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Abstract— Recently, Wireless Sensor Networks (WSN) have 
become increasingly used to perform distributed sensing and 
convey useful information. These kinds of environments are 
complex, heterogeneous and often affected by unpredictable 
behavior and poor management. This fostered considerable 
research on designs and techniques that enhance these systems 
with an adaptation behavior. In this paper, we focus on the self-
adaptation branch of the research and give an overview of the 
current existing approaches. We also analyze the collected 
approaches and we summarize their common and individual 
characteristics. Then, we describe our proposed approach to 
adapt running WSN applications while adopting the autonomic 
control loop [1]; MAPE: Monitoring, Analysis, Planning, and 
Execution. Differently from other approaches, where adaptation 
is generally performed by simply re-deploying another version of 
application, we focus on the distinction between three different 
levels of adaptation. We define a sensor level (level1) composed 
of terminal leaf nodes, a cluster head level (level2) that is an 
elected node with collection capability and a base station level 
(level3) which is an enhanced capabilities node that can be a 
computer or a mobile smart phone. This makes our system able 
to provide quick adaptation to multiple context parameter 
changes and to deal with multiple users requirements changes in 
order to preserve energy consumption efficiency, and maintain 
system lifetime durability. To illustrate our approach, we study 
the Smart Home Health Care (SHHC) system over the AZEM 
simulator which is an enhanced version we developed of 
AvroraZ. This case study enables us to show the feasibility and 
the efficiency of our approach for self-adapting WSNs. 
Keywords—WSN, Self-adaptation, Monitoring, Reconfiguration, 
Energy and Mobility, Simulator, AZEM  

I. INTRODUCTION 

A Wireless Sensors Network (WSN) is a set of wireless 
interconnected sensor nodes that are able to monitor 
environment and give measures and alerts on indicators in 
order to process their analyze [2]. WSN applications are 
highly scalable and the number of connected nodes can vary 
from hundreds to thousands at runtime. They provide a fine-
grain monitoring and represent a key feature in Quality of 
Service (QoS) management. The WSNs show their 
importance in many domains such as medical field, industrial 
and military.  Also, it enables managing smart buildings and 
assisting ambient living applications. However, the 
environments where they are deployed are in perpetual change. 

We notice that nodes are battery operated, and generally we 
cannot recharge them periodically. Consequently, the energy 
monitoring and management have to be mastered in order to 
better operate these long-lived applications [3]. This imposes 

several requirements, compared to traditional information 
systems. So, we need to dynamically adapt the behavior of 
executed applications at runtime, and a solution that halts 
applications and proceeds to reprogram nodes from scratch 
which is not suitable in much cases. 

Context changes and user requirements are the two major 
triggers for adaptation in order to enhance the functioning and 
manage degradations. In order to enable such dynamic 
adaptation, WSNs must have an autonomous behavior in order 
to react to context/resources and user requirements changes.  

In this paper, we present an autonomic enabled-architecture 
according to the IBM control loop [1]. It provides primitives 
and mechanisms to adapt WSNs applications in order to 
increase the WSNs life duration, to manage the mobility, and 
to cope with context and requirements changes. The 
autonomic loop is based on four phases, namely: monitoring 
to collect data, analysis to identify degradation, planning to 
plan for adaptation actions and execution to enact them. We 
elaborate a MAPE pattern (see figure 3) that is deployed in 
different levels of the sensors network, including the cluster 
leafs level that is composed of terminal sensor nodes, the 
cluster head level,  and the base station level. 

The SHHC is used to illustrate our approach. It is a smart 
building that includes many equipment and sensors. Our 
purpose is to increase the system efficiency and rationalize the 
energy consumption while minimizing the message loss rate 
that results from sensors mobility. Both aspects (Energy & 
Mobility) are monitored thanks to monitors that we propose in 
our self-adaptive approach and simulated through our 
simulator: AZEM. AZEM1 is an extended version of AvroraZ 
that we developed in order to consider Energy and Mobility 
monitoring and management. Compared to other simulators 
which simulate a static or pre-programmed scenario, it enables 
interactivity during the simulation. For instance, it allows 
modifying the sensor position during the simulation process. 

