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Abstract

We prove some existence (and sometimes also uniqueness) of weak solutions to some station-
ary equations associated to the complex Schrödinger operator under the presence of a singular
nonlinear term. Among other new facts, with respect some previous results in the literature for
such type of nonlinear potential terms, we include the case in which the spatial domain is possibly
unbounded (something which is connected with some previous localization results by the authors),
the presence of possible non-local terms at the equation, the case of boundary conditions different
to the Dirichlet ones and, finally, the proof of the existence of solutions when the right-hand side
term of the equation is beyond the usual L2-space.
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1 Introduction

This paper is concerned by existence of weak solutions for two kinds of equations related to the

complex Schrödinger operator,

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω), (1.1)

−∆u+ a|u|−(1−m)u+ bu+ cV 2u = F, in L2(Ω), (1.2)

with homogeneous Dirichlet boundary condition

u|Γ = 0, (1.3)

or homogeneous Neumann boundary condition

∂u

∂ν |Γ
= 0, (1.4)

where Ω is nonempty subset of RN with boundary Γ, 0 < m < 1, (a, b, c) ∈ C3 and V ∈ L∞(Ω;R) is

a real potential. Here and in what follows, ∆ =
N∑
j=1

∂2

∂x2
j

is the Laplacian in Ω.

In Bégout and Dı́az [3], the authors study the spatial localization property compactness of the support

of weak solutions of equation (1.1) (see Theorems 3.1, 3.5, 3.6, 4.1, 4.4 and 5.2). Existence, unique-

ness and a priori bound are also established with the homogeneous Dirichlet boundary condition,

F ∈ Lp(Ω) (2 < p < ∞) and (a, b) ∈ C2 satisfying assumptions (2.15) below. In this paper, we give

such existence and a priori bound results but for the weaker assumption F ∈ L2(Ω) (Theorems 2.9

and 2.11) and also for some different hypotheses on (a, b) ∈ C2 (Theorems 2.4 and 2.5). Additionally,

we consider homogeneous Neumann boundary condition (Theorems 2.9 and 2.11).

In Bégout and Dı́az [1], spatial localization property for the partial differential equation (1.2) associ-

ated to self-similar solutions of the nonlinear Schrödinger equation

iut + ∆u = a|u|−(1−m)u+ f(t, x),

is studied.

In this paper, we prove existence of weak solutions with homogeneous Dirichlet or Neumann boundary

2



conditions (Theorems 2.6) and establish a priori bound (Theorem 2.7). For both equations (1.1) and

(1.2) with any of both boundary conditions (1.3) or (1.4), we also show uniqueness (Theorem 2.12)

and regularity results (Theorem 2.15), under suitable additional conditions. We send the reader to

the long introduction of Bégout and Dı́az [1] for many comments on the frameworks in which the

equation arises (Quantum Mechanics, Nonlinear Optics and Hydrodynamics) and their connections

with some other papers in the literature.

This paper is organized as follows. In the next section, we give results about existence, uniqueness,

regularity and a priori bounds for equations (1.1) and (1.2), with boundary conditions (1.3) or (1.4).

In Section 3, we give some very simple estimates which will be used to prove the results of this present

section. Section 4, is devoted to the establishment of a priori bounds for the different truncated

nonlinearities of equations studied in this paper. In Section 5, we prove the results given in Section 2.

In Bégout and Dı́az [3], localization property is studied for equation (1.1). The results we give

require, sometimes, the same assumptions on (a, b) ∈ C2 as in Bégout and Dı́az [3] but with a change of

notation. Consequently, in Section 7 we present some planar representations of the assumptions on the

complex parameters a and b which may help to understand this new notation (see also Comments 2.8

below for the motivation of this change). Finally, in Section 6 we will show the existence of solutions

to equation (1.2) for data in a weighted subspace. Existence of weak solutions for equation (1.2) is

used in Bégout and Dı́az [1] while existence of weak solutions for equation (1.1) is used in Bégout and

Dı́az [2].

2 Main results and notations

Before stating our main results, we shall indicate here some of the notations used throughout. We

write i2 = −1. We denote by z the conjugate of the complex number z, by Re(z) its real part and by

Im(z) its imaginary part. For 1 6 p 6∞, p′ is the conjugate of p defined by 1
p + 1

p′ = 1. The closure

of a subset Ω of RN is denoted by Ω and its complement by Ωc = RN \Ω. The notation ω b Ω means

that the closure ω ⊂ Ω and that ω is a compact subset of RN . For x0 ∈ RN and r > 0, we denote by

B(x0, r) the open ball of RN of center x0 and radius r, by S(x0, r) its boundary and by B(x0, r) its

closure. Unless if specified, any function belonging in a functional space
(
Lp(Ω), Wm,p(Ω), H1

0 (Ω), etc
)

is supposed to be a complex-valued function
(
Lp(Ω;C), Wm,p(Ω;C), H1

0 (Ω;C), etc
)
. For a Banach

space E, we denote by E? its topological dual and by 〈 . , . 〉E?,E ∈ R the E?−E duality product. In

particular, for any T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω) with 1 6 p <∞, 〈T, ϕ〉Lp′ (Ω),Lp(Ω) = Re
∫
Ω

T (x)ϕ(x)dx.

We denote by SON (R) the special orthogonal group of RN . As usual, we denote by C auxiliary

3



positive constants, and sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate

that the constant C continuously depends only on a1, . . . , an (this convention also holds for constants

which are not denoted by “C”).

Definition 2.1. Let Ω be a nonempty open subset of RN , let f ∈ C
(
H1(Ω);L2(Ω)

)
and let F ∈ L2(Ω).

1) We say that u is a weak solution to

−∆u+ f(u) = F, in L2(Ω), (2.1)

and

u|Γ = 0,

if u ∈ H1
0 (Ω) and if

〈∇u,∇v〉L2(Ω),L2(Ω) + 〈f(u), v〉L2(Ω),L2(Ω) = 〈F, v〉L2(Ω),L2(Ω), (2.2)

for any v ∈ H1
0 (Ω).

2) Assume that Γ 6= ∅ and Ω has a C1 boundary. Let ν be the outward unit normal vector to

Γ. We say that u is a weak solution to (2.1) and

∂u

∂ν |Γ
= 0,

if u ∈ H1(Ω) and if u satisfies (2.2) for any v ∈ H1(Ω).

In particular, for both kinds of boundary conditions, ∆u ∈ L2(Ω). It follows then that u ∈ H2
loc(Ω)

and so (2.1) takes sense almost everywhere in Ω (see, for instance, Proposition 4.1.2, p.101-102 in

Cazenave [7]).

3) In a general way, if one has merely f ∈ C
(
Lploc(Ω);L1

loc(Ω)
)

and F ∈ L1
loc(Ω), for some

1 6 p 6∞, then we say that u is a local very weak solution to

−∆u+ f(u) = F, in D ′(Ω),

if u ∈ Lploc(Ω) and if

〈−u,∆ϕ〉D′(Ω),D(Ω) + 〈f(u), ϕ〉D′(Ω),D(Ω) = 〈F,ϕ〉D′(Ω),D(Ω),

for any ϕ ∈ D(Ω). If, in addition, f ∈ C
(
Lp(Ω);L1(Ω)

)
and u ∈ Lp(Ω) then u is said to be

a global very weak solution.
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Remark 2.2. Here are some comments about Definition 2.1.

1) More generally, we may introduce some special issues classes of weak solutions: let D(Ω) ↪→

E ⊂ L1
loc(Ω) be a Banach space with dense embedding. Let

f ∈ C
(
E;E?

)
∩ C

(
H1

loc(Ω);L1
loc(Ω)

)
,

and let F ∈ L2(Ω). Then u is said to be a weak solution to

−∆u+ f(u) = F, in E? + L2(Ω), (2.3)

and (1.3)
(
respectively, to (2.3) and (1.4)

)
if

u ∈ H1
0 (Ω) ∩ E (respectively, if u ∈ H1(Ω) ∩ E),

and if

〈∇u,∇v〉L2(Ω),L2(Ω) + 〈f(u), v〉E?,E = 〈F, v〉L2(Ω),L2(Ω), (2.4)

for any v ∈ H1
0 (Ω) ∩ E (respectively, for any v ∈ H1(Ω) ∩ E). In particular, for both

kinds of boundary conditions, ∆u ∈ E? + L2(Ω) and so (2.3) takes sense in E? + L2(Ω). It

follows that if E? ⊂ L1
loc(Ω) then (2.3) takes sense almost everywhere in Ω. Note that since

f ∈ C
(
H1

loc(Ω);L1
loc(Ω)

)
and ∆u ∈ D ′(Ω) (with help of the dense embedding D(Ω) ↪→ E),

any weak solution in E? + L2(Ω) is also a solution in D ′(Ω).

2) Assume that Ω is bounded and has a C0,1 boundary. We recall that if u ∈ H1(Ω) then

boundary condition u|Γ = 0 makes sense in the sense of the trace γ(u) = 0 and that u ∈ H1
0 (Ω)

if and only if γ(u) = 0. If furthermore Ω has a C1 boundary and if u ∈ C(Ω) ∩H1
0 (Ω) then

for any x ∈ Γ, u(x) = 0 (Theorem 9.17, p.288, in Brezis [4]). Finally, if u 6∈ C(Ω) and Ω has

not a C0,1 boundary, the condition u|Γ = 0 does not take sense and, in this case, has to be

understood as u ∈ H1
0 (Ω).

3) Assume that Ω is bounded and has a C1,1 boundary. Let ν be the outward unit normal

vector to Γ and let u ∈ H1(Ω) be any weak solution to (2.1) with homogeneous Neumann

boundary condition (1.4). Then u ∈ H2(Ω) and boundary condition ∂u
∂ν |Γ = 0 makes sense in

the sense of the trace γ
(
∇u.ν

)
= 0. If, in addition, u ∈ C1(Ω) then obviously for any x ∈ Γ,

∂u
∂ν (x) = 0. Indeed, since u ∈ H1(Ω), ∆u ∈ L2(Ω) and (2.1) takes sense almost everywhere
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in Ω, we have γ
(
∂u
∂ν

)
∈ H− 1

2 (Γ) and by Green’s formula,

Re

∫
Ω

∇u(x).∇v(x)dx−
〈
γ

(
∂u

∂ν

)
, γ(v)

〉
H−

1
2 (Γ),H

1
2 (Γ)

+ Re

∫
Ω

f
(
u(x)

)
v(x)dx = Re

∫
Ω

F (x)v(x)dx, (2.5)

for any v ∈ H1(Ω) (see Lemma 4.1, Theorem 4.2 and Corollary 4.1, p.155, in Lions and

Magenes [16] and (1,5,3,10) in Grisvard [12], p.62). By Definition 2.1, this implies that〈
γ

(
∂u

∂ν

)
, γ(v)

〉
H−

1
2 (Γ),H

1
2 (Γ)

= 0, (2.6)

for any v ∈ H1(Ω). Let w ∈ H 1
2 (Γ). Let v ∈ H1(Ω) be such that γ(v) = w (Theorem 1.5.1.3,

p.38, in Grisvard [12]). We then deduce from (2.6) that,

∀w ∈ H 1
2 (Γ),

〈
γ

(
∂u

∂ν

)
, w

〉
H−

1
2 (Γ),H

1
2 (Γ)

= 0,

and so γ
(
∂u
∂ν

)
= 0. But also u ∈ L2(Ω) and ∆u ∈ L2(Ω). It follows that u ∈ H2(Ω)

(Proposition 2.5.2.3, p.131, in Grisvard [12]). Hence the result.

Example 2.3. Here, we give some examples which fall into the scope of 1) of Remark 2.2.

