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Abstract—The recent advances in hardware and software has
led to development of applications generating a large amount of
data in real-time. To keep abreast with latest trends, learning
algorithms need to incorporate novel data continuously. One of
the efficient ways is revising the existing knowledge so as to save
time and memory. In this paper, we proposed an incremental
algorithm for Bayesian network structure learning. It could
deal with high dimensional domains, where whole dataset is
not completely available, but grows continuously. Our algorithm
learns local models by limiting search space and performs a
constrained greedy hill-climbing search to obtain a global model.
We evaluated our method on different datasets having several
hundreds of variables, in terms of performance and accuracy.
The empirical evaluation shows that our method is significantly
better than existing state of the art methods and justifies its
effectiveness for incremental use.

I. INTRODUCTION

A rapid evolution took place in hardware and software tech-
nologies over recent years. Now applications are generating a
huge amount of data continuously leading to rapid growth of
databases, e.g., telecommunication and real-time surveillance
systems, sensor networks, set of retail chain transactions, etc.
In such applications, data is generated continuously and is
supplied to decision support systems. These systems have to
update their existing knowledge in the light of novel data.
Incremental data mining has been an active area of research
over the last few years. The problem aggravates for incoming
data with high dimensional domains (several hundreds or
thousands of variables).

In traditional batch learning scenario, the whole dataset is
available for the algorithms. In a scenario where dataset is
growing continuously and we cannot wait for its completion,
the obtained model at a certain time will be outdated. So,
revising the existing model by re-executing the batch learning
algorithm will not only take a lot of resources as well as it is a
costly venture. For this reason, incremental learning algorithms
are needed in order to efficiently integrate the novel data with
the existing knowledge.

Bayesian networks (BNs) are a powerful tool for graphical
representation of the underlying knowledge in the data but BN
structure learning is a proven NP-hard problem [5]. Therefore,
various heuristics have been proposed for this task. Some of
them have been recently developed to learn models from high
dimensional domains, i.e Max-Min hill-climbing (MMHC)

[20], Bayesian substructure learning [13], Local to Global
search [10], Model based search applied for BN structure
learning [9] and extension of constraint-based PC algorithm
[11]. Most of these algorithms use a local search heuristic
where a local model is built around every single variable.
Then, the global model is learned with the help of these local
models. Unfortunately, all these works consider batch learning
and need to relearn the model on availability of novel data,
which is a very costly task.

Regardless of the traditional data mining techniques, incre-
mental Bayesian network structure learning is not a mature
field. There are few works addressing this issue and they
differs with respect to the way of dealing with incrementality.
Some works consider sliding windows, i.e. [3], [12], [7], [14],
[23], and others considers landmark windows, i.e. [16], [15],
[6]. These incremental approaches are mostly based upon the
traditional “score-and-search” method, which is not realistic
in high dimensional domains.

In this paper, we propose a novel method for incremental
BN structure learning from high dimensional domains over
a landmark window. We adopted the principle of Max-Min
hill-climbing algorithm [20], one of the most robust structure
learning algorithms for high dimensional domains.

This paper is organized as follows: section II describes
some background. In section III we present our incremental
method (iMMHC) for Bayesian network structure learning.
In section IV, experiments varying the iMMHC parameters
are presented to show the flexibility of the algorithm and
empirical evaluation of iMMHC to justify its effectiveness.
Finally, we conclude in section V with some proposals for
future research.

II. BACKGROUND

A. Bayesian network structure learning

A Bayesian network (BN) is a graphical representation of
a probabilistic relationship among a set of random variables.
It is composed of a directed acyclic graph (DAG) and a set
of parameters, θ. In a DAG G = (X,E), X is a collection of
nodes or vertices corresponding to the set of random variables
{x1, x2, ....xn} and dependencies among these variables are
expressed by the set of edges E. The parameters θ represent
the probabilities of each random variable given its set of
parents: θi = P (xi|XParents(i))



BN structure learning aims at selecting a probabilistic model
that explains a given set of data. This task is a NP-hard
problem [5]. There are three classical approaches often used
for BN structure learning: First, “constraint” based methods
consist in detecting (in)dependencies between the variables
by performing conditional independence tests on data. The
performance of these methods is limited to a small size of
conditioning set and criticized for complex structures. Second,
“score-and-search” based approaches are widely explored to
find a BN structure. These methods, such as the greedy search
algorithm proposed by [4], use a score function to evaluate the
quality of a given structure and an heuristic to search in the
solution space. The third “hybrid” approach merges the two
previous approaches (constraint based and score based). The
most recent hybrid methods dealing with high dimensional
domains are decomposed into two phases. In first phase, they
identify local structures around each variable. In second phase,
they discover one final model by using some score based
global optimization technique constrained with the previous
local informations. Let us cite MMHC [20] and some recent
extensions [13], [9]. MMHC first applies “constraint-based”
heuristic Max-Min parent-children (MMPC) in order to iden-
tify local structures, candidate parents-children (CPC) set for
every target variable. Then it uses a greedy search in order to
optimize the global model, starting from an empty graph, with
usual operators (add_edge, remove_edge and reverse_edge),
but the add_edge operator can only add an edge Y → X if
and only if Y ∈ CPC(X) found in the previous phase.

