem 2.1. Let for any u ∈ L2(Ω), f(u) = a|u|−(1−m)u + bu. Set Ωn = Ω ∩ B(0, n).

Let (Gn)n∈N ⊂ D(Ω) be such that Gn
L2(Ω)
−−−−→
n→∞

F. Let
(
un
ℓ

)
(n,ℓ)∈N2 ⊂ H1

0 (Ωn) a sequence of solutions

of (5.1) be given by Lemma 5.1 with O = Ωn, c = δ = 0 and Fn = Gn|Ωn
. We define ũn

ℓ ∈

H1
0 (Ω) by extending un by 0 in Ω ∩ Ωc

n. We also denote by f̃ℓ the extension by 0 of fℓ in Ω ∩ Ωc
n.

By Corollary 4.3, there exists a diagonal extraction
(
ũn
ϕ(n)

)
n∈N

of
(
ũn
ℓ

)
(n,ℓ)∈N2 which is bounded

in H1
0 (Ω). By reflexivity of H1

0 (Ω), Rellich-Kondrachov’s Theorem and converse of the dominated

convergence theorem, there exist u ∈ H1
0 (Ω) and g ∈ L2

loc(Ω;R) such that, up to a subsequence that

we still denote by
(
ũn
ϕ(n)

)
n∈N

, ũn
ϕ(n)

L2
loc(Ω)

−−−−−→
n→∞

u, ũn
ϕ(n)

a.e. in Ω
−−−−−→
n→∞

u and
∣∣∣ũn

ϕ(n)

∣∣∣ 6 g, a.e. in Ω, By these

two last estimates, f̃ϕ(n)

(
ũn
ϕ(n)

)
a.e. in Ω
−−−−−→
n→∞

f(u) and
∣∣∣f̃ϕ(n)

(
ũn
ϕ(n)

)∣∣∣ 6 C(gm + g) ∈ L2
loc(Ω), a.e. in Ω.

From the dominated convergence Theorem, f̃ϕ(n)

(
ũn
ϕ(n)

)
L2

loc(Ω)
−−−−−→
n→∞

f(u). Let ϕ ∈ D(Ω). Let n⋆ ∈ N be

large enough to have suppϕ ⊂ Ωn⋆
. We have by (5.1),

∀n > n⋆,
〈
−i∆un

ϕ(n) + fϕ(n)

(
un
ϕ(n)

)
− Fn, ϕ|Ωn

〉
D′(Ωn),D(Ωn)

= 0.

The above convergencies lead to,

〈−∆u+ f(u)− F, ϕ〉D′(Ω),D(Ω)

= 〈−u,∆ϕ〉D′(Ω),D(Ω) + 〈f(u)− F, ϕ〉D′(Ω),D(Ω)

= lim
n→∞

〈
−ũn

ϕ(n),∆ϕ
〉

D′(Ω),D(Ω)
+ lim

n→∞

〈
f̃ϕ(n)

(
ũn
ϕ(n)

)
−Gn, ϕ

〉
D′(Ω),D(Ω)

= lim
n→∞

〈
−∆un

ϕ(n) + fϕ(n)

(
un
ϕ(n)

)
− Fn, ϕ|Ωn

〉
D′(Ωn),D(Ωn)

= 0.

By density, we then obtain that u ∈ H1
0 (Ω) is a solution to −∆u+f(u) = F, in L2(Ω). Finally, if F is

spherically symmetric then u (obtained as a limit of solutions given by Lemma 5.1) is also spherically

symmetric. For N = 1, this includes the case where F is an even function.
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Proof of Theorems 2.3 and 2.9. Choosing u and iu as test functions, we obtain

‖∇u‖2L2(Ω) +Re(a)‖u‖m+1
Lm+1(Ω) +Re(b)‖u‖2L2(Ω) = Re

∫

Ω

Fudx,

Im(a)‖u‖m+1
Lm+1(Ω) + Im(b)‖u‖2L2(Ω) = Im

∫

Ω

Fudx.