1) Let Ω ⊆ RN be a nonempty open subset, let (a, b, c) ∈ C3, let 0 < m 6 1, let V ∈ L∞loc(Ω;R)

and set

Σ =
{
u ∈ L2(Ω);V u ∈ L2(Ω)

}
, (u|v)Σ = (u|v)L2 + Re

∫
Ω

V 2uvdx, ‖u‖2Σ = (v|v)Σ,

where ( . | . )L2 denotes the scalar product in L2(Ω). We obviously have that
(
Σ, ( . | . )Σ, ‖ .‖Σ

)
is a Hilbert space and that D(Ω) ↪→ Σ with dense embedding. For any u ∈ Σ, let us define

g(u) = V 2u.

Let u ∈ Σ and let (un)n∈N ⊂ Σ be such that un
Σ−−−−→

n→∞
u. It follows from the dense embedding

D(Ω) ↪→ Σ and Cauchy-Schwarz’s inequality that,

‖g(u)− g(un)‖Σ? = sup{
v∈D(Ω)
‖v‖Σ=1

〈
g(u)− g(un), v

〉
Σ?,Σ

= sup{
v∈D(Ω)
‖v‖Σ=1

〈
g(u)− g(un), v

〉
D′(Ω),D(Ω)

= sup{
v∈D(Ω)
‖v‖Σ=1

Re

∫
Ω

V 2(x)
(
u(x)− un(x)

)
v(x)dx

6
∥∥V (u− un)∥∥L2(Ω)

sup{
v∈D(Ω)
‖v‖Σ=1

∥∥V v∥∥
L2(Ω)

6 ‖u− un‖Σ
n→∞−−−−→ 0.
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So that, g ∈ C
(
Σ; Σ?

)
. In addition, since D(Ω) is dense in both Lm+1(Ω) and Σ, it follows

that

(
Σ ∩ Lm+1(Ω)

)?
= Σ? + L

m+1
m (Ω),

(see, for instance, Proposition 1.1.3, p.3, in Cazenave [6]). Now consider E = Σ ∩ Lm+1(Ω)

and f(u) = a|u|−(1−m)u+ bu+ cV u. From what precedes, we have that E? = Σ? +L
m+1
m (Ω)

and

f ∈ C
(
E;E?

)
∩ C

(
H1

loc(Ω);L1
loc(Ω)

)
.

Applying 1) of Remark 2.2, we obtain that for any F ∈ L2(Ω), u is a weak solution to

−∆u+ a|u|−(1−m)u+ bu+ cV 2u = F, in Σ? + L
m+1
m (Ω), (2.7)

and (1.3)
(
respectively, to (2.7) and (1.4)

)
if

u ∈ H1
0 (Ω) ∩ Lm+1(Ω) ∩ Σ

(
respectively, if u ∈ H1(Ω) ∩ Lm+1(Ω) ∩ Σ

)
,

and

〈∇u,∇v〉L2(Ω),L2(Ω)

+ 〈a|u|−(1−m)u+ bu+ cV 2u, v〉
Σ?+L

m+1
m (Ω),Σ∩Lm+1(Ω)

= 〈F, v〉L2(Ω),L2(Ω), (2.8)

for any v ∈ H1
0 (Ω) ∩ Lm+1(Ω) ∩ Σ

(
respectively, for any v ∈ H1(Ω) ∩ Lm+1(Ω) ∩ Σ

)
. In

particular, for both kinds of boundary conditions, ∆u ∈
(
Σ? + L

m+1
m (Ω)

)
∩ L1

loc(Ω) and

so (2.7) takes sense in
(
Σ? + L

m+1
m (Ω)

)
∩ L1

loc(Ω) and almost everywhere in Ω.

2) Let Ω ⊆ RN be a nonempty open subset, let a ∈ C, let 0 < m 6 1, let V ∈ L∞(Ω;C) and set

f(u) = a|u|−(1−m)u+ V u.

Since D(Ω) is dense in both Lm+1(Ω) and L2(Ω), it follows that

(
L2(Ω) ∩ Lm+1(Ω)

)?
= L2(Ω) + L

m+1
m (Ω),

(see, for instance, Proposition 1.1.3, p.3, in Cazenave [6]). One easily checks that

f ∈ C
(
L2(Ω) ∩ Lm+1(Ω);L2(Ω) + L

m+1
m (Ω)

)
∩ C

(
H1

loc(Ω);L1
loc(Ω)

)
.
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Applying 1) of Remark 2.2, we obtain that for any F ∈ L2(Ω), u is a weak solution to

−∆u+ a|u|−(1−m)u+ V u = F, in L2(Ω) + L
m+1
m (Ω), (2.9)

and (1.3)
(
respectively to (2.9) and (1.4)

)
if

u ∈ H1
0 (Ω) ∩ Lm+1(Ω)

(
respectively, if u ∈ H1(Ω) ∩ Lm+1(Ω)

)
,

and if

〈∇u,∇v〉L2(Ω),L2(Ω)

+ 〈a|u|−(1−m)u+ V u, v〉
L2(Ω)+L

m+1
m (Ω),L2(Ω)∩Lm+1(Ω)

= 〈F, v〉L2(Ω),L2(Ω), (2.10)

for any v ∈ H1
0 (Ω) ∩ Lm+1(Ω)

(
respectively, for any v ∈ H1(Ω) ∩ Lm+1(Ω)

)
. In particular,

for both kinds of boundary conditions, ∆u ∈ L2(Ω) + L
m+1
m (Ω) and so (2.9) takes sense in

L2(Ω) + L
m+1
m (Ω) and almost everywhere in Ω.

3) Hartree-Fock type equations. Let V ∈ Lp(RN ;R) +L∞(RN ;R), with min
{

1, N2
}
< p <

∞ and let W ∈ Lq(RN ;R) + L∞(RN ;R), with min
{

1, N4
}
< q <∞. Set r = 2p

p−1 , s = 4q
q−1 ,

E = L2(RN ) ∩ L4(RN ) ∩ Lr(RN ) ∩ Ls(RN ),

f(u) = V u+ (W ? |u|2)u,

for any u ∈ H1(RN ). Then H1(RN ) ↪→ E with dense embedding and by density of D(RN )

in spaces Lm(RN ), for any m ∈ [1,∞), we have

E? = L2(RN ) + L
4
3 (RN ) + Lr

′
(RN ) + Ls

′
(RN ),

f ∈ C
(
E;E?

)
,

f ∈ C
(
H1(RN );H−1(RN )

)
.

See Cazenave [6], Proposition 1.1.3, p.3, Proposition 3.2.2, p.58-59, Remark 3.2.3, p.59,

Proposition 3.2.9, p.62, Remark 3.2.10, p.63 and Example 3.2.11, p.63.

Let 0 < m 6 1 and let z ∈ C \ {0}. Since
∣∣|z|−(1−m)z

∣∣ = |z|m, it is understood in (2.7) and (2.9) of

Example 2.3 that
∣∣|z|−(1−m)z

∣∣ = 0 when z = 0.

We start now with the statements of the main results of this paper.

8



Theorem 2.4 (Existence). Let Ω a nonempty open subset of RN be such that |Ω| <∞ and assume

0 < m < 1, (a, b) ∈ C2 and F ∈ L2(Ω). If Re(b) < 0 then assume further that Im(b) 6= 0 or

− 1
C2

P
< Re(b), where CP is the constant in (3.2) of Lemma 3.1 below. Then there exists at least one

weak solution u ∈ H1
0 (Ω) to (1.1) and (1.3). In addition, any weak solution belongs to H2

loc(Ω).

Symmetry Property. If furthermore, for any R ∈ SON (R), RΩ = Ω and if F is spherically

symmetric then there exists a spherically symmetric weak solution u ∈ H1
0 (Ω) ∩H2

loc(Ω) of (1.1) and

(1.3). For N = 1, this means that if F is an even (respectively, an odd) function then u is also an

even (respectively, an odd) function.

Theorem 2.5 (A priori bound). Let Ω a nonempty open subset of RN be such that |Ω| <∞ and

assume 0 < m < 1, (a, b) ∈ C2 and F ∈ L2(Ω). If Re(b) < 0 then assume further that Im(b) 6= 0 or

− 1
C2

P
< Re(b), where CP is the constant in (3.2) of Lemma 3.1 below. Let u ∈ H1

0 (Ω) be any weak

solution to (1.1) and (1.3). Then we have the following estimate.

‖u‖H1
0 (Ω) 6 C,

where C = C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m).

Theorem 2.6 (Existence). Let Ω ⊆ RN be a nonempty open subset and assume V ∈ L∞(Ω;R),

0 < m < 1, (a, b, c) ∈ C3 is such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume

further that Im(a) < 0. Then we have the following result.

1) For any F ∈ L2(Ω), there exists at least one weak solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) to (1.2)

and (1.3). Furthermore, any weak solution belongs to H2
loc(Ω).

2) If we assume furthermore that Ω is bounded with a C1 boundary then the conclusion 1) still

holds true with u ∈ H1(Ω) ∩ H2
loc(Ω) and the homogeneous Neumann boundary condition

(1.4) instead of u ∈ H1
0 (Ω) ∩ H2

loc(Ω) and the homogeneous Dirichlet boundary condition

(1.3).

Symmetry Property. If furthermore, for any R ∈ SON (R), RΩ = Ω and if F ∈ L2(Ω) is spherically

symmetric then there exists a spherically symmetric weak solution u ∈ H1(Ω) ∩ Lm+1(Ω) ∩ H2
loc(Ω)

of (1.2) satisfying the desired boundary condition (1.3) or (1.4)1. For N = 1, this means that if F is

an even (respectively, an odd) function then u is also an even (respectively, an odd) function.

Theorem 2.7 (A priori bound). Let Ω ⊆ RN be a nonempty open subset, let V ∈ L∞(Ω;R), let

0 < m < 1, let (a, b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then

1for which we additionally assume that Ω has a C1 boundary.
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assume further that Im(a) < 0. Let F ∈ L2(Ω) and let u ∈ H1(Ω) be any weak solution to (1.2) with

boundary condition (1.3) or (1.4)1. Then we have the following estimate.

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6M

(
‖V ‖4L∞(Ω) + 1

)
‖F‖2L2(Ω),

where M = M(|a|, |b|, |c|).

Comments 2.8. In the context of the paper of Bégout and Dı́az [3], we can establish an existence

result with the homogeneous Neumann boundary condition (instead of the homogeneous Dirichlet

condition) and F ∈ L2(Ω)
(
instead of F ∈ Lm+1

m (Ω)
)
. In Bégout and Dı́az [3], we introduced the set,

Ã = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

and assumed that (ã, b̃) ∈ C2 satisfies,

(ã, b̃) ∈ Ã× Ã and



Re(ã)Re(̃b) > 0,

or

Re(ã)Re(̃b) < 0 and Im(̃b) >
Re(̃b)

Re(ã)
Im(ã),

(2.11)

with possibly b̃ = 0, and we worked with

−i∆u+ ã|u|−(1−m)u+ b̃u = F̃ .

Nevertheless, to maintain a closer notation to many applied works in the literature (see, e.g., the

introduction of Bégout and Dı́az [1]), we do not work any more with this equation but with,

−∆u+ a|u|−(1−m)u+ bu = F,

and b 6= 0. This means that we chose, ã = ia, b̃ = ib and F̃ = iF. Then assumptions on (a, b) are

changed by the fact that,

Re(a) = Re(−iã) = Im(ã), (2.12)

Im(b) = Im(−ĩb) = −Re(̃b). (2.13)

It follows that the set Ã and (2.11) become,

A = C \
{
z ∈ C; Re(z) 6 0 and Im(z) = 0

}
, (2.14)

(a, b) ∈ A× A and


Im(a)Im(b) > 0,

or

Im(a)Im(b) < 0 and Re(b) >
Im(b)

Im(a)
Re(a).