B. Incremental BN structure learning with landmark windows

Algorithms presented in this section assume that data has
been sampled from stationary domains, or with only small
changes in the underlying probability distribution. These al-
gorithms incrementally process data over a landmark window
[8] where a window wi contains data from initial to current
time i ∗∆w where ∆w is the window size.

In [16], Roure proposed two heuristics to transform a batch
“score-based” BN structure learning technique (Greedy search,
GS) into an incremental one. First heuristic is called Traversal
Operator in Correct Order (TOCO). It keeps the search path
in former learning step and at the arrival of new data, it checks
the order of the search path (i.e. the sequence of intermediate
models). If the order is still held then there is no need to
revise the structure, otherwise it triggers the GS to obtain a
new model. Second heuristic is called Reduced Search Space
(RSS) and it applied when the current structure needs to be
revise. It reduces the search space by considering only high
quality models found in the previous search step and avoid
exploring low quality models.

Recently, Shi and Tan [18] proposed an hybrid method for
incremental BN structure learning. It builds a local structure in
two ways, using maximum spanning tree (MWST ) algorithm
(called TSearch) or using feature selection techniques. Later,
for global optimization, greedy search is applied on these
local structures by starting from previously obtained BN. In
this algorithm, handling incremental datasets is limited to the

greedy search and not performed in the local search phase,
core of hybrid methods. The same authors proposed another
(very similar) technique in [19], which is also not feasible for
high dimensional domains in incremental environments due
to large conditioning set of variables for independence test.
The results presented deal with a limited number of variables
(maximum of 39 variables).

In a preliminary work, we proposed an incremental version
of the “constraint-based” local discovery MMPC algorithm
[22] which uses TOCO and RSS heuristics to discover the
local structure over a target variable.

III. INCREMENTAL MMHC

The main idea of our proposal, incremental MMHC
(iMMHC) is to incrementally learn a high quality BN
structure by reducing the learning time. It can be achieved
by re-using the previous knowledge and reducing the search
space. Like MMHC method, iMMHC is also a two phases
hybrid algorithm as described in Algorithm 1 and illustrated
in Figure 1. Both phases are incremental in their nature.

A. Incremental local search

This first phase discovers the possible skeleton (undirected
graph) G of the network for a given window, by using iMMPC
method (cf section II-B). It learns a local structure around a
given target variable by using the previous knowledge, and
avoids exploring parts of the search space which were previ-
ously found with low quality. For this purpose, it maintains
a list of search paths (order of the variables included in the
set of candidate parent-children “CPC”). At the same time, it
stores a set of top K best variables that have more chance to
be considered in CPC. The minimum size of set K depends
upon the average degree of the graph. When new data arrive,
iMMPC checks every search path. If they are yet validated,
there is no need to re-learn the CPCs (local models). On the
contrary, it triggers the re-learning process. The detail of the
algorithm and the description of the parameters can be found
in [22]. Hence, we build the local structures incrementally by
shrinking the search space, then we build an undirected graph
G (skeleton) by merging these local structures.

B. Incremental global optimization

In the second phase, a greedy search is initiated for global
optimization. A naive application of MMHC would start this
greedy search from the empty graph. Here we propose an
incremental optimization phase by starting the greedy search
process from the graph obtained in the previous time window
(like Shi and Tan [18]) . The greedy search considers adding
new edges discovered in the new skeleton G but also remov-
ing the outdated edges. We apply the operators add_edge,
remove_edge and reverse_edge, where add_edge can add an
edge Y → X if and only if Y is a neighbor of X in G. By
this way, iMMHC keeps the sense of incremental learning
by considering the previously learned model and revising the
existing structure in the light of new data, as summarized in
Figure 1.



Algorithm 1 iMMHC(Dw)
Require: Data of time window wi (Dwi ), previous top K best neighbors

for each variable (B), previous BN structure (BNi−1)
Ensure: BN structure (BNi)

% Incremental local identification
1: for j = 1 to n do
2: CPC(xj)=iMMPC(xj , Dwi ,B)
3: end for

% Incremental greedy search
4: starting model M = empty graph or BNi−1.
5: Only try operators add_edge (Y � X) if Y ∈ CPC(X)
6: (no constraint for remove_edge or reverse_edge)
7: and return BNi the highest scoring DAG found

Fig. 1. iMMHC outline : dependencies between iMMHC execution for
window wi and previous results.