Theorem 2.3 follows immediately from Lemma 4.1 applied with ω = Ω, while Theorem 2.9 is a

consequence of Lemma 4.5 applied with δ = 0 and (4.3). This ends the proof.

Proof of Theorem 2.6. Choosing u and iu as test functions, we obtain

‖∇u‖2L2(Ω) +Re(a)‖u‖m+1
Lm+1(Ω) +

(
Re(b)− |Re(c)|‖V ‖2L∞(Ω)

)
‖u‖2L2(Ω) 6

∫

Ω

|Fu|dx,

|Im(a)|‖u‖m+1
Lm+1(Ω) + |Im(b)|‖u‖2L2(Ω) + |Im(c)|‖V u‖2L2(Ω) 6

∫

Ω

|Fu|dx.

The theorem follows Lemma 4.4 applied with ω = Ω, R = ‖V ‖L∞(Ω) and α = β = 0.

Proof of Theorems 2.4 and 2.8. We first assume that Ω is bounded. Let H = H1
0 (Ω), in the

homogeneous Dirichlet case, and H = H1(Ω), in the homogeneous Neumann case. Let δ⋆ be given

by Lemma 4.5 and let for any u ∈ L2(Ω), f(u) = a|u|−(1−m)u+ bu+ cV 2u (with c = 0 in the case of

Theorem 2.8). Let (Fn)n∈N ⊂ D(Ω) be such that Fn
L2(Ω)
−−−−→
n→∞

F. Let
(
un
ℓ

)
(n,ℓ)∈N2 ⊂ H a sequence of

solutions of (5.1) be given by Lemma 5.1 with O = Ω, δ = 1 for Theorem 2.4, δ = δ⋆ for Theorem 2.8

and such Fn. By Corollary 4.6, there exists a diagonal extraction
(
un
ϕ(n)

)
n∈N

of
(
un
ℓ

)
(n,ℓ)∈N2 which

is bounded in W 1,1(Ω) ∩ Ḣ1(Ω). Let 1 < p < 2 be such that W 1,1(Ω) →֒ Lp(Ω). Then
(
un
ϕ(n)

)
n∈N

is bounded in W 1,p(Ω) and there exist u ∈ W 1,p(Ω) ∩ Ḣ1(Ω) and g ∈ Lp(Ω;R) such that, up to

a subsequence that we still denote by
(
un
ϕ(n)

)
n∈N

, un
ϕ(n)

Lp(Ω)
−−−−→
n→∞

u, ∇un
ϕ(n) ⇀ ∇u in

(
L2
w
(Ω)

)N
, as

n −→ ∞, un
ϕ(n)

a.e. in Ω
−−−−−→
n→∞

u,
∣∣∣un

ϕ(n)

∣∣∣ 6 g, a.e. in Ω and

(
un
ϕ(n)1

{
∣

∣

∣
un
ϕ(n)

∣

∣

∣
6ϕ(n)

}

)

n∈N

is bounded in L2(Ω),

where the last estimate comes from Corollary 4.6. By these three last estimates and Fatou’s Lemma,

u ∈ L2(Ω), fϕ(n)

(
un
ϕ(n)

)
a.e. in Ω
−−−−−→
n→∞

f(u) − δu and
∣∣∣fϕ(n)

(
un
ϕ(n)

)∣∣∣ 6 C(gm + g) ∈ Lp(Ω), a.e. in Ω. It

follows that u ∈ H1(Ω). From the dominated convergence Theorem, fϕ(n)

(
un
ϕ(n)

)
Lp(Ω)
−−−−→
n→∞

f(u) − δu.

Consider the Dirichlet boundary condition. We recall a Gagliardo-Nirenberg’s inequality.