(2.15)
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Obviously, (
(ã, b̃) ∈ Ã× Ã satisfies (2.11)

)
⇐⇒

(
(a, b) ∈ A× A satisfies (2.15)

)
.

Assumptions (2.15) are made to prove the existence and the localization property of weak solutions

to equation (1.1). A geometric interpretation of (2.15) is given in Section 7 (as in Section 6 of Bégout

and Dı́az [3]). Now, we give some results about equation (1.1) when (a, b) ∈ A× A satisfies (2.15).

Theorem 2.9 (Existence). Let Ω be a nonempty open subset of RN , let 0 < m < 1 and let (a, b) ∈ A2

satisfies (2.15)2.

1) For any F ∈ L2(Ω), there exists at least one weak solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) to (1.1)

and (1.3). Furthermore, any weak solution belongs to H2
loc(Ω).

2) If we assume furthermore that Ω is bounded with a C1 boundary then the conclusion 1) still

holds true with u ∈ H1(Ω)∩H2
loc(Ω) and the homogeneous Neumann boundary condition (1.4)

instead of u ∈ H1
0 (Ω ∩H2

loc(Ω) and the homogeneous Dirichlet boundary condition (1.3).

In addition, the Symmetry Property of Theorem 2.6 holds true for equation (1.1).

Remark 2.10. Here are some comments about Theorems 2.4, 2.6 and 2.9.

1) Assume F is spherically symmetric. Since we do not know, in general, if we have uniqueness

of the weak solution, we are not able to show that any weak solution is radially symmetric.

2) Uniqueness for equation (1.1) holds under assumption a 6= 0, Re(a) > 0 and Re(ab) > 0.

Geometrically, this means that −→a .
−→
b > 0 or, equivalently,

∣∣∣∠(−→a ,
−→
b )
∣∣∣ 6 π

2
rad. For more

details, see Section 7. Extension is given in Theorem 2.12 below.

Theorem 2.11 (A priori bound). Let Ω ⊆ RN be a nonempty open subset of RN , let 0 < m < 1

and let (a, b) ∈ A2 satisfies (2.15)2. Let F ∈ L2(Ω) and let u ∈ H1(Ω) ∩ Lm+1(Ω) be any weak

solution3 to

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω) + L
m+1
m (Ω), (2.16)

with boundary condition (1.3) or (1.4)1. Then we have the following estimate.

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6M‖F‖2L2(Ω),

where M = M(|a|, |b|).
2See Comments 2.8 and Section 7.
3See 2) of Example 2.3.
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Theorem 2.12 (Uniqueness). Let Ω ⊆ RN be a nonempty open subset, let V ∈ L∞loc(Ω;R), let

0 < m < 1 and let (a, b, c) ∈ C3 satisfies one of the three following conditions.

1) a 6= 0, Re(a) > 0, Re(ab) > 0 and Re(ac) > 0.

2) b 6= 0, Re(b) > 0, a = kb, for some k > 0 and Re(bc) > 0.

3) c 6= 0, Re(c) > 0, a = kc, for some k > 0 and Re(bc) > 0.

Let F ∈ L1
loc(Ω). If there exist two weak solutions u1, u2 ∈ H1(Ω) ∩ Lm+1(Ω) to equation (1.2) with

the same boundary condition (1.3) or (1.4)1 such that V u1, V u2 ∈ L2(Ω) then u1 = u2.

Remark 2.13. Here are some comments about Theorem 2.12.

1) In Theorem 5.2 in Bégout and Dı́az [3], uniqueness for equation

−i∆u+ ã|u|−(1−m)u+ b̃u = F̃ ,

holds if ã 6= 0, Im(ã) > 0 and Re(ãb̃) > 0. By (2.12)–(2.13), those assumptions are equivalent

to 1) of Theorem 2.12 above for equation (1.1) (of course, c = 0). It follows that Theorem 2.12

above extends Theorem 5.2 of Bégout and Dı́az [3].

2) In 2) of the above theorem, if we want to make an analogy with 1), assumption a = kb, for

some k > 0 has to be replaced with Re(ab) > 0 and Im(ab) = 0. But,(
Re(ab) > 0 and Im(ab) = 0

)
⇐⇒

(
∃k > 0/a = kb

)
.

In the same way, (
Re(ac) > and Im(ac) = 0

)
⇐⇒

(
∃k > 0/a = kc

)
.

3) Note that if |Ω| <∞ then H1(Ω) ∩ Lm+1(Ω) = H1(Ω).

Remark 2.14. In the case of real weak solutions (with F ≡ 0 and (a, b, c) ∈ R × R × {0}), it is

well-known that if b < 0 then it may appear multiplicity of weak solutions (once m ∈ (0, 1) and

a > 0). For more details, see Theorem 1 in Dı́az and Hernández [8].

Theorem 2.15 (Regularity). Let Ω ⊆ RN be a nonempty open subset, let V ∈ Lrloc(Ω;C), for any

1 < r <∞, let 0 < m < 1, let (a, b) ∈ C2, let F ∈ L1
loc(Ω), let 1 < q <∞ and let u ∈ Lqloc(Ω) be any

local very weak solution to

−∆u+ a|u|−(1−m)u+ V u = F, in D ′(Ω). (2.17)

Let q 6 p <∞ and let α ∈ (0,m].
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1) If F ∈ Lploc(Ω) then u ∈W 2,p
loc (Ω). If (F, V ) ∈ C0,α

loc (Ω)× C0,α
loc (Ω) then u ∈ C2,α

loc (Ω).

2) Assume further that Ω is bounded with a C1,1 boundary, F ∈ Lp(Ω), V ∈ Lr(Ω;C), for any

1 < r < ∞, u ∈ Lq(Ω) is a global very weak solution and u|Γ = 0 in the sense of the trace.

Then u ∈W 2,p(Ω) ∩W 1,p
0 (Ω). If (F, V ) ∈ C0,α(Ω)× C0,α(Ω) then u ∈ C2,α(Ω) ∩ C0(Ω).

3) Assume further that Ω is bounded with a C1,1 boundary, F ∈ Lp(Ω), V ∈ Lr(Ω;C), for any

1 < r < ∞, u ∈ Lq(Ω) is a global very weak and ∂u
∂ν |Γ = 0 in the sense of the trace, where

ν denotes the outward unit normal vector to Γ. Then u ∈ W 2,p(Ω). If (F, V ) ∈ C0,α(Ω) ×

C0,α(Ω) then u ∈ C2,α(Ω) and for any x ∈ Γ, ∂u∂ν (x) = 0.

Here and in what follows, for 0 < α 6 1 and k ∈ N0
def
= N ∪ {0},

Ck,αloc (Ω) =

u ∈ Ck(Ω;C);∀ω b Ω,
∑
|β|=k

Hα
ω (Dβu) < +∞

 ,

where Hα
ω (u) = sup{

(x,y)∈ω2

x 6=y

|u(x)−u(y)|
|x−y|α and

Ck,α(Ω) =
{
u ∈ Ck(Ω;C);

∑
|β|=k

Hα
Ω(Dβu) < +∞

}
.

Of course, C(Ω) or C0(Ω) is the space of continuous functions from Ω to C and for k ∈ N, Ck(Ω)

is the space of functions lying in C(Ω;C) and having all derivatives of order lesser or equal than k

belonging to C(Ω;C). Finally,

C0(Ω) =
{
u ∈ C(Ω;C);∀x ∈ Γ, u(x) = 0

}
,

when Ω is bounded.

Remark 2.16. Let Ω be a nonempty bounded open subset of RN with a C1,1 boundary, let V ∈⋂
1<r<∞

Lr(Ω;C), let 0 < m < 1, let (a, b) ∈ C2, let 1 < q 6 p < ∞, let F ∈ Lp(Ω) and let u ∈ Lq(Ω)

be any global very weak solution to (2.17). Let T : u −→
{
γ(u), γ

(
∂u
∂ν

)}
be the trace function

defined on D(Ω) and let Dq(∆) =
{
u ∈ Lq(Ω); ∆u ∈ Lq(Ω)

}
. By density of D(Ω) in Dq(∆), T

has a linear and continuous extension from Dq(∆) into W−
1
q ,q(Γ) ×W−1− 1

q ,q(Γ) (Hörmander [13],

Theorem 2 p.503; Lions and Magenes [16], Lemma 2.2 and Theorem 2.1 p.147; Lions and Magenes [17],

Propositions 9.1, Proposition 9.2 and Theorem 9.1 p.82; Grisvard [12], p.54). Since u ∈ Lq(Ω), it

follows from equation (2.17) and Hölder’s inequality that u ∈ Dq(∆). Then “u|Γ = 0 in the sense

of the trace” and “∂u∂ν |Γ = 0 in the sense of the trace” make sense and means that γ(u) = 0 and

γ
(
∂u
∂ν

)
= 0, respectively.
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The main difficulty to apply Theorem 2.15 is to show that a weak solution of (2.17) verifies some

boundary condition. In the following result, we give a sufficient condition.

Proposition 2.17 (Regularity). Let Ω be a nonempty bounded open subset of RN with a C1,1

boundary, let ν be the outward unit normal vector to Γ, let V ∈ LN (Ω;C) (V ∈ L2+ε(Ω;C), for some

ε > 0, if N = 2 and V ∈ L2(Ω;C) if N = 1), let 0 < m < 1, let a ∈ C and let F ∈ L2(Ω).

1) Let u ∈ H1
0 (Ω) be any weak solution to (2.17) and (1.3). Then u ∈ H2(Ω) and u|Γ = 0 in

the sense of the trace.

2) Let u ∈ H1(Ω) be any weak solution to (2.17) and (1.4). Then u ∈ H2(Ω) and ∂u
∂ν |Γ = 0 in

the sense of the trace.

3 Some useful estimates

Lemma 3.1 (Poincaré’s inequality). Let Ω a nonempty subset of RN be such that |Ω| < ∞ and

let 1 6 p <∞. Then,

∀u ∈W 1,p
0 (Ω), ‖u‖Lp(Ω) 6 CP(p)‖∇u‖Lp(Ω), (3.1)

where CP(p) = CP(|Ω|, N, p). In particular,

∀u ∈ H1
0 (Ω), ‖u‖L2(Ω) 6 CP‖∇u‖L2(Ω), (3.2)

where CP = CP(2) = CP(|Ω|, N).

This result is well-known but for convenience, we briefly recall its proof.

Proof of Lemma 3.1. By density, it is sufficient to establish (3.1) for ϕ ∈ D(Ω). Applying Hölder’s

inequality, we obtain

‖ϕ‖Lp(Ω) 6 |Ω|
1

N+p ‖ϕ‖
L
p(N+p)
N (Ω)

. (3.3)

Extending ϕ by 0 outside of Ω and applying Gagliardo-Nirenberg’s inequality (see for instance

Cazenave [7], Theorem 5.4.9, p.155), we get

‖ϕ‖
L
p(N+p)
N (Ω)

6 C(N, p)‖∇ϕ‖
N
N+p

Lp(Ω)‖ϕ‖
p

N+p

Lp(Ω). (3.4)

Estimate (3.1) then follows from (3.3) and (3.4), and (3.2) comes from (3.1) applied with p = 2.

We will frequently use the following estimate which comes from Hölder’s inequality. Let Ω a nonempty

subset of RN be such that |Ω| <∞ and let 0 6 m 6 1. Then, L2(Ω) ↪→ Lm+1(Ω) and

∀u ∈ Lm+1(Ω), ‖u‖m+1
Lm+1(Ω) 6 |Ω|

1−m
2 ‖u‖m+1

L2(Ω). (3.5)
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We recall the well-known Young’s inequality. For any real x > 0, y > 0 and µ > 0, one has

xy 6
µ2

2
x2 +

1

2µ2
y2. (3.6)

In particular,

xy 6
C2

P

2
x2 +

C−2
P

2
y2, (3.7)

where CP is the constant in (3.2).