C. Comparison with existing methods

iMMHC vs TSearch: iMMHC is a two phase hybrid
algorithm as TSearch but both phases of iMMHC are
incremental while only the second phase of Tsearch deal with
this problem. Another significant factor is the robustness of
the first phase of the iMMHC, by using iMMPC, better
than a simple tree approximation.

iMMHC vs Roure: In iMMHC, greedy search has two
constraints, a previous graph and a CPC skeleton G, therefore
it has already very limited search space. These constraints
increase the accuracy of classic greedy search as well as reduce
its search space to a great extent.

IV. EMPIRICAL EVALUATION

We carry out several experiments comparing iMMHC with
the most recent state of the art. Our goals are to evaluate its
ability to deal with high dimensional data (up to hundreds of
variables) and characterizing the situation where it outperforms
the other algorithms.

A. Experimental protocol

Benchmarks: We took five well-known networks “Alarm”,
“Barley”, “Hailfinder”, “Pathfinder” and “Link” from Ge-
NIe/SMILE network repository1. To test the performance of
our algorithm in high dimensional domain, We also generated
a network with thousands of variables using BN tiling [21]
method (implemented in Causal Explorer2). For this purpose,

1http://genie.sis.pitt.edu/networks.html
2http://www.dsl-lab.org/causal_explorer/
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Alarm 37 46 2-4 20,000 2.5 6
Barley 48 84 2-67 20,000 3.5 8

Hailfinder 56 66 2-11 20,000 2.4 17
Pathfinder 109 195 2-63 20,000 1.7 106

Link 724 1125 2-4 10,000 3.1 17
Alarm28 1036 1582 2-4 10,000 3 8

Gene 801 972 3-5 5,000 2.4 11

TABLE I
NAME OF THE BENCHMARK, NUMBER OF VARIABLES AND EDGES,
CARDINALITY AND DEGREE OF THE EACH GRAPH USED FOR OUR

EXPERIMENTS.

28 copies of Alarm network are tiled so that obtained network
“Alarm28” containing 1036 variables.

Subsequently, we sampled five datasets from all these
Bayesian networks.

We also used five “Gene” datasets from MMHC source
website3.

Numerical characteristics of the networks and datasets are
summarized in Table I. To create an incremental scenario, we
feed data to the algorithms with window sizes ∆w = 1000,
2000 and 4000.

Algorithms: We tested iMMHC algorithm in two different
scenarios iMMHC∅ and iMMHCG as proposed in (III),
(starting the greedy search phase from an empty graph or the
previously obtained model). We compared our algorithm with
batch MMHC (without TABU search) and with the incremen-
tal TSearch described in section II-B. We implemented the
original algorithms as described in their articles, in C++ using
Boost graph4 and ProBT5 libraries.

In greedy search, we used the BIC score function. Indepen-
dence is measured with the help of Mutual Information (MI).
The confidence level, alpha has traditionally been set to either
0.01 or 0.05 in the literature on constraint-based learning, so
we have decided to test 0.05 in the experiment.

B. Evaluation measures

We used two metrics to evaluate our algorithm in terms
of computational efficiency and model accuracy. The main
task in learning algorithms is to compute score functions. The
complexity of the algorithm depends upon the number of total
score function calls (i.e. in our case, it is equal to MI calls
for independence tests and local score function calls during
the greedy search). We remind the readers that the skeleton
discovery phase of iMMHC algorithm use constraint based
approach, which has already less complexity than score-and-
search based techniques. The total function calls are cumu-
lative sum over each window and are logarithmic scaled for
better understanding.

3http://www.dsl-lag.org/supplements/mmhc_paper/mmhc_index.html
4http://www.boost.org/
5http://www.probayes.com/index.php



We used the Structural Hamming Distance (SHD) proposed
in [20] for model accuracy. This distance compares the
learned and original network structures,without penalizing an
algorithm for structural differences that cannot be statistically
distinguished.

The results presented in this paper are the mean and
standard deviation of each metric obtained over five datasets
corresponding to a given benchmark model.

C. Results and discussion

Figure 2 describes the SHD obtained at each time window
and Figure 3 shows the log10 values of the total number of
function calls over an incremental process for the algorithms
iMMHCG, iMMHC∅, batch MMHC and TSearch.

Best parameters: We can observe from these figures that
the computational complexity of iMMHCG is very low as
compared to iMMHC∅, with a higher accuracy except for
datasets having high cardinality (“Barley ” and “Pathfinder”).