∀w ∈ H1
0 (Ω), ‖w‖

N+2
L2(Ω) 6 C‖w‖2L1(Ω)‖∇w‖NL2(Ω),

where C = C(N). In particular, C does not depend on Ω. Since
(
un
ϕ(n)

)
n∈N

⊂ H1
0 (Ω) is bounded

in W 1,1(Ω) ∩ Ḣ1(Ω), it follow from the above Gagliardo-Nirenberg’s inequality that
(
un
ϕ(n)

)
n∈N

is

bounded in H1
0 (Ω), so that u ∈ H1

0 (Ω). Now, we show that u ∈ H is a solution. Let m0 ∈ N be large
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enough to have Hm0(Ω) →֒ Lp′

(Ω). Let v ∈ D(Ω), if H = H1
0 (Ω) and let v ∈ Hm0(Ω), if H = H1(Ω).

By (5.1), we have for any n ∈ N,

〈
∇un

ϕ(n),∇v
〉
L2(Ω),L2(Ω)

+
〈
δun

ϕ(n) + fϕ(n)

(
un
ϕ(n)

)
, v
〉
Lp(Ω),Lp′(Ω)

− 〈Fn, v〉L2(Ω),L2(Ω) = 0. (5.3)

Above convergencies lead to allow us to pass in the limit in (5.3) and by density of D(Ω) in H1
0 (Ω)

and density of Hm0(Ω) in H1(Ω) (see, for instance, Corollary 9.8, p.277, in Brezis [4]), it follows that

∀v ∈ H, 〈∇u,∇v〉L2(Ω),L2(Ω) + 〈f(u), v〉L2(Ω),L2(Ω) = 〈F, v〉L2(Ω),L2(Ω).

This finishes the proof of the existence for Ω bounded. Approximating Ω by an exhaustive sequence

of bounded sets (Ω ∩B(0, n))n∈N
, the case Ω unbounded can be treated in the same way as in the

proof of Theorem 2.1. The symmetry property also follows as in the proof of Theorem 2.1.

Proof of Theorem 2.10. Let u1, u2 ∈ H1(Ω) ∩ Lm+1(Ω) be two solutions of (1.2) such that

V u1, V u2 ∈ L2(Ω). We set u = u1 − u2, f(v) = |v|−(1−m)v and g(v) = af(v) + bv + cV 2v. From

Lemma 9.1 in Bégout and Dı́az [1], there exists a positive constant C such that,

C

∫

ω

|u1(x)− u2(x)|2

(|u1(x)| + |u2(x)|)1−m
dx 6 〈f(u1)− f(u2), u1 − u2〉

L
m+1
m (Ω),Lm+1(Ω)

, (5.4)

where ω =
{
x ∈ Ω; |u1(x)|+ |u2(x)| > 0

}
. We have that u satisfies −∆u+g(u1)−g(u2) = 0. Choosing

v = au as a test function, we get

Re(a)‖∇u‖2L2 + |a|2〈f(u1)− f(u2), u1 − u2〉
L

m+1
m ,Lm+1

+Re(ab)‖u‖2L2 +Re (ac) ‖V u‖2L2 = 0.

It follows from the above estimate and (5.4) that,

Re(a)‖∇u‖2L2 + C|a|2
∫

ω

|u1(x)− u2(x)|
2

(|u1(x)| + |u2(x)|)1−m
dx+Re(ab)‖u‖2L2 +Re (ac) ‖V u‖2L2 6 0,

which yields Property 1). Properties 2) and 3) follow in the same way.

Remark 5.2. It is not hard to adapt the above proof to find other criteria of uniqueness.

6 On the existence of solutions of the Dirichlet problem for

data beyond L
2(Ω)

In this section we shall indicate how some of the precedent results of this paper can be extended

to some data F which are not in L2(Ω) but in the more general Hilbert space L2(Ω; δα), where
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δ(x) = dist(x,Γ) and α ∈ (0, 1).