4 A priori estimates

Lemma 4.1. Let Ω a nonempty open subset of RN be such that |Ω| < ∞, let ω a nonempty open

subset of RN be such that ω ⊆ Ω, let 0 6 m 6 1, let (a, b) ∈ C2, let α, β > 0 and let F ∈ L2(Ω). Let

u ∈ H1
0 (Ω) satisfies∣∣∣‖∇u‖2L2(Ω) + Re(a)

(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ Re(b)

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

) ∣∣∣ 6 ∫
Ω

|Fu|dx, (4.1)

∣∣∣Im(a)
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ Im(b)

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)∣∣∣ 6 ∫
Ω

|Fu|dx. (4.2)

Assume that one of the four following assertions holds.

1) Re(b) > 0 and one of the two following assertions holds.

a) |ω| = |Ω|.

b) |ω| < |Ω|, F ∈ L∞(Ω) and αRe(a) + βRe(b) > ‖F‖L∞(Ω).

2) Re(b) = 0. If Re(a) < 0 then assume further that α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc).

3) Re(b) < 0, Im(b) 6= 0 and one of the two following assertions holds.

a) |ω| = |Ω|.

b) |ω| < |Ω|, F ∈ L∞(Ω), −α|Im(a)|+ β
2 |Im(b)| > ‖F‖L∞(Ω) and α‖u‖L1(ωc) 6 ‖u‖m+1

Lm+1(ωc).

4) −C−2
P < Re(b) < 0, where CP is the constant in (3.2), α‖u‖L1(ωc) 6 ‖u‖m+1

Lm+1(ωc) and

β‖u‖L1(ωc) 6 ‖u‖2L2(ωc).

Then we have the following estimate.

‖u‖H1
0 (Ω) 6 C, (4.3)

where C = C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m).
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Remark 4.2. Note that when |ω| = |Ω|, assumptions as α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc) and β‖u‖L1(ωc) 6

‖u‖2L2(ωc) are automatically fulfilled, for any α, β > 0.

Proof of Lemma 4.1. By Poincaré’s inequality (3.2), it is sufficient to establish

‖∇u‖L2(Ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m). (4.4)

We divide the proof in 4 steps.

Step 1. Proof of (4.4) with Assumption 1).

Let A = αRe(a) + βRe(b). Applying Hölder’s inequality (3.5) in (4.1), we get

‖∇u‖2L2(Ω) +
(

Re(b)‖u‖1−mL2(ω) − |Re(a)||Ω|
1−m

2

)
‖u‖m+1

L2(ω) +A‖u‖L1(ωc)

6 ‖∇u‖2L2(Ω) + Re(a)
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ Re(b)

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
(4.5)

6
∫

Ω

|Fu|dx.

Case 1. Re(b)‖u‖1−mL2(ω) − |Re(a)||Ω| 1−m2 6 1.

It then follows that ‖u‖L2(ω) 6 C(|Ω|, |a|, |b|,m). By (4.5),

‖∇u‖2L2(Ω) +A‖u‖L1(ωc) 6 |Re(a)||Ω|
1−m

2 ‖u‖m+1
L2(ω) +

∫
Ω

|Fu|dx. (4.6)

When |ω| = |Ω|, we have A‖u‖L1(ωc) = 0 and ‖u‖L2(Ω) 6 C(|Ω|, |a|, |b|,m). Thus, estimate (4.6), with

help of Cauchy-Schwarz’s inequality, becomes

‖∇u‖2L2(Ω) 6 |Re(a)||Ω|
1−m

2 ‖u‖m+1
L2(Ω) + ‖F‖L2(Ω)‖u‖L2(Ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m),

which is (4.4). Now, assume that |ω| < |Ω|. We apply Hölder’s inequality in (4.5) to obtain,

‖∇u‖2L2(Ω) +A‖u‖L1(ωc) 6 |Re(a)||Ω|
1−m

2 ‖u‖m+1
L2(ω) +

∫
Ω

|Fu|dx

6 |Re(a)||Ω|
1−m

2 ‖u‖m+1
L2(ω) + ‖F‖L2(ω)‖u‖L2(ω) + ‖F‖L∞(ωc)‖u‖L1(ωc),

6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m) +A‖u‖L1(ωc),

from which we deduce (4.4).

Case 2. Re(b)‖u‖1−mL2(ω) − |Re(a)||Ω| 1−m2 > 1.

Applying Young’s inequality (3.7), Hölder’s inequality and Poincaré’s inequality (3.2) in (4.5), we get

‖∇u‖2L2(Ω) + ‖u‖m+1
L2(Ω)

6
C2

P

2
‖F‖2L2(Ω) +

C−2
P

2
‖u‖2L2(Ω)

6
C2

P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω),
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if |ω| = |Ω| and

‖∇u‖2L2(Ω) + ‖u‖m+1
L2(ω) +A‖u‖L1(ωc)

6
C2

P

2
‖F‖2L2(ω) +

C−2
P

2
‖u‖2L2(ω) + ‖F‖L∞(ωc)‖u‖L1(ωc)

6
C2

P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω) +A‖u‖L1(ωc),

if |ω| < |Ω|. We get in both cases, ‖∇u‖L2(Ω) 6 CP‖F‖L2(Ω). Then (4.4) holds and Step 1 is proved.

Step 2. Proof of (4.4) with Assumption 2).

Case 1. Re(a) > 0.

We apply Young’s inequality (3.7) and Poincaré’s inequality (3.2) in (4.1). It follows that, ‖∇u‖2L2(Ω) 6
C2

P

2 ‖F‖
2
L2(Ω) + 1

2‖∇u‖
2
L2(Ω). We then have (4.4).

Case 2. Re(a) < 0.

By Assumption 2) and (4.1), we have

‖∇u‖2L2(Ω) 6 |Re(a)|‖u‖m+1
Lm+1(Ω) +

∫
Ω

|Fu|dx.

Using Hölder’s inequality (3.5), Young’s inequality (3.7) and Poincaré’s inequality (3.2), we get

‖∇u‖2L2(Ω)

6 |Re(a)||Ω|
1−m

2 ‖u‖m+1
L2(Ω) +

C2
P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω)

6 |Re(a)||Ω|
1−m

2 Cm+1
P ‖∇u‖m+1

L2(Ω) +
C2

P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω),

which yields, (
‖∇u‖1−mL2(Ω) − C

)
‖∇u‖m+1

L2(Ω) 6 C2
P‖F‖2L2(Ω),

where C = C(|Ω|, |a|, N,m). Both cases,
‖∇u‖1−mL2(Ω) − C 6 1,

or

‖∇u‖1−mL2(Ω) − C > 1,

lead to (4.4).

Step 3. Proof of (4.4) with Assumption 3).

From (4.2), (3.5), Young’s inequality (3.6) with x = |F |, y = |u|, µ = |Im(b)|− 1
2 and Hölder’s
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inequality, we get

|Im(b)|
(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6 |Im(a)||Ω|

1−m
2 ‖u‖m+1

L2(ω) + α|Im(a)|‖u‖L1(ωc)

+
1

2|Im(b)|
‖F‖2L2(ω) +

|Im(b)|
2
‖u‖2L2(ω) + ‖F‖L∞(ωc)‖u‖L1(ωc),

which yields,(
|Im(b)|‖u‖1−mL2(ω) − 2|Im(a)||Ω|

1−m
2

)
‖u‖m+1

L2(ω) + 2
(
β|Im(b)| − α|Im(a)| − ‖F‖L∞(ωc)

)
‖u‖L1(ωc)

6
1

|Im(b)|
‖F‖2L2(ω).

Obtaining easily (4.4) when |ω| = |Ω| with help of (4.1) (by following the method of Step 1), we may

assume that |ω| < |Ω|. It then follows from Assumption 3)b) that,(
|Im(b)|‖u‖1−mL2(ω) − 2|Im(a)||Ω|

1−m
2

)
‖u‖m+1

L2(ω) + β|Im(b)|‖u‖L1(ωc) 6
1

|Im(b)|
‖F‖2L2(ω). (4.7)

Case 1. |Im(b)|‖u‖1−mL2(ω) − 2|Im(a)||Ω| 1−m2 6 1.

It follows that

‖u‖L2(ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m), (4.8)

and by (4.2), (3.5), Hölder’s inequality and Assumption 3)b), one obtains

(
β|Im(b)| − α|Im(a)|

)
‖u‖L1(ωc)

6 |Im(a)||Ω|
1−m

2 ‖u‖m+1
L2(ω) + |Im(b)|‖u‖2L2(ω) + ‖F‖L2(ω)‖u‖L2(ω) + ‖F‖L∞(ωc)‖u‖L1(ωc),

6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m) +

(
β

2
|Im(b)| − α|Im(a)|

)
‖u‖L1(ωc),

so that,

β‖u‖L1(ωc) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m). (4.9)

Case 2. |Im(b)|‖u‖1−mL2(ω) − 2|Im(a)||Ω| 1−m2 > 1.

Then estimates (4.7) implies that

‖u‖m+1
L2(ω) + β|Im(b)|‖u‖L1(ωc) 6

1

|Im(b)|
‖F‖2L2(ω),

which yields to (4.8) and (4.9). So in both cases, estimates (4.8) and (4.9) hold.

Finally, by (4.1), Assumption 3)b), Hölder’s inequality (3.5), Young’s inequality (3.7), Poincaré’s
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inequality (3.2), (4.8) and (4.9), one obtains

‖∇u‖2L2(Ω)

6 |Re(a)||Ω|
1−m

2 ‖u‖m+1
L2(Ω) + |Re(b)|

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
+
C2

P

2
‖F‖2L2(Ω) +

C−2
P

2
‖u‖2L2(Ω)

6 C0‖∇u‖m+1
L2(Ω) + C1 +

C2
P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω),

where C0 = C0(|Ω|, |a|, N,m) and C1 = C1(‖F‖L2(Ω), |Ω|, |a|, |b|,m). It follows that,

(
‖∇u‖1−mL2(Ω) − 2C0

)
‖∇u‖m+1

L2(Ω) 6 2C1 + C2
P‖F‖2L2(Ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m).

We then easily deduce (4.4) and Step 3 is proved.

Step 4. Proof of (4.4) with Assumption 4).

We use Assumption 4), Hölder’s inequality (3.5), Young’s inequality (3.6) with x = |F |, y = |u|, and

Poincaré’s inequality (3.2) in (4.1) to get,

‖∇u‖2L2(Ω)

6 |Re(a)||Ω|
1−m

2 ‖u‖m+1
L2(Ω) + |Re(b)|‖u‖2L2(Ω) +

µ2

2
‖F‖2L2(Ω) +

1

2µ2
‖u‖2L2(Ω)

6 C‖∇u‖m+1
L2(Ω) +

(
|Re(b)|C2

P +
C2

P

2µ2

)
‖∇u‖2L2(Ω) +

µ2

2
‖F‖2L2(Ω).

where C = C(|Ω|, |a|, N,m). We then deduce,((
1− |Re(b)|C2

P −
C2

P

2µ2

)
‖∇u‖1−mL2(Ω) − C

)
‖∇u‖m+1

L2(Ω) 6
µ2

2
‖F‖2L2(Ω).

Since |Re(b)| < C−2
P , we have 1 − |Re(b)|C2

P > 0 and so there exists µ0 = µ0(|Ω|, |b|, N) > 0 large

enough such that

1− |Re(b)|C2
P −

C2
P

2µ2
0

> 0.

For such a µ0, it follows that,(
C0‖∇u‖1−mL2(Ω) − C

)
‖∇u‖m+1

L2(Ω) 6
µ2

0

2
‖F‖2L2(Ω),

where C0 = 1 − |Re(b)|C2
P −

C2
P

2µ2
0
. Note that C0 = C0(|Ω|, |b|, N). We then easily deduce (4.4) and

Step 4 is proved. This concludes the proof of the lemma.

