
Constructing Method Families Based on the
Variability Analysis

Elena Kornyshova
Centre de Recherche en Informatique

Université Paris I – Panthéon Sorbonne
90, rue de Tolbiac, 75013, Paris, France

elena.kornyshova@univ-paris1.fr

Jolita Ralyté
Institute of Services Science
University of Geneva, CUI

7 route de Drize, CH-1227 Carouge, Switzerland
jolita.ralyte@unige.ch

Rébecca Deneckère

Centre de Recherche en Informatique
Université Paris I – Panthéon Sorbonne
90, rue de Tolbiac, 75013, Paris, France

rebecca.deneckere@univ-paris1.fr

Abstract— Situational Method Engineering (SME) is constantly
looking for new ways to facilitate situation-specific method
construction in practice. We have developed the notion of method
family to attain this goal. Our inspiration comes from Software
Product Line Engineering (SPLE), which is developing solutions
that can be easily adapted to a specific context and by reusing
existing knowledge. In this paper, we introduce the process guiding
the construction of method families based on the analysis of the
methods variability.

Keywords - Method family, variability, method family construction

I. INTRODUCTION
It is commonly agreed now that there is no standard method

suitable for all software and information systems engineering
situations mainly because they vary considerably from one
company to another and even from one project to another. In
fact, each development project has its own characteristics and
needs an appropriate analysis, design and other engineering and
decision supporting techniques to be arranged in an adequate
way. The discipline of Situational Method Engineering (SME)
claims that each development project should start with the task
of method engineering where a situation-fitting method is
constructed on the fly [1][2][10][11]. However, this task
appears to be hard to implement in the industrial context.
Despite the publication of various SME approaches (e.g.
assembly-based [1][11], configuration-based [2][6], process
tailoring [12], service-oriented [4][5]), SME is still not fully
adopted in practice. Even though enterprises acknowledge that
methods bring a real added value to their development projects,
they also argue that SME processes are too complex, time
consuming and too expensive.

To deal with this challenge, we take inspiration from
Software Product Line Engineering (SPLE) and in particular
Software Product Families [3]. SPLE is a paradigm to develop
software applications using platforms and mass customization,
which means that commonalities and differences in the
applications of the product line have to be explicit and modeled
in a common way [9]. Similarly, we claim that in SME the
notion of method family would facilitate access to the different
existing methods and would enable their combination, while at
the same time simplifying the method engineering task.
Therefore, our idea consists in providing software and
information systems development companies with method
families dedicated to their application field or purpose that
could be easily configured into project-specific method lines

according to the project. We propose to develop a method family
engineering approach based on SME and SPLE principles.

We have introduced the concept of method family in [8]. In
this paper, we focus our attention on the method family
construction process based on the method variability analysis.

II. VARIABILITY IN METHOD FAMILIES
The method family concept aims at responding to the

question of how to organize method components into a multi-
process and configurable method. Most of the SME approaches
are based on the assumption that a method has to be composed at
time of a specific project “on the fly” [1][2][10][11]. The concept
of method family addresses this issue in a different way – method
components from the same application field and having the
same or similar main usage are organized into a method family
before any concrete project. That allows to reduce the
complexity in managing the vast variety of methods and to limit
the project-specific method construction to the method
configuration task during the method application phase. To
develop this solution, we use the idea of variants and variation
points from SPLE that we apply to the domain of SME.

A method family [8] represents an organization of several
method components, from different methods, into a multi-
method dedicated to a particular engineering field or purpose.
The method family adaptation, or rather configuration, to a
particular project is made by selecting an appropriate method
line inside this family. A method line includes all common
method components of the method family and some variable
method components selected for the given project based on the
project characteristics. Regarding to the variability expression, a
method component in a method family is considered similarly to
a variant in a software product line. In SPLE, variants are
artifacts available in a given variation point [9]. Applied to the
method family notion, variants are method components available
in a given situation (or in a given variation point). Therefore,
during the method family configuration, each obtained method
line is composed of a set of variant components. The
differentiation between common and variable method
components allows to evaluate the degree of variability of a
method family and helps to configure method lines.

In order to define the way of representing variability in
method families, we have used the ideas of the Orthogonal
Variability Model (OVM) proposed by Pohl et al. [9]. OVM is
“a model that defines the variability of a software product line.

It relates the variability defined to other software development
models such as feature models, use case models, design
models, component models, and test models” [9]. We use the
following elements of this model to deal with variability in
method families: variation point, variability dependency, and
constraint variability. The situation containing several variants
(in our case method components) is called a variation point.
The relationship between the variation point and variants
defines the variability dependency. It induces a dependency
restriction, as a variant may be optional or mandatory within a
given variation point (See [8] for the detailed description of the
method family meta-model).

III. METHOD FAMILY CONSTRUCTION PROCESS
Following the SME recommendations and principles, our

approach for method family construction is based on the reuse
of method components extracted from existing methods and on
their variability analysis. In particular, this approach aims to
support the method family construction from a collection of
methods belonging to the same application domain and having
similar objectives. The construction process is depicted in the
following figure.