In order to justify the associated notion of solution, we start by assuming that a function u solves

equation

−∆u+ f(u) = F, in Ω, (6.1)

with the Dirichlet boundary condition (1.3), u|Γ = 0, and we multiply (formally) by v(x)δ(x), with

v ∈ H1
0 (Ω; δ

α)
(
the weighted Sobolev space associated to the weight δα(x)

)
, we integrate by parts (by

Green’s formula) and we take the real part. Then we get,

Re

∫

Ω

∇u.∇v δαdx+Re

∫

Ω

v∇u.∇δαdx+Re

∫

Ω

f(u) v δαdx = Re

∫

Ω

F v δαdx. (6.2)

To give a meaning to the condition (6.2), we must assume that

F ∈ L2(Ω; δα), (6.3)

where ‖F‖2L2(Ω;δα) =

∫

Ω

|F (x)|2δα(x)dx, and to include in the definition of solution the conditions

u ∈ H1
0 (Ω; δ

α) and f(u) ∈ L2(Ω; δα). (6.4)

The justification of the second term in (6.2) is far to be trivial and requires the use of a version of the

following Hardy type inequality,

∫

Ω

|v(x)|2δ−(2−α)(x)dx 6 C

∫

Ω

|∇v(x)|2δα(x)dx, (6.5)

which holds for some constant C independent of v, for any v ∈ H1
0 (Ω; δ

α) once we assume that

Ω is a bounded open subset of RN with Lipschitz boundary (6.6)

(see, e.g., Kufner [13] and also Drábek, Kufner and Nicolosi [10], Kufner and Opic [14], Kufner and

Sänding [15] and Nečas [19]). Notice that under (6.6), we know that δ ∈ W 1,∞(Ω) and so

∣∣∣∣∣∣

∫

Ω

v∇u.∇δαdx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Ω

(
δ

α
2 ∇u

)
.

(
v

δ
α
2
∇δα

)
dx

∣∣∣∣∣∣
6 α‖∇δ‖L∞(Ω)‖∇u‖L2(Ω;δα)‖v‖L2(Ω;δ−(2−α)) < ∞,

by Cauchy-Schwarz’s inequality and (6.5).

Definition 6.1. Assumed (6.3), (6.6) and α ∈ (0, 1), we say that u ∈ H1
0 (Ω; δ

α) is a solution of (6.1)

and (1.3) in H1
0 (Ω; δ

α) if (6.4) holds and the integral condition (6.2) holds for any v ∈ H1
0 (Ω; δ

α).
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Remark 6.2. Notice that H1
0 (Ω; δ

α) →֒ L2(Ω) (by the Hardy’s inequality (6.5) and (6.6)). Moreover,

since

δ−sα ∈ L1(Ω), for any s ∈ (0, 1), (6.7)

we know (Drábek, Kufner and Nicolosi [10], p.30) that

H1
0 (Ω; δ

α) →֒ W 1,ps(Ω), with ps =
2s

s+ 1
.

Remark 6.3. Obviously, there are many functions F such that F ∈ L2(Ω; δα) \L2(Ω) (for instance,

if F (x) ∼ 1
δ(x)β , for some β > 0, then F ∈ L2(Ω; δα), if β < α+1

2 but F 6∈ L2(Ω), once β >
1
2 . This

fact is crucial when the nonlinear term f(u) involves a singular term of the form as in (1.2) but with

m ∈ (−1, 0) (see Dı́az, Hernández and Rakotoson [8] for the real case).

Remark 6.4. We point out that in most of the papers dealing with weighted solutions of semilinear

equations, the notion of solution is not justified in this way but merely by replacing the Laplace opera-

tor by a bilinear form which becomes coercive on the spaceH1
0 (Ω; δ

α). The second integral term in (6.2)

is not mentioned
(
since, formally, the multiplication of the equation is merely by v ∈ H1

0 (Ω; δ
α)
)
but

then it is quite complicated to justify that such alternative solutions satisfy the pde equation (1.2)

when they are assumed, additionally, that ∆u ∈ L2
loc(Ω). We also mention now (although it is a

completely different approach) the notion of L1(Ω; δ)-very weak solution developed recently for many

scalars semilinear equations: see, e.g., Brezis, Cazenave, Martel and Ramiandrisoa [5], Dı́az and

Rakotoson [9] and the references therein).