Corollary 4.3. Let (Ωn)n∈N a sequence of nonempty open subsets of RN be such that sup
n∈N
|Ωn| <∞,

let 0 < m < 1, let (a, b) ∈ C2 and let (Fn)n∈N ⊂ L∞(Ωn) be such that sup
n∈N
‖Fn‖L2(Ωn) < ∞. If
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Re(b) < 0 then assume further that Im(b) 6= 0 or − 1
C2

P
< Re(b), where CP is the constant in (3.2) of

Lemma 3.1. Let (un` )(n,`)∈N2 ⊂ H1
0 (Ωn) be a sequence satisfying

∀n ∈ N, ∀` ∈ N, −∆un` + f`
(
un`
)

= Fn, in L2(Ωn), (4.10)

where for any ` ∈ N,

∀u ∈ L2(Ωn), f`(u) =


a|u|−(1−m)u+ bu, if |u| 6 `,

a`m
u

|u|
+ b`

u

|u|
, if |u| > `.

(4.11)

Then there exists a diagonal extraction
(
unϕ(n)

)
n∈N

of (un` )(n,`)∈N2 such that the following estimate

holds.

∀n ∈ N,
∥∥unϕ(n)

∥∥
H1

0 (Ωn)
6 C,

where C = C

(
sup
n∈N
‖Fn‖L2(Ωn), sup

n∈N
|Ωn|, |a|, |b|, N,m

)
.

Proof. One easily sees that (f`)`∈N ⊂ C
(
L2(Ω);L2(Ω)

)
and it follows that un` and iun` are admissible

test functions in (2.2). We then get,

‖∇un` ‖2L2(Ωn) + Re(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+ Re(b)

(
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
= Re

∫
Ωn

Fnun` dx,

Im(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+ Im(b)

(
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
= Im

∫
Ωn

Fnun` dx,

for any (n, `) ∈ N2. We first note that,

∀(n, `) ∈ N2,

`
m‖un` ‖L1({|un` |>`}) 6 ‖u

n
` ‖
m+1
Lm+1({|un` |>`})

,

`‖un` ‖L1({|un` |>`}) 6 ‖u
n
` ‖2L2({|un` |>`})

,
(4.12)

For each n ∈ N, let ϕ(n) ∈ N be large enough to have

ϕ(n)1−m >


‖Fn‖L∞(Ωn) + |Re(a)|

Re(b)
, if Re(b) > 0,

2
‖Fn‖L∞(Ωn) + |Im(a)|

|Im(b)|
, if Im(b) 6= 0.

It follows that for any n ∈ N,

‖Fn‖L∞(Ωn) <


ϕ(n)mRe(a) + ϕ(n)Re(b), if Re(b) > 0,

−ϕ(n)m|Im(a)|+ ϕ(n)

2
|Im(b)|, if Im(b) 6= 0.

(4.13)
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If Im(b) = 0 and Re(b) 6 0 then we choose ϕ(n) = n. For each n ∈ N, with help of (4.12) and (4.13),

we may apply Lemma 4.1 to unϕ(n) with ω =
{
x ∈ Ωn;

∣∣∣unϕ(n)(x)
∣∣∣ 6 ϕ(n)

}
, α = ϕ(n)m and β = ϕ(n).

Hence the result.

Lemma 4.4. Let Ω ⊆ RN be a nonempty open subset, let ω a nonempty open subset of RN be such

that ω ⊆ Ω, let m > 0 and let (a, b, c) ∈ C3 be such that Im(b) 6= 0. If Re(a) 6 0 then assume further

that Im(a) 6= 0. Let α, β,R > 0, let F ∈ L2(Ω) and let

A =


max

{
1, 1+|b|+R2|c|

|Im(b)| , |Re(a)|
|Im(a)|

}
, if Re(a) 6 0,

max
{

1, 1+|b|+R2|c|
|Im(b)|

}
, if Re(a) > 0.

If |ω| < |Ω| then assume further that F ∈ L∞(Ω) and β > 2A‖F‖L∞(Ω) + 1. Let u ∈ H1(Ω) satisfies

‖∇u‖2L2(Ω) + Re(a)
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
− (|b|+R2|c|)

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6
∫

Ω

|Fu|dx, (4.14)

|Im(a)|
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ |Im(b)|

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6
∫

Ω

|Fu|dx. (4.15)

Then there exists a positive constant M = M(|a|, |b|, |c|) such that,

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) + ‖u‖m+1
Lm+1(ω) + ‖u‖L1(ωc) 6M(R4 + 1)‖F‖2L2(Ω). (4.16)

Proof of Lemma 4.4. Let A be as in the lemma. We multiply (4.15) by A and sum the result

to (4.14). This yields,

‖∇u‖2L2(Ω) +A0

(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ ‖u‖2L2(ω) + β‖u‖L1(ωc) 6 2A

∫
Ω

|Fu|dx,

where A0 = A|Im(a)|+Re(a). Applying Hölder’s inequality and Young’s inequality (3.6) with x = |F |,

y = |u| and µ =
√

2A, we get

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) +A0‖u‖m+1
Lm+1(ω) + β‖u‖L1(ωc)

6 2A‖F‖L∞(Ω)‖u‖L1(ωc) + 2A2‖F‖2L2(Ω) +
1

2
‖u‖2L2(ω),

from which we deduce the result if |ω| = |Ω|. Now, suppose |ω| < |Ω|. The above estimate then leads

to,

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) +A0‖u‖m+1
Lm+1(ω) +

(
β − 2A‖F‖L∞(Ω)

)
‖u‖L1(ωc) 6 4A2‖F‖2L2(Ω),

from which we prove the lemma since β − 2A‖F‖L∞(Ω) > 1.
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Lemma 4.5. Let (a, b) ∈ A2 satisfies (2.15). Then there exists δ? = δ?(|a|, |b|) ∈ (0, 1], L = L(|a|, |b|)

and M = M(|a|, |b|) satisfying the following property. If δ ∈ [0, δ?], C0, C1, C2, C3, C4 are six

nonnegative real numbers satisfying∣∣C1 + δC2 + Re(a)C3 +
(
Re(b)− δ

)
C4

∣∣ 6 C0, (4.17)∣∣Im(a)C3 + Im(b)C4

∣∣ 6 C0, (4.18)

then

0 6 C1 + LC3 + LC4 6MC0. (4.19)

Proof. We split the proof in 4 cases. Let γ > 0 be small enough to be chosen later. Note that when

Im(a)Im(b) > 0 then estimate (4.18) can be rewritten as

|Im(a)|C3 + |Im(b)|C4 6 C0. (4.20)

Case 1. Re(a) > 0, Re(b) > 0 and Im(a)Im(b) > 0.

We add (4.20) with (4.17) and obtain,

C1 +
(
Re(a) + |Im(a)|

)
C3 +

(
Re(b)− δ? + |Im(b)|

)
C4 6 2C0.

Case 2.
(

Re(a) > 0, Re(b) < 0 and Im(a)Im(b) > 0
)

or
(

Im(a)Im(b) < 0
)
.

We compute (4.17)− Re(b)−γ
Im(b) (4.18) to obtain

C1 +
Re(a)Im(b)− Re(b)Im(a) + γIm(a)

Im(b)
C3 + (γ − δ?)C4 6

|Re(b)|+ |Im(b)|+ γ

|Im(b)|
C0.

Case 3. Re(a) < 0, Re(b) > 0 and Im(a)Im(b) > 0.

We compute (4.17)− Re(a)−γ
Im(a) (4.18) to obtain,

C1 + γC3 +

(
Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
− δ?

)
C4 6

|Re(a)|+ |Im(a)|+ γ

|Im(a)|
C0.

Case 4. Re(a) < 0, Re(b) < 0 and Im(a)Im(b) > 0.

Note that by assumptions (a, b) ∈ A2, Re(a) < 0 and Re(b) < 0, one necessarily has Im(a) 6= 0 and

Im(b) 6= 0. Thus, we can compute (4.17) + max
{
|Re(a)|+γ
|Im(a)| ,

|Re(b)|+γ
|Im(b)|

}
(4.20) to obtain,

C1 + γC3 + (γ − δ?)C4 6

(
|Re(a)|+ |Im(a)|+ γ

|Im(a)|
+
|Re(b)|+ |Im(b)|+ γ

|Im(b)|

)
C0.

In both cases, we may choose γ > 0 small enough to have
Re(a)Im(b)− Re(b)Im(a) + γIm(a)

Im(b)
> 0, in Case 2,

Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
> 0, in Case 3.
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Then we fix 0 < δ? < min
{

1, γ, |Im(b)|+ |Re(b)|
}

such that

δ? <
Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
, in Case 3.

This ends the proof.

Corollary 4.6. Let Ω ⊆ RN be a nonempty open subset, let V ∈ L∞(Ω;R), let 0 < m < 1 and

let (a, b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume

further that Im(a) < 0. Let δ > 0. Let (Fn)n∈N ⊂ L∞(Ω) ∩ L2(Ω) be bounded in L2(Ω) and let

(un` )(n,`)∈N2 ⊂ H1(Ω) ∩ Lm+1(Ω) be a sequence satisfying

∀n ∈ N, ∀` ∈ N, −∆un` + δun` + f`
(
un`
)

= Fn, in L2(Ω), (4.21)

with boundary condition (1.3) or (1.4), where for any ` ∈ N,

∀u ∈ L2(Ω), f`(u) =


a|u|−(1−m)u+ (b− δ)u+ cV 2u, if |u| 6 `,

a`m
u

|u|
+ (b− δ)` u

|u|
+ cV 2`

u

|u|
, if |u| > `.

(4.22)

For (1.4), Ω is assumed to have a C1 boundary. Then there exist M = M
(
‖V ‖L∞(Ω), |a|, |b|, |c|

)
and

a diagonal extraction
(
unϕ(n)

)
n∈N

of (un` )(n,`)∈N2 for which,

∥∥∇unϕ(n)

∥∥2

L2(Ω)
+
∥∥unϕ(n)

∥∥2

L2
({∣∣∣unϕ(n)

∣∣∣6ϕ(n)
}) +

∥∥unϕ(n)

∥∥m+1

Lm+1
({∣∣∣unϕ(n)

∣∣∣6ϕ(n)
})

+
∥∥unϕ(n)

∥∥
L1
({∣∣∣unϕ(n)

∣∣∣>ϕ(n)
}) 6M sup

n∈N
‖Fn‖2L2(Ω),

for any n ∈ N. The same is true if we replace the conditions on (a, b, c) by (a, b, c) ∈ A × A × {0}

satisfies (2.15) and δ 6 δ?, where δ? is given by Lemma 4.5. In this case, M = M(|a|, |b|).

Proof. One easily sees that (f`)`∈N ⊂ C
(
L2(Ω)∩Lm+1(Ω);L2(Ω) +L

m+1
m (Ω)

)
and it follows that un`

and iun` are admissible test functions in (2.10). We then obtain,

‖∇un` ‖2L2(Ω) + Re(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+
(
Re(b)− ‖V ‖2L∞(Ω)|Re(c)|

) (
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
6 Re

∫
Ω

Fnun` dx, (4.23)

Im(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+ Im(b)

(
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
+ Im(c)

(
‖V u‖2L2({|un` |6`}))

+ `‖V 2u‖L1({|un` |>`}))

)
= Im

∫
Ω

Fnun` dx, (4.24)
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for any (n, `) ∈ N2. If (a, b, c) ∈ A× A× {0} satisfies (2.15), then we obtain

‖∇un` ‖2L2(Ω) + δ‖un` ‖2L2(Ω) + Re(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+
(
Re(b)− δ

) (
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
= Re

∫
Ω

Fnun` dx, (4.25)

Im(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+ Im(b)

(
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
= Im

∫
Ω

Fnun` dx, (4.26)

for any (n, `) ∈ N2. For this last case, it follows from Lemma 4.5, Hölder’s inequality and Young’s

inequality (3.6) applied with x = |F |, y = |un` | and µ =
√

M
L that

‖∇un` ‖2L2(Ω) +
L

2
‖un` ‖2L2({|un` |6`})

+ L
∥∥un` ∥∥m+1

Lm+1({|un` |6`})

+
(
L`−M‖F‖L∞(Ω)

)
‖un` ‖L1({|un` |>`}) 6

M2

2L
‖F‖2L2(Ω).