The paper is organized as follows: Section 2 gives 
taxonomy of WSNs where we focus on adaptive middleware. 
The adaptation levels of WSNs are addressed in this section. 
In Section 3, we detail our self-adaptive approach and give 
details about our MAPE architecture. In Section 4, we present 
the AZEM class diagram and underline the brought extensions. 
In Section 5, we present the case study, and the carried out 
experiments that show the feasibility and the efficiency of our 
approach. The last section concludes the paper. 

                                                 
1 http://www.redcad.org/members/benhalima/azem/ 
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II. SURVEY ON SENSOR NETWORK MIDDLEWARE 

In this section, we examine the state of the art in WSN 
middlewares. We classify the related works into two main 
classes regarding their ability or not to adapt their states to the 
environment constraints and user requirements. 

A. Non-adaptive middleware 

A middleware is called non-adaptive if it does not support 
the architecture reconfiguration at runtime. In this case, in 
order to operate a reconfiguration, we need to (i) halt the 
current running application, (ii) reprogram and (iii) redeploy 
the entire application which is difficult to perform. In this 
class, we distinguish three solutions namely database-based, 
in which applications use sql-like requests to extract sensing 
values from network, event-based, in which sensing values are 
pushed to the application following pre-programmed 
thresholds, and the hybrid which corresponds to the 
integration of both solutions. 

1. Database-based solutions  
The middleware that adopts a database-based solution 

considers the entire network as a virtual database. It offers an 
easy interface that allows users to query the sensors network 
in order to extract data. 

Cougar [4], MaD-WiSe [5] and TinyDB [6] belong to this 
subclass of middleware and are generally used for limited-data 
collection applications. These middlewares assume that 
sensors are largely homogeneous and have consistent and 
homogenous data types which are not always the case. 
However, these middlewares become unsuitable for networks 
integrating rich sensors such as camera and microphone. 

2. Event-based solutions 
The event-based middleware is a direct application of 

Message-Oriented classic Middleware (MOM) initially 
dedicated for distributed systems, to the context of WSNs. 
Mires [7] is an example of that middleware. It provides an 
asynchronous event-based communication model suitable for 
sensor networks applications. It is built on TinyOS [8] using 
NesC programming language [9]. It adopts a component-
oriented programming approach while using a communication 
infrastructure based on the publish/subscribe model. This 
allows decoupling producers and consumers of events. 
However, this middleware has some deficiencies. Indeed, we 
notice that it does not consider the heterogeneity of sensors or 
their data. 

3. Hybrid solutions 
Such middleware subclass includes both database and 

event-based mechanisms. For instance, DSWARE (Data 
Service middleWARE) [10] integrates this subclass. It uses a 
database-based solution designed for sensor networks based 
on event detection. It supports a group-based decision making 
and a centralized storage. It ensures reliable data, mainly 
when the failure rate of messages exchange is high.   

We note that this subclass of middlewares does not take 
into account neither the heterogeneity of sensors, nor the 
resource constraints or the network topologies. Therefore, it is 
not appropriate for complex applications. In addition, this kind 
of middleware does not consider scalability, mobility of nodes, 

security and availability. Also, we point out that this subclass 
of middlewares does not handle adaptability. In other words, 
this kind of middleware cannot continue to meet application 
requirements when environment constraints change or user 
requirements evolve. However, some work began to consider 
the property of adaptability; they present only a simple tuning 
and adjustment. SINA [11] is an example of a database-based 
middleware for sensor networks that facilitates querying and 
monitoring network nodes. It includes two low-level 
mechanisms for sensors managing. The first level is the 
hierarchical clustering of sensors for energy conservation and 
scaling. The second level ensures their identification based on 
attributes and makes easy the access to data. Nodes are 
sensitive to two types of language used by the middleware: an 
SQL-like query language as for TinyDB and Cougar, and a 
procedural scripting language called LQTS that can be sent to 
nodes and executed there through the SEE (Sensor Execution 
Environment). That's what makes SINA a flexible middleware. 