Parameter K is used in iMMPC fro caching top K most
associated variables with the target variable for later use in
novel data, because they have more chances to become parent
or children of a target variable. The behavior of iMMHC
with different K values is shown in Figure 4. We can see that a
better accuracy can be obtained when K is closer to the degree
of the theoretical graph. Logically, the complexity linearly
increases with respect to K. As a comparison, usual structure
learning algorithms have to limit the maximum number of
parents in order to be scalable. Our algorithm only has to limit
the number of neighbors to be stored in the cache, which is
independent of the number of parents of the final DAG. We
are then able to control the scalability of our algorithm without
controlling the complexity of the final model.

iMMHC for incremental learning: Figures 2 and 3 shows
that iMMHCG outperforms TSearch with respect to com-
plexity and accuracy, except in “Hailfinder” where TSearch
has a similar complexity as iMMHCG and also has a better
accuracy than iMMHC∅ and batch MMHC. We observed
that during TSearch learning, the skeleton discovery phase
(MWST ) contains a lot of false-positive edges. Consequently,
these errors propagate to the final structure. Since this structure
is also used as an input for the next time window, the local
errors in skeleton discovery will mislead the incremental
structure learning process. As another consequence of false-
positive edges, the complexity of the global optimization phase
is also increased.

The robustness of iMMHC can be explained by the fact
that it uses an incremental adaptation of MMPC algorithm
for skeleton discovery phase which has been proven as a robust
solution, limiting the number of false-positives.

Roure compared the accuracy of his algorithm by the
ratio of incremental and batch score of the final model, i.e.
score(incremental)/score(batch). If this ratio is less than one,
its means that an incremental algorithm is better than a batch
one and vice versa. He obtained “1.002” value for alarm
network in [16]. In contrast, the ratio obtained by iMMHCG

is “0.9561”, with same experimental design. Therefore, the
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Fig. 4. Performance of iMMHC algorithm for different K values (Function
calls are divided by 4×103 for “Gene”)

ratio value smaller than one denotes that the model obtained by
iMMHCG is better than a model obtained by batch MMHC.

Incremental versus batch MMHC: We can observe from
the Figure 2 that the model obtained by iMMHCG has a
better quality than the model obtained by the batch MMHC,
except for the datasets having high cardinality (“Barley ” and
“Pathfinder”). Despite this, the iMMHC∅ obtained the same
accuracy as batch MMHC with a low complexity. This result
is consistent with Roure’s work in [16]. With respect to the
high dimension of the search space, incremental algorithms
can avoid being trapped in some local optima as could be
their batch counterparts. Despite this, we can see at Figure 3
that the number of total function calls are a little bit higher
than batch one, but it is acceptable in the cost of better quality.

iMMHC for high dimensional domains: To check the
ability of our algorithm to deal with high dimensional do-
mains, tests were conducted with “Alarm28 ” (1028 variables)
and “Gene” (801 variables) benchmarks. We can observe
that the results of iMMHCG in Figures 2 and 3 are much
better than others. iMMHC is an incremental algorithm
where the first iteration has the same complexity as the batch
algorithm but in the succeeding iterations, this complexity
rapidly decreases. For this reason, iMMHC can be adopted
for several thousands of variables in incremental environment.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an incremental approach
iMMHCG for BN structure learning in high dimensional
domains over landmark windows. The both phases of
iMMHCG deal with data in an iterative way by using (1)
our iMMPC algorithm for incremental local structure iden-
tification and (2) a constrained greedy search for global model
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Fig. 2. Comparisons of Structural Hamming distance (SHD) for MMHC, iMMHC∅, iMMHCG and TSearch algorithms using window of size 2000
(1000 for “Gene”)

optimization starting from the previously obtained model.
By this way, we are able to take into account the previous
knowledge in order to reduce the search space for incremental
learning. Our experimental results illustrate the good behavior
of iMMHCG compared to a similar incremental algorithm
(TSearch) and the batch original one (MMHC). As a con-
sequence iMMHCG could also be an interesting alternative
to batch learning for large databases.

The iMMHC algorithm, but also other BN incremental
learning algorithms, learns over landmark windows. This is
not sufficient for real applications such as data stream mining.
One immediate perspective is the adaptation of iMMHC in
order to deal with sliding windows for unbounded data streams
by keeping the less possible information about past data and
dealing with non-stationarity. In this context, storing sufficient
statistics of past data with ADtrees [2] can be possible, with a
sequential update of these models as proposed in [17]. Using

forgetting coefficient [1] is also a first solution for taking into
account non-stationarity.
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