Then the result follows by choosing for each n ∈ N, ϕ(n) ∈ N large enough to have Lϕ(n) −

M‖F‖L∞(Ω) > 1. Now we turn out to the case (4.23)–(4.24). Let M and A be given by Lemma 4.4

with R = ‖V ‖L∞(Ω). For each n ∈ N, let ϕ(n) ∈ N be large enough to have ϕ(n) > 2A‖Fn‖L∞(Ω) + 1,

if |ω| < |Ω| and ϕ(n) = n, if |ω| = |Ω|. For each n ∈ N, with help of (4.23) and (4.24), we may apply

Lemma 4.4 to unϕ(n) with ω =
{
x ∈ Ω;

∣∣∣unϕ(n)(x)
∣∣∣ 6 ϕ(n)

}
, α = ϕ(n)m, β = ϕ(n) and R = ‖V ‖L∞(Ω).

Hence the result.

5 Proofs of the main results

Proof of Theorem 2.15. Let the assumptions of the theorem be fulfilled. Setting f(u) = a|u|−(1−m)u+

V u, we easily check that,

f ∈ C
(
Ls+εloc (Ω);Lsloc(Ω)

)
∩ C

(
Ls+ε(Ω);Ls(Ω)

)
,

for any 1 < s <∞ and 0 < ε < s− 1. Then the notions of local and global very weak solution make

sense and by Remark 2.16, boundary conditions in Properties 2) and 3) make sense. Property 1) follows

from Proposition 4.5 in Bégout and Dı́az [3] while Property 2) comes from Remark 4.7 in Bégout and

Dı́az [3]. It remains to establish Property 3). Assume first that F ∈ Lp(Ω) and V ∈
⋂

1<r<∞
Lr(Ω). It

follows from the equation that for any ε ∈ (0, q−1), ∆u ∈ Lq−ε(Ω). We now recall an elliptic regularity

result. If for some 1 < s < ∞, u ∈ Ls(Ω) satisfies ∆u ∈ Ls(Ω) and γ(∇u.ν) = 0 then u ∈ W 2,s(Ω)
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(Proposition 2.5.2.3, p.131, in Grisvard [12]). Since for any ε ∈ (0, q − 1), u,∆u ∈ Lq−ε(Ω) and

γ(∇u.ν) = 0 (by assumption), by following the bootstrap method of the proof p.52 of Property 1)

of Proposition 4.5 in Bégout and Dı́az [3], we obtain the result. Indeed, therein, it is sufficient to

apply the global regularity result in Grisvard [12] (Proposition 2.5.2.3, p.131) in place of the local

regularity result in Cazenave [7] (Proposition 4.1.2, p.101-102). Now, you turn out to the Hölder

regularity. Assume F ∈ C0,α(Ω) and V ∈ C0,α(Ω). By global smoothness property in W 2,p proved

above, we know that u ∈ W 2,N+1(Ω) and γ(∇u.ν) = 0 in LN+1(Γ). It follows from the Sobolev’s

embedding, W 2,N+1(Ω) ↪→ C1, 1
N+1 (Ω) ↪→ C0,1(Ω), that for any x ∈ Γ, ∂u∂ν (x) = 0 and u ∈ C0,1(Ω). A

straightforward calculation yields,

∀(x, y) ∈ Ω
2
,
∣∣∣|u(x)|−(1−m)u(x)− |u(y)|−(1−m)u(y)

∣∣∣ 6 5|u(x)− u(y)|m 6 5|x− y|m.

Setting, g = F − (a|u|−(1−m)u + (b − 1)u + cV u), we deduce that g ∈ C0,α(Ω). Let v ∈ C2,α(Ω) be

the unique solution to {
−∆v + v = g, in Ω,
∂v
∂ν = 0, on Γ,

(see, for instance, Theorem 3.2 p.137 in Ladyzhenskaya and Ural’tseva [15]). It follows that u and v

are two H1 weak solutions of the above equations (in the sense of Definition 2.1), and since uniqueness

holds in H1(Ω) (Lax-Milgram’s Theorem), we deduce that u = v. Hence u ∈ C2,α(Ω). This concludes

the proof4.

Proof of Proposition 2.17. Let the assumptions of the proposition be fulfilled. Setting f(u) =

a|u|−(1−m)u+ V u,it follows from Sobolev’s embedding that,

f ∈ C
(
H1(Ω);L2(Ω)

)
.

We first establish Property 1). Since Ω has C0,1 boundary and u ∈ H1
0 (Ω), it follows that γ(u) = 0.

Moreover, Sobolev’s embedding and equation (2.17) implies that ∆u ∈ L2(Ω). We then obtain that

u ∈ H2(Ω) (Grisvard [12], Corollary 2.5.2.2 p.131). Hence Property 1). We turn out to Property 2).

It follows from equation (2.17) that ∆u ∈ L2(Ω), so that (2.17) takes sense almost everywhere in Ω.

Then Property 2) comes from the arguments of 3) of Remark 2.2.

Lemma 5.1. Let O ⊂ RN be a nonempty bounded open subset, let V ∈ L∞(Ω;C), let 0 < m < 1,

let (a, b, c) ∈ C3 and let F ∈ L2(O). Let δ ∈ [0, 1]. Then for any ` ∈ N, there exist a weak solution

4More directly, we could have said that since u ∈ W 2,N+1(Ω), γ(∇u.ν) = 0 and ∆u ∈ C0,α(Ω) (by the estimate of
the nonlinearity) then by Theorem 6.3.2.1, p.287, in Grisvard [12], u ∈ C2,α(Ω). But this theorem requires Ω to have a
C2,1 boundary.
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u1
` ∈ H1

0 (O) to

−∆u` + δu` + f`(u`) = F, in L2(O), (5.1)

with boundary condition (1.3) and a weak solution u2
` ∈ H1(O) to (5.1) with boundary condition (1.4)

(in this case, O is assumed to have a C1 boundary and δ > 0) in the sense of Definition 2.1, where

∀u ∈ L2(Ω), f`(u) =


a|u|−(1−m)u+ (b− δ)u+ cV 2u, if |u| 6 `,

a`m
u

|u|
+ (b− δ)` u

|u|
+ cV 2`

u

|u|
, if |u| > `.

(5.2)

If furthermore for any R ∈ SON (R), RO = O and if F is spherically symmetric then there exists

a weak solution to (5.1) which is also spherically symmetric. For N = 1, this means that if F is an

even (respectively, odd) function then u is also even (respectively, an odd) function.

Proof. We proceed with the proof in two steps. Let H = H1
0 (O), in the homogeneous Dirichlet case,

and H = H1(O), in the homogeneous Neumann case. Let δ ∈ [0, 1]
(
with additionally δ > 0 and Γ of

class C1 if H = H1(O)
)
.

Step 1. For any G ∈ L2(O), there exists a unique weak solution u ∈ H to −∆u+δu = G, in the sense

of Definition 2.1. Moreover, there exists α > 0 such that for any G ∈ L2(O),
∥∥(−∆ + δI)−1G

∥∥
H1(O)

6

α‖G‖L2(O). If furthermore for any R ∈ SON (R), RO = O and if G is spherically symmetric then the

weak solution is also spherically symmetric. For N = 1, this means that if G is an even (respectively,

odd) function then u is also an even (respectively, odd) function.

Step 1 is obvious. For existence and uniqueness, apply Lax-Milgram’s Theorem and Poincaré’s in-

equality (3.2), in the homogeneous Dirichlet case, and Lax-Milgram’s Theorem, in the homogeneous

Neumann case. The constant α comes from Poincaré’s inequality and Cauchy-Schwarz’s inequality,

in the homogeneous Dirichlet case, and is equal to 1
δ (still by Cauchy-Schwarz’s inequality), in the

homogeneous Neumann case. Spherically property follows by working in Hrad (the space of functions

f ∈ H such that f is spherically symmetric) in place of H
(
and in Hodd

def
=
{
v ∈ H; v is odd

}
in

place of H in the odd case when N = 1
)
.

Step 2. Conclusion.

For each ` ∈ N, we define g` = −f`+F ∈ C
(
L2(O);L2(O)

)
. With help of the continuous and compact

embedding i : H ↪→ L2(O) and Step 1, we may define a continuous and compact sequence of mappings

(T`)`∈N of H as follows. For any ` ∈ N, set

T` : H
i
↪→ L2(O)

g`−→ L2(O)
(−∆+δI)−1

−−−−−−−→ H

u 7−→ i(u) = u 7−→ g`(u) 7−→ (−∆ + δu)−1(g`)(u)
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Let ` ∈ N. Set ρ = 2α(|a|+ |b|+ |c|+ 1)
((
‖V ‖2L∞(Ω) + 2

)
`|O| 12 + ‖F‖L2(O)

)
. Let u ∈ H. It follows

that,

‖T`(u)‖H1(O) =
∥∥(−∆ + δI)−1(g`)(u)

∥∥
H1(O)

6 α‖g`(u)‖L2(O)

6 2α(|a|+ |b|+ |c|+ 1)
((
`m + `+ `‖V ‖2L∞(Ω)

)
|O| 12 + ‖F‖L2(O)

)
6 ρ.

Hence, T`(H) ⊂ BH(0, ρ), where BH(0, ρ) =
{
u ∈ H; ‖u‖H1(O) 6 ρ

}
. Existence then comes from the

Schauder’s fixed point Theorem applied to T`. We obviously obtain the spherically symmetry property

by working in the functional spaces Hrad in place of H
(
and in Hodd in place of H in the odd case

when N = 1
)
.

Proof of Theorem 2.4. Let for any u ∈ L2(Ω), f(u) = a|u|−(1−m)u+ bu. For any n ∈ N0, we write

Ωn = Ω ∩ B(0, n0 + n), where n0 ∈ N is large enough to have Ω0 6= ∅. Let (Gn)n∈N ⊂ D(Ω) be such

that

Gn
L2(Ω)−−−−→
n→∞

F. (5.3)

Let
(
un`
)

(n,`)∈N2 ⊂ H1
0 (Ωn) a sequence of weak solutions of (5.1) be given by Lemma 5.1 with O = Ωn,

c = δ = 0 and Fn = Gn|Ωn . We define ũn` ∈ H1
0 (Ω) by extending un by 0 in Ω∩Ωc

n. We also denote by

f̃` the extension by 0 of f` in Ω∩Ωc
n. By Corollary 4.3, there exists a diagonal extraction

(
ũnϕ(n)

)
n∈N

of
(
ũn`
)

(n,`)∈N2 which is bounded in H1
0 (Ω). By reflexivity of H1

0 (Ω), Rellich-Kondrachov’s Theorem

and converse of the dominated convergence theorem, there exist u ∈ H1
0 (Ω) and g ∈ L2

loc(Ω;R) such

that, up to a subsequence that we still denote by
(
ũnϕ(n)

)
n∈N

,

ũnϕ(n)

L2
loc(Ω)−−−−−→
n→∞

u, (5.4)

ũnϕ(n)

a.e. in Ω−−−−−→
n→∞

u,∣∣∣ũnϕ(n)

∣∣∣ 6 g, for any n ∈ N, a.e. in Ω,

These two last estimates yield,

f̃ϕ(n)

(
ũnϕ(n)

)
a.e. in Ω−−−−−→
n→∞

f(u),

∀n ∈ N,
∣∣∣f̃ϕ(n)

(
ũnϕ(n)

)∣∣∣ 6 C(gm + g) ∈ L2
loc(Ω), a.e. in Ω.