By using exactly the same a priori estimates, but now adapted to the space H1
0 (Ω; δ

α), we get the

following result.

Theorem 6.5. Let Ω be a bounded open subset with Lipschitz boundary, V ∈ L∞(Ω;R), 0 < α < 1,

0 < m < 1, (a, b, c) ∈ C3 as in Theorem 2.4 and let F ∈ L2(Ω; δα). Then we have the following result.

1) There exists at least a solution u ∈ H1
0 (Ω; δ

α) to (1.2). Furthermore, any such solution

belongs to H2
loc(Ω).

2) If, in addition, we assume the conditions of Theorem 2.10, this solution is unique in the class

of H1
0 (Ω; δ

α)-solutions.

Remark 6.6. In the proof of the a priori estimates, it is useful to replace the weighted function δ

by a more smooth function having the same behavior near Γ. This is the case, for instance of the first
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eigenfunction ϕ1 of the Laplace operator,

{
−∆ϕ1 = λ1ϕ1, in Ω,

ϕ1|Γ = 0, on Γ.

It is well-known that ϕ1 ∈ W 2,∞(Ω) ∩W 1,∞
0 (Ω) and that C1δ(x) 6 ϕ1(x) 6 C2δ(x), for any x ∈ Ω,

for some positive constants C1 and C2, independent of x. Now, with this new weighted function, it is

easy to see that the second term in (6.2) does not play any important role since, for instance, when

taking v = u as test function, we get that

Re

∫

Ω

u∇u.∇ϕα
1 dx =

1

2

∫

Ω

∇|u|2.∇ϕα
1 dx = −

1

2

∫

Ω

|u|2∆ϕα
1 dx

=
αλ1

2

∫

Ω

|u|2ϕα
1 dx+

α(1 − α)

2

∫

Ω

|u|2ϕ
−(2−α)
1 |∇ϕ1|

2dx > 0.

7 Conclusions

In this section, we summarize the results obtained in Section 2 and give some applications.

The next result comes from Theorems 2.1, 2.3 and 2.10.

Theorem 7.1. Let Ω an open subset of RN be such that |Ω| < ∞ and assume 0 < m < 1, (a, b) ∈ C2

and F ∈ L2(Ω). Assume that Re(b) > − 1
C2

P
or Im(b) 6= 0, where CP is the Poincaré’s constant in (4.1).

Then there exists at least a solution u ∈ H1
0 (Ω) to

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω). (7.1)

Furthermore, ‖u‖H1
0(Ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m). Finally, if Re(a) > 0 and −→a .

−→
b > 0 then the

solution is unique.

In the above theorem, the complex numbers a and b are seen as vectors −→a and
−→
b of R2. Consequently,

−→a .
−→
b denotes the scalar product between these vectors of R2.

The novelty of Theorem 7.1 is about the range of (a, b) : we obtain existence of solution with, for

instance, (a, b) ∈ R− × (−ε, 0), with ε > 0 small enough, or (a, b) = (−1 + i,−1− i). Recall that, up

to today, existence was an open question when (a, b) ∈ R− × R− or [a, b] ∩ R− × i{0} 6= ∅ (Bégout

and Dı́az [1]). Knowing that for such (a, b) equation (7.1) admits solutions, it would be interesting if,

whether or not, solutions with compact support exist, as in Bégout and Dı́az [1].