B. Self-adaptive middleware 

The most used middleware is service oriented. This class 
manages adaptation issues while using structural and 
behavioral reconfiguration actions. A service is defined as a 
modular, autonomous, and independent from execution 
platform and having a well-defined interface. Indeed, the 
service-oriented architecture (SOA) has been used to address 
the heterogeneity of nodes, and ensure the composition. It 
provides mechanisms to publish, find and bind services and 
promotes their reuse. 

We distinguish three levels where services can be deployed 
namely: on the node, on the gateway and on the base station.  

Firstly, the sensors are small equipment, with a small 
processing capacity and various modes of wireless 
communication, including WiFi, Bluetooth, ZigBee, Radio 
and Infrared. These sensors offer some features such as 
reading temperature, pressure, humidity, movement, etc... 
Many technologies are available on the market: Telos, Mica2 
and its successor Micaz of Crossbow, and SunSpot from SUN 
micro-system are the most used.  

Secondly, the gateways are collectors, and are characterized 
by a higher cost, more resources and provide functionality to 
mediate between sensors and the base station.  

Thirdly, the base stations are the final collectors of 
information from sensors and gateways to control them.  They 
are assimilated to traditional PCs, laptops, Palms, etc. Their 
role is to manage the sensor network as a whole including 
their administration and adaptation.  

Therefore, we propose to classify the service-oriented 
middleware into three categories according to the level where 
services are deployed. The first one includes the middleware 
in which management services are deployed on sensors. The 
second includes the middleware where management services 
are deployed on the base station. The third category is 
characterized by cross-level deployed service-oriented 
middleware architecture. We notice the absence of work in the 
literature where services are deployed only on the gateway.  
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1.  Sensor side adaptation  
This first class implements and deploys adaptation 

primitives on sensors. It enables horizontal interaction 
between leaf nodes. This requires defining an appropriate 
structure of adaptation services which enable interaction 
within services deployed on other nodes. This class includes 
middleware such as Tiny Web Services [12] and TinyWS [13].  

Tiny Web Services [12] is a middleware built on the basis 
of mini web services. These mini web services operate on a 
small version of TCP/IP, called μIP. This middleware is based 
on event notifications in order to save energy.  

TinyWS [13] offers an embedded web services platform 
residing on the sensor nodes, giving them the opportunity to 
communicate directly without going through the gateway. It is 
developed on the basis of TinyOS using TCP/IP. However, 
this approach does not offer an abstract view of an application 
before its implementation.  

Meanwhile, the majority of the above middlewares uses an 
XML based-communication that engenders an overhead and 
consumes a large part of the device resources.  

2.  Base station side adaptation 
The second class implements the services at the base station 

level. In this class, the WSN is considered as a data source and 
installed applications on the base station are web service-
based, in most cases. The work presented in [14] belongs to 
this context and provides an OSGI based service-oriented 
middleware deployed on the base station. Its proposed 
middleware communicates with sensor network by using a 
packet forwarder installed on the base station. It defines three 
types of bundle, namely communication, wrapper and 
application. This allows communicating different applications 
while using different data types from heterogeneous nodes. 
This middleware requires the continuous availability of data 
sources and does not support their accidental interruption. 
Moreover, the addition of a new hardware needs the 
intervention of the system administrator on the middleware to 
manage the wrapper for the added node. 

3.  Cross-level adaptation 
The majority of the proposed middlewares deploys services 

on the three levels while following a cross-layer architecture.  
The work of Jeremie et al. [15] adopts a SOA for the WSN 

applications. It proposes a layered service oriented approach: 
the first is dedicated to limited capacity nodes called "WSN-
SOA", the second is devoted to gateway nodes and is based on 
Devices Profile for Web Services (DPWS) [16] and the third 
is used on the base station and adopts the SOA standard. So, 
the applications deployed on such architecture offers its end-
results as web services. This solution ensures interoperability 
between different levels through gateways that implement a 
set of matching services offered as OSGI bundles. However, 
no adaptation is proposed to deal with the service failure. Also, 
WSN-SOA messages are not semantically expressive. 

III. OUR SELF-ADAPTIVE ARCHITECTURE 

In this section, we present our self-adaptive architecture 
which implements the MAPE pattern as shown in Figure 2.  