Set Method
Family Goal

Specify
Application

Domain

Identify
Method
Portfolio

Set
Functional

Scope

Method Family Scoping

Highlight
Elementary

Activities

Identify
Method

Components

Decomposition of Methods into Method Components

Formalize
Method

Components

Analyze
Pairwise

Variability

Assemble
Method

Components

Define
Variability

Dependencies

Define
Dependency
Constraints

Method Components Organization

Figure 1. Process of the method family construction

Method Family Scoping. Different methods may be
federated into a family only if they satisfy the property of
“teleological unity”. This property characterizes the similarity
of different methods according to their usage expressed through
their intentions [7]. Our method family scoping phase
incorporates ideas from [1], [7] and [2] and includes four steps:
(1) defining the method family goal (e.g. a support for decision
making), (2) specifying its application domain (e.g. information
systems engineering), (3) identifying method portfolio (the
spectrum of methods fitting the method family goal and the
application domain), and (4) setting its functional scope (e.g.
from requirements to design).

Decomposition of Methods into Method Components. The
method components are extracted from the existing methods,
composing the method portfolio defined in the previous phase.
The decomposition of methods is process-driven and includes
three steps: (1) highlighting elementary activities in the method,
(2) identifying method components, and (3) formalizing them
following a selected method engineering approach.

Components Organization into a Family. The last phase
consists in organizing all previously defined method components
within a method family. It is based on (i) the assembly-based
SME approach [11] and (ii) the variability analysis with similarity
measures. This phase is composed of four steps: (1) pairwise
variability analysis (defining the variability of method
components based on similarity measures), (2) assembly of
method components by using assembly techniques [11], (3)
definition of variability dependencies (optional or mandatory) and
(4) definition of dependency constraints between method
components (exclusive or requires each other).

IV. CONCLUSION
Method families bring together a set of similar but different

method components. Their main aim is to facilitate method
reuse and adaptation in practice. Instead of creating a project-
specific method from scratch as suggested by many SME
approaches, the method family user will configure a method
line by selecting method components from the family. His/her
method engineering effort will be significantly reduced while
the offer of method component will be increased.

In this paper we have introduced a process model for the
construction of method families. The approach is tightly related
to the variability notion underlying the method family concept.
The combination of the variability analysis issues from the
SPLE field with the assembly-based SME techniques forms the
basis for our method family construction process. This method
family construction approach will be extended and tested in
various case studies and projects.

REFERENCES
[1] S. Brinkkemper, M. Saeki, and F. Harmsen, “Assembly Techniques for

Method Engineering”, CAiSE 1998, LNCS 1413, pp. 381-400, 1998.
[2] T. Bucher, M. Klesse, S. Kurpjuweit, and R. Winter, “Situational

Method Engineering. On the Differentiation of Context and Project
Type”, ME 07, Vol. 244, Springer, Boston, pp. 33-48, 2007.

[3] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Addison-Wesley Longman Publishing Co., USA, 2001.

[4] R. Deneckère, A. Iacovelli, E. Kornyshova, and C. Souveyet, “From
Method Fragments to Method Services”, EMMSAD, pp. 80-96, ceur-
ws.org, Vol.337, 2008.

[5] G. Guzélian and C. Cauvet, “SO2M: Towards a Service-Oriented
Approach for Method Engineering”, IKE'07, Las Vegas, USA, 2007.

[6] F. Karlsson and P.J. Ågerfalk, “Method Configuration: Adapting to
Situational Characteristics While Creating Reusable Assets”,
Information and Software Technology, Vol. 46(9): 619–633, 2004.

[7] E. Kornyshova, “MADISE: Method Engineering-based Approach for
Enhancing Decision-Making in Information Systems Engineering”, PhD
thesis, University of Paris 1 Panthéon-Sorbonne, Paris, France, 2011.

[8] E. Kornyshova, R. Deneckère, and C. Rolland, “Method Families Concept:
Application to Decision-Making Methods”, EMMSAD, pp. 413–427,
LNBIP 81, 2011.

[9] K. Pohl, G. Böckle, F. Van der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques, Springer Verlag, 2005.

[10] J. Ralyté, R. Deneckère and C. Rolland, “Towards a Generic Model for
Situational Method Engineering”, CAiSE 2003, pp. 95-110, LNCS 2681,
2003.

[11] J. Ralyté and C. Rolland, “An Assembly Process Model for Method
Engineering”, CAISE 2001, pp. 267-283, LNCS 2068, Springer, 2001.

[12] M. Rossi, B. Ramesh, K. Lyytinen, and J-P. Tolvanen, “Managing
evolutionary method engineering by method rationale”, Journal of the
Association for Information Systems, Vol. 5(9), pp. 356-391, 2004.

View publication statsView publication stats