By Theorems 2.4, 2.6 and 2.10, we get the following result.
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Theorem 7.2. Let Ω ⊆ RN be a bounded open subset, let 0 < m < 1 and let (a, b, c) ∈ C3 be such that

Im(a) < 0, Im(b) < 0 and Im(c) 6 0. For any F ∈ L2(Ω), there exists at least a solution u ∈ H1(Ω)

to

−∆u+ a|u|−(1−m)u+ bu+ c|x|2u = F, in L2(Ω), (7.2)

with boundary condition (1.3) or (1.4)1. Furthermore,

‖u‖H1(Ω) 6 C(|a|, |b|, |c|)(R2 + 1)‖F‖L2(Ω),

where B(0, R) ⊃ Ω. Finally, if Re(a) > 0, −→a .
−→
b > 0 and −→a .−→c > 0 then the solution is unique.

Since, now, we are able to show that equation (7.2) admits solutions, we can study the propagation

support phenomena. Indeed, we can show that, under some suitable conditions, there exists a self-

similar solution u to

iut +∆u = a|u|−(1−m)u+ f(t, x), in RN ,

such that for any t > 0, suppu(t) is compact (see Bégout and Dı́az [2]).

Now, we turn out to equation (7.1) by extending some results found in Bégout and Dı́az [1]. These

results are due to Theorems 2.8, 2.9 and 2.10.

Theorem 7.3. Let Ω ⊆ RN be an open subset of RN , let 0 < m < 1 and let (a, b) ∈ A2 satisfies (2.7).

For any F ∈ L2(Ω), there exists at least a solution u ∈ H1(Ω) ∩ Lm+1(Ω) to

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω) + L
m+1
m (Ω), (7.3)

with boundary condition (1.3) or (1.4)1 (in this last case, Ω is assumed bounded). Furthermore,

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6 M(|a|, |b|)‖F‖2L2(Ω).

Finally, if Re(a) > 0 and −→a .
−→
b > 0 then the solution is unique.

When |Ω| < ∞, Theorem 7.3 is an improvement of Theorem 4.1 of Bégout and Dı́az [1], since we may

choose F ∈ L2(Ω), instead of F ∈ L
m+1
m (Ω) and that L

m+1
m (Ω) ( L2(Ω). In addition, this existence

result extends to the homogeneous Neumann boundary condition. In this context, we may show three

kinds of new results, under assumptions of Theorem 7.3.

• If Ω = RN and if F ∈ L2(RN ) has compact support then equation (7.3) admits solutions and

any solution is compactly supported.
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• If ‖F‖L2(Ω) is small enough and if F has compact support then equation (7.3) admits solutions

with the homogeneous Dirichlet boundary condition and any solution is compactly supported in Ω.

• If ‖F‖L2(Ω) is small enough, if −→a .
−→
b > 0 and if F has compact support then equation (7.3) admits

a unique solution with the homogeneous Neumann boundary condition and, in fact, this solution is

compactly supported in Ω.

For more details, see Bégout and Dı́az [3]. Finally, in Section 6 we extended our techniques of proofs

to the case in which the datum F is very singular near the boundary of Ω but still is in some weighted

Lebesgue space (see Theorem 6.5).
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Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006.

[7] J. I. Dı́az and Hernández. On a numerable set of branches bifurcating from the infinity of
nodal solutions for a singular semilinear equation. MAMERN13: 5th International Conference
on Approximation Methods and Numerical Modelling in Environment and Natural Resources,
Granada, Spain, April 22-25, 2013.

[8] J. I. Dı́az, J. Hernández, and J. M. Rakotoson. On very weak positive solutions to some semilinear
elliptic problems with simultaneous singular nonlinear and spatial dependence terms. Milan J.
Math., 79(1):233–245, 2011.

[9] J. I. Dı́az and J. M. Rakotoson. On very weak solutions of semi-linear elliptic equations in the
framework of weighted spaces with respect to the distance to the boundary. Discrete Contin.
Dyn. Syst., 27(3):1037–1058, 2010.

[10] P. Drábek, A. Kufner, and F. Nicolosi. Nonlinear elliptic equations. Singular and Degenerate
case. West Bohemia Univ., Pilsen, 1996.

25



[11] P. Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathe-
matics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint
of the 1985 original Pitman ed.
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