It follows from the dominated convergence Theorem that

f̃ϕ(n)

(
ũnϕ(n)

)
L2

loc(Ω)−−−−−→
n→∞

f(u). (5.5)
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Let ϕ ∈ D(Ω). Let n? ∈ N be large enough to have suppϕ ⊂ Ωn? . We have by (5.1) and Definition 2.1,

∀n > n?,
〈
−i∆unϕ(n) + fϕ(n)

(
unϕ(n)

)
− Fn, ϕ|Ωn

〉
D′(Ωn),D(Ωn)

= 0. (5.6)

Estimates (5.4), (5.5), (5.3) and (5.6) lead to,

〈−∆u+ f(u)− F,ϕ〉D′(Ω),D(Ω)

= 〈−u,∆ϕ〉D′(Ω),D(Ω) + 〈f(u)− F,ϕ〉D′(Ω),D(Ω)

= lim
n→∞

〈
−ũnϕ(n),∆ϕ

〉
D′(Ω),D(Ω)

+ lim
n→∞

〈
f̃ϕ(n)

(
ũnϕ(n)

)
−Gn, ϕ

〉
D′(Ω),D(Ω)

= lim
n→∞

〈
−unϕ(n),∆

(
ϕ|Ωn

)〉
D′(Ωn),D(Ωn)

+ lim
n→∞

〈
fϕ(n)

(
unϕ(n)

)
−Gn|Ωn , ϕ|Ωn

〉
D′(Ωn),D(Ωn)

= lim
n→∞

〈
−∆unϕ(n) + fϕ(n)

(
unϕ(n)

)
− Fn, ϕ|Ωn

〉
D′(Ωn),D(Ωn)

= 0.

By density, we then obtain that u ∈ H1
0 (Ω) satisfies (2.2) for any v ∈ H1

0 (Ω), so that u ∈ H1
0 (Ω) is a

weak solution to

−∆u+ f(u) = F, in L2(Ω).

Furthermore, any weak solution belongs to H2
loc(Ω) (Theorem 2.15). Finally, if F is spherically

symmetric then u (obtained as a limit of weak solutions given by Lemma 5.1) is also spherically

symmetric. For N = 1, this includes the case where F is an even function.

Proof of Theorems 2.5 and 2.11 . Set for any u ∈ L2(Ω) ∩ Lm+1(Ω), f(u) = a|u|−(1−m)u + bu.

It follows from Example 2.3 that u and iu are admissible test functions in (2.10). We then obtain,

‖∇u‖2L2(Ω) + Re(a)‖u‖m+1
Lm+1(Ω) + Re(b)‖u‖2L2(Ω) = Re

∫
Ω

Fudx,

Im(a)‖u‖m+1
Lm+1(Ω) + Im(b)‖u‖2L2(Ω) = Im

∫
Ω

Fudx.

Theorem 2.5 follows immediately from Lemma 4.1 applied with ω = Ω and Remark 4.2, while The-

orem 2.11 is a consequence of Lemma 4.5 applied with δ = 0 and Young’s inequality 3.6. This ends

the proof.

Proof of Theorem 2.7. By Example 2.3, u and iu are admissible test functions in (2.8). We then

obtain,

‖∇u‖2L2(Ω) + Re(a)‖u‖m+1
Lm+1(Ω) +

(
Re(b)− |Re(c)|‖V ‖2L∞(Ω)

)
‖u‖2L2(Ω) 6

∫
Ω

|Fu|dx,

|Im(a)|‖u‖m+1
Lm+1(Ω) + |Im(b)|‖u‖2L2(Ω) + |Im(c)|‖V u‖2L2(Ω) 6

∫
Ω

|Fu|dx.

28



The theorem follows Lemma 4.4 applied with ω = Ω, R = ‖V ‖L∞(Ω) and α = β = 0.

Proof of Theorems 2.6 and 2.9. Let the assumptions of Theorems 2.6 and 2.9 be fulfilled.

Proof of the existence. We first assume that Ω is bounded. Let H = H1
0 (Ω), in the homogeneous

Dirichlet case, and H = H1(Ω), in the homogeneous Neumann case. Let δ? be given by Lemma 4.5

and let for any u ∈ L2(Ω), f(u) = a|u|−(1−m)u+ bu+ cV 2u (with c = 0 in the case of Theorem 2.9).

Let (Fn)n∈N ⊂ D(Ω) be such that

Fn
L2(Ω)−−−−→
n→∞

F. (5.7)

Let
(
un`
)

(n,`)∈N2 ⊂ H a sequence of weak solutions of (5.1) be given by Lemma 5.1 with O = Ω,

δ = 1 for Theorem 2.6, δ = δ? for Theorem 2.9 and such Fn. By Corollary 4.6, there exists a diagonal

extraction
(
unϕ(n)

)
n∈N

of
(
un`
)

(n,`)∈N2 which is bounded in W 1,1(Ω) ∩ Ḣ1(Ω). Let 1 < p < 2 be such

that W 1,1(Ω) ↪→ Lp(Ω). Then
(
unϕ(n)

)
n∈N

is bounded in W 1,p(Ω) and there exist u ∈W 1,p(Ω)∩Ḣ1(Ω)

and g ∈ Lp(Ω;R) such that, up to a subsequence that we still denote by
(
unϕ(n)

)
n∈N

,

unϕ(n)

Lp(Ω)−−−−→
n→∞

u, (5.8)

∇unϕ(n) ⇀ ∇u in
(
L2
w(Ω)

)N
, as n −→∞, (5.9)

unϕ(n)
a.e. in Ω−−−−−→
n→∞

u,∣∣∣unϕ(n)

∣∣∣ 6 g, for any n ∈ N, a.e. in Ω,(
unϕ(n)1

{∣∣∣unϕ(n)

∣∣∣6ϕ(n)
})

n∈N
is bounded in L2(Ω),

where the last estimate comes from Corollary 4.6. These three last estimates and Fatou’s Lemma

yield,

u ∈ L2(Ω),

fϕ(n)

(
unϕ(n)

)
a.e. in Ω−−−−−→
n→∞

f(u)− δu,

∀n ∈ N,
∣∣∣fϕ(n)

(
unϕ(n)

)∣∣∣ 6 C(gm + g) ∈ Lp(Ω), a.e. in Ω.

It follows that u ∈ H1(Ω). From the dominated convergence Theorem, we get

fϕ(n)

(
unϕ(n)

)
Lp(Ω)−−−−→
n→∞

f(u)− δu. (5.10)

We claim that in the case of Dirichlet boundary condition, one has u ∈ H1
0 (Ω). We recall a Gagliardo-

Nirenberg’s inequality.

∀w ∈ H1
0 (Ω), ‖w‖N+2

L2(Ω) 6 C‖w‖2L1(Ω)‖∇w‖
N
L2(Ω),
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where C = C(N). In particular, C does not depend on Ω. Since
(
unϕ(n)

)
n∈N
⊂ H1

0 (Ω) is bounded

in W 1,1(Ω) ∩ Ḣ1(Ω), it follow from the above Gagliardo-Nirenberg’s inequality that
(
unϕ(n)

)
n∈N

is

bounded in H1
0 (Ω). So that u ∈ H1

0 (Ω) and the claim is proved. Now, we show that u ∈ H is a weak

solution. Let m0 ∈ N be large enough to have Hm0(Ω) ↪→ Lp
′
(Ω). Let v ∈ D(Ω), if H = H1

0 (Ω) and

let v ∈ Hm0(Ω), if H = H1(Ω). By (5.1), we have for any n ∈ N,

〈
∇unϕ(n),∇v

〉
L2(Ω),L2(Ω)

+
〈
δunϕ(n) + fϕ(n)

(
unϕ(n)

)
, v
〉
Lp(Ω),Lp′ (Ω)

− 〈Fn, v〉L2(Ω),L2(Ω) = 0. (5.11)

Estimates (5.9), (5.8), (5.10), (5.7) and (5.11) lead to,

〈∇u,∇v〉L2(Ω),L2(Ω) + 〈f(u)− F, v〉L2(Ω),L2(Ω)

= 〈∇u,∇v〉L2(Ω),L2(Ω) +
〈
δu+

(
f(u)− δu

)
, v
〉
Lp(Ω),Lp′ (Ω)

− 〈F, v〉L2(Ω),L2(Ω)

= lim
n→∞

〈
∇unϕ(n),∇v

〉
L2,L2

+ lim
n→∞

〈
δunϕ(n) + fϕ(n)

(
unϕ(n)

)
, v
〉
Lp,Lp′

− lim
n→∞

〈Fn, v〉L2,L2

= lim
n→∞

(〈
∇unϕ(n),∇v

〉
L2,L2

+
〈
δunϕ(n) + fϕ(n)

(
unϕ(n)

)
, v
〉
Lp,Lp′

− 〈Fn, v〉L2,L2

)
= 0.

By density of D(Ω) in H1
0 (Ω) and density of Hm0(Ω) in H1(Ω) (see, for instance, Corollary 9.8, p.277,

in Brezis [4]), it follows that

∀v ∈ H, 〈∇u,∇v〉L2(Ω),L2(Ω) + 〈f(u), v〉L2(Ω),L2(Ω) = 〈F, v〉L2(Ω),L2(Ω).

Finally, u ∈ H2
loc(Ω) (Theorem 2.15). This finishes the proof of the existence when Ω is bounded.

Assume Ω is arbitrary. Then we want to solve (1.2) and (1.3). Let n0 ∈ N ve such that Ω∩B(0, n0) 6= ∅

and set for any n ∈ N, Ωn = Ω ∩ B(0, n + n0). It follows from the above proof that for any n ∈ N,

equations (1.1), with external source Fn = F|Ωn , and (1.3) admit at least one weak solution u ∈

H1
0 (Ωn). Extending un by 0 in Ω∩Ωc

n and denoting by Un this extension, we get by Theorems 2.7 and

2.11 that (Un)n∈N is bounded in H1
0 (Ω)∩Lm+1(Ω). Then, up to a subsequence that we still denote by

(Un)n∈N, there exist u ∈ H1
0 (Ω)∩Lm+1(Ω) and g ∈ L2

loc(Ω;R) such that Un ⇀ u in H1
w(Ω), as n→∞,

Un
L2

loc(Ω)−−−−−→
n→∞

u, Un
a.e. in Ω−−−−−→
n→∞

u and |Un| 6 g, a.e. in Ω. In particular, |Un|m 6 gm ∈ L
m+1
m

loc (Ω), a.e. in Ω,

so that |Un|−(1−m)Un
L
m+1
m

loc (Ω)
−−−−−−→
n→∞

|u|−(1−m)u. Let ϕ ∈ D(Ω). Let n? ∈ N be such that suppϕ ⊂ Ωn? . It

follows that for each n > n?, Un satisfies (2.8) in Ω with F = Fn and v = ϕ. The above convergencies

for (Un)n∈N allow to pass in the limit in (2.8) and, by density of D(Ω) in H1
0 (Ω) ∩ Lm+1(Ω), we

get that u ∈ H1
0 (Ω) ∩ Lm+1(Ω) satisfies (2.8) for any v ∈ H1

0 (Ω) ∩ Lm+1(Ω). So that u is a weak
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solution to (1.2) and (1.3). Furthermore, by Theorem 2.15, any weak solution belongs to H2
loc(Ω).

This achieves the proof of existence.

Proof of symmetry property. If F is spherically symmetric then u (obtained as a limit of weak

solutions given by Lemma 5.1) is also spherically symmetric and belongs to H2
loc(Ω) (Theorem 2.15).

For N = 1, this includes the case where F is an even function. This concludes the proof of the

theorems.

Proof of Theorem 2.12. Let u1, u2 ∈ H1(Ω) ∩ Lm+1(Ω) be two weak solutions of (1.2). Set

Σ =
{
v ∈ L2(Ω);V v ∈ L2(Ω)

}
, u = u1 − u2, f(v) = |v|−(1−m)v,

for any v ∈ Lm+1(Ω), and let for any v ∈ Σ ∩ Lm+1(Ω),

g(v) = af(v) + bv + cV 2v.

Assume that V u1, V u2 ∈ Σ. By 1) of Example 2.3, we deduce that u satisfies

−∆u+ g(u1)− g(u2) = 0, in Σ? + L
m+1
m (Ω).

From Lemma 9.1 in Bégout and Dı́az [3], there exists a positive constant C such that,

C

∫
ω

|u1(x)− u2(x)|2

(|u1(x)|+ |u2(x)|)1−m dx 6 〈f(u1)− f(u2), u1 − u2〉
L
m+1
m (Ω),Lm+1(Ω)

, (5.12)

where ω =
{
x ∈ Ω; |u1(x)|+ |u2(x)| > 0

}
.

Proof of 1) of the theorem. We may choose v = au in (2.8) as a test function. We then get,

Re(a)‖∇u‖2L2 + |a|2〈f(u1)− f(u2), u1 − u2〉
L
m+1
m ,Lm+1

+ Re(ab)‖u‖2L2 + Re (ac) ‖V u‖2L2 = 0.

It follows from the above estimate and (5.12) that,

Re(a)‖∇u‖2L2 + C|a|2
∫
ω

|u1(x)− u2(x)|2

(|u1(x)|+ |u2(x)|)1−m dx+ Re(ab)‖u‖2L2 + Re (ac) ‖V u‖2L2 6 0.

Then 1) follows.

Proof of 2) of the theorem. Choosing v = bu in (2.8) as a test function and recalling that

Im(ab) = 0, we get with help of (5.12) that,

Re(b)‖∇u‖2L2 + CRe(ab)

∫
ω

|u1(x)− u2(x)|2

(|u1(x)|+ |u2(x)|)1−m dx+ |b|2‖u‖2L2 + Re(bc)‖V u‖2L2 6 0.
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Hence 2) follows.

Proof of 3) of the theorem. Choosing v = cu in (2.8) as a test function and recalling that

Im(ac) = 0, we get with help of (5.12) that,

Re(c)‖∇u‖2L2 + CRe(ac)

∫
ω

|u1(x)− u2(x)|2

(|u1(x)|+ |u2(x)|)1−m dx+ Re(bc)‖u‖2L2 + |c|2‖V u‖2L2 6 0.

Then 3) follows. This ends the proof of the theorem.

Remark 5.2. It is not hard to adapt the above proof to find other criteria of uniqueness.

6 On the existence of solutions of the Dirichlet problem for
data beyond L2(Ω)

In this section we shall indicate how some of the precedent results of this paper can be extended

to some data F which are not in L2(Ω) but in the more general Hilbert space L2(Ω; δα), where

δ(x) = dist(x,Γ) and α ∈ (0, 1).

In order to justify the associated notion of weak solution, we start by assuming that a function u

solves equation (2.1) with the Dirichlet boundary condition (1.3), u|Γ = 0, and we multiply (formally)

by v(x)δ(x), with v ∈ H1
0 (Ω; δα)

(
the weighted Sobolev space associated to the weight δα(x)

)
, we

integrate by parts (by Green’s formula) and we take the real part. Then we get,

Re

∫
Ω

∇u.∇v δαdx+ Re

∫
Ω

v∇u.∇δαdx+ Re

∫
Ω

f(u) v δαdx = Re

∫
Ω

F v δαdx. (6.1)

To give a meaning to the condition (6.1), we must assume that

F ∈ L2(Ω; δα), (6.2)

where ‖F‖2L2(Ω;δα) =
∫

Ω
|F (x)|2δα(x)dx, and to include in the definition of weak solution (Defini-

tion 2.1) the conditions

u ∈ H1
0 (Ω; δα) and f(u) ∈ L2(Ω; δα). (6.3)

The justification of the second term in (6.1) is far to be trivial and requires the use of a version of the

following Hardy type inequality,∫
Ω

|v(x)|2δ−(2−α)(x)dx 6 C

∫
Ω

|∇v(x)|2δα(x)dx, (6.4)
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which holds for some constant C independent of v, for any v ∈ H1
0 (Ω; δα) once we assume that

Ω is a bounded domain of RN with Hölder boundary (6.5)

(see, e.g., Kufner [14] and also Nečas [18], Drábek, Kufner and Nicolosi [11], p.34, and Opic and

Kufner [19]). Notice that under (6.5), we know that δ ∈W 1,∞(Ω) and so∣∣∣∣∣∣
∫
Ω

v∇u.∇δαdx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

(
δ
α
2∇u

)
.

(
v

δ
α
2
∇δα

)
dx

∣∣∣∣∣∣ 6 α‖∇δ‖L∞(Ω)‖∇u‖L2(Ω;δα)‖v‖L2(Ω;δ−(2−α)) <∞,

by Cauchy-Schwarz’s inequality and (6.4).

Definition 6.1. Assumed (6.2), (6.5) and α ∈ (0, 1), we say that u ∈ H1
0 (Ω; δα) is a weak solution of

(2.1) and (1.3) in H1
0 (Ω; δα) if (6.3) holds and the integral condition (6.1) holds for any v ∈ H1

0 (Ω; δα).

Remark 6.2. Notice that from the Hardy’s inequality (6.4) and (6.5), we get that H1
0 (Ω; δα) ↪→

L2(Ω). Moreover, since

δ−sα ∈ L1(Ω), for any s ∈ (0, 1), (6.6)

we know (Drábek, Kufner and Nicolosi [11], p.30) that

H1
0 (Ω; δα) ↪→W 1,ps(Ω), with ps =

2s

s+ 1
.

Remark 6.3. Obviously, there are many functions F such that F ∈ L2(Ω; δα) \L2(Ω) (for instance,

if F (x) ∼ 1
δ(x)β

, for some β > 0, then F ∈ L2(Ω; δα), if β < α+1
2 but F 6∈ L2(Ω), once β > 1

2 . This

fact is crucial when the nonlinear term f(u) involves a singular term of the form of the Example 2.3

but with m ∈ (−1, 0) (see Dı́az, Hernández and Rakotoson [9] for the real case).

Remark 6.4. We point out that in most of the papers dealing with weighted solutions of semilinear

equations, the notion of solution is not justified in this way but merely by replacing the Laplace opera-

tor by a bilinear form which becomes coercive on the spaceH1
0 (Ω; δα). The second integral term in (6.1)

is not mentioned
(
since, formally, the multiplication of the equation is merely by v ∈ H1

0 (Ω; δα)
)

but

then it is quite complicated to justify that such alternative weak solutions satisfy the pde equa-

tion (2.1) when they are assumed, additionally, that ∆u ∈ L2
loc(Ω). We also mention now (although

it is a completely different approach) the notion of L1(Ω; δ)-very weak solution developed recently

for many scalars semilinear equations: see, e.g., Brezis, Cazenave, Martel and Ramiandrisoa [5], Dı́az

and Rakotoson [10] and the references therein).
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By using exactly the same a priori estimates, but now adapted to the space H1
0 (Ω; δα), we get the

following result.

Theorem 6.5. Let Ω be a nonempty bounded open subset satisfying (6.5), V ∈ L∞(Ω;R), 0 < α < 1,

0 < m < 1, (a, b, c) ∈ C3 as in Theorem 2.6 and let F ∈ L2(Ω; δα). Then we have the following result.

1) There exists at least one weak solution u ∈ H1
0 (Ω; δα) to (1.2) and (1.3). Furthermore, any

weak solution belongs to H2
loc(Ω).

2) If, in addition, we assume the conditions of Theorem 2.12, this solution is unique in the class

of H1
0 (Ω; δα)-weak solutions.

Remark 6.6. In the proof of the a priori estimates, it is useful to replace the weighted function δ

by a more smooth function having the same behavior near Γ. This is the case, for instance of the first

eigenfunction ϕ1 of the Laplace operator,{
−∆ϕ1 = λ1ϕ1, in Ω,

ϕ1|Γ = 0, on Γ.

It is well-known that ϕ1 ∈W 2,∞(Ω) ∩W 1,∞
0 (Ω) and that

C1δ(x) 6 ϕ1(x) 6 C2δ(x),

for any x ∈ Ω, for some positive constants C1 and C2, independent of x. Now, with this new weighted

function, it is easy to see that the second term in (6.1) does not play any important role since, for

instance, when taking v = u as test function, we get that

Re

∫
Ω

u∇u.∇ϕα1 dx =
1

2

∫
Ω

∇|u|2.∇ϕα1 dx = −1

2

∫
Ω

|u|2∆ϕα1 dx

=
αλ1

2

∫
Ω

|u|2ϕα1 dx+
α(1− α)

2

∫
Ω

|u|2ϕ−(2−α)
1 |∇ϕ1|2dx > 0.

7 Some planar representations of the assumptions on the com-
plex parameters

In this section, we give some geometric interpretation of the values of a and b. For convenience, we

repeat the hypotheses (2.15) of existence and 1) of Theorem 2.12 of uniqueness. We recall that,

A = C \ D,

D =
{
z ∈ C; Re(z) 6 0 and Im(z) = 0

}
.
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For existence of weak solutions to problem (1.1) in Theorem 2.9, we suppose (a, b) ∈ C2 satisfies

(a, b) ∈ A× A and


Im(a)Im(b) > 0,

or

Im(a)Im(b) < 0 and Re(b) >
Im(b)

Im(a)
Re(a),

(7.1)

while for uniqueness, we assume

a 6= 0, Re(a) > 0 and Re(ab) > 0. (7.2)

Existence. Condition (7.1) may easily be interpreted in this way: [a, b] ∩ D = ∅, where D is the

geometric representation of D, which is the half-axis of the complex plane where Re(z) 6 0. See

Figures 1 and 2 below.

Uniqueness. Condition (7.2) is trivial. Indeed, we first choose a ∈ C \ {0} such that Re(a) > 0, and

we choose b with respect to a. We see a and b as vectors of R2. Then we write, −→a =

(
Re(a)
Im(a)

)
,

−→
b =

(
Re(b)
Im(b)

)
and we have

Re
(
ab
)

= Re(a)Re(b) + Im(a)Im(b) = −→a .
−→
b , (7.3)

where . denotes the scalar product between two vectors of R2. Then the condition Re
(
ab
)
> 0 is

equivalent to
∣∣∣∠(−→a ,

−→
b )
∣∣∣ 6 π

2
rad (see Figure 3 below).

Remark 7.1. Thanks to (7.3), the following assertions are equivalent.

1) (a, b) ∈ C2 satisfies (7.1)–(7.2).

2) (a, b) ∈ A× A satisfies (7.2).

3)
(

(a, b) satisfies (7.2)
)

and
(

Re(a) = Im(b) = 0 =⇒ Re(b) > 0
)
.

In other words, when a 6∈ D, uniqueness hypothesis (7.2) implies existence hypothesis (7.1) (see

Figure 4 below).
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29(1):35–58, 2012.

[4] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext.
Springer, New York, 2011.

36



[5] H. Brezis, T. Cazenave, Y. Martel, and A. Ramiandrisoa. Blow up for ut −∆u = g(u) revisited.
Adv. Differential Equations, 1(1):73–90, 1996.

[6] T. Cazenave. Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathe-
matics. New York University Courant Institute of Mathematical Sciences, New York, 2003.

[7] T. Cazenave. An introduction to semilinear elliptic equations. Editora do Instituto de
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