 

A. Self-adaptive control loop elements 

In what follows, we identify and specify the role of each 
element of our self-adaptive architecture.  

1.  The monitor: 
We mean by monitor a component deployed on a sensor 

node and capable of monitoring network QoS parameters that 
we call metrics. Therefore, we need as many monitors as 
metrics to be supervised.  

 
Figure 1. The Monitoring Interface 

These metrics focus on the communication quality within 
the network and its life time. All these Monitors are exposed 
on nodes as services and respect the Monitor_interface 
presented in Figure 1. Thus, they implements 
getSupervisedValue(), setSensingRate(int period) and 
eventNotify(MonitoringMess *msg, ErrorMess error) methods 
dedicated respectively to read monitored metric, to set the rate 
of the sensing operation and to give the monitor the possibility 
to notify when an event occurs.  

2.  The analyzer: 
In our architecture, we propose two types of analyzers. The 

first operates in the cluster head sensor and is called "in-
network analyzer". Indeed, it interprets data from the cluster 
with the aim to infer the possibility of applying aggregate 
functions like average, maximum and compression. The 
second, called "out-network analyzer", is deployed on the base 
station. This strategic place gives it a global view of the sensor 
network allowing synthesizing and proposing actions to 
overall network reconfiguration.  

3.  The planner: 
The planner gets analysis reports, and provides a defined 

sequence of actions to recover the system. It is driven by a set 
of pre-defined rules. Indeed, in our architecture, we provide 
two planners that meet the recommendations extracted from 
both in and out network analysis reports. Actions on cluster 
data optimization (number of messages exchanged) are taken 
into account in the in-network planning phase. We can 
mention an application of aggregation rules such as the sum 
operation or the maximum number of received data. We can 
also propose rules that reconfigure the overall structure of the 
network while following instructions from out-networks 
analysis. Migration plans can be planned during this phase. 

4.  The executor: 
This is the component that ensures the enforcement of 

planned adaptation actions to bring the system to its stable 
state.  According to the planned action, two types of executors 
are deployed. The first turns on the cluster head achieving 
actions like messages filtering, emission frequency adjustment, 
and optimization of the transmission signal frequency. These 
actions operate adjustments within the network. A second 
executor operates on the base station and provides the actions 
of global network reorganization, including components 
deployment/ redeployment/ undeployment, activation / 
deactivation.  

 Interface Monitor_interface { 
 command int getSupervisedValue(); 
 command void setSensingRate(int period); 
 event void eventNotify (MonitoringMess *msg, ErrorMess error); } 
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B. Self-adaptive control loop pattern 

The MAPE pattern shown in Figure 2, presents the 
deployment architecture of the autonomic components. In the 
bottom level (cluster leaf), a Monitor and an Executor are 
deployed on each device. Collected data from this level are 
sent to the cluster head’s Analyzer which plans for local 
adaptation actions and asks Executors (belonging to cluster 
head and leafs) for executing them. When local adaptation is 
not sufficient, the base station Analyzer can perform a global 
analysis (based on local analysis) and plan for a global 
adaptation plan. Then, each local Planner receives his sub-
plan including elementary adaptation actions to be performed 
by the device (Cluster leafs and head) Executor. This is the 
case when all cluster nodes have not enough energy to play 
the role of head. Therefore, we ask the global Analyzer and 
Planner (belonging to the base station) to detect the nearest 
node belonging to another cluster that has enough energy and 
can play the role of head.  

 
Figure 2. Self-adaptive control loop; Master/Slave Analysis and 

Planning modules 

The legend of figure 3 is described in the following: 
Device endpoint: They are two kinds of interaction 

between the device and the MAPE components. First, the 
monitor (M) interacts with the device for monitoring purposes. 
Second, the Executor (E) interacts with the device to enforce 
planned adaptation actions. 

Inter-component interactions: They describe the 
interactions between MAPE components belonging to 
different levels. For instance, M (from cluster leaf) sends 
monitoring date to A (from Cluster head). 

Inter-component notifications: They describe the 
notifications exchanged between the same MAPE components 
belonging to different levels. For instance, P (from Base 
station that has the global plan) notifies P (from Cluster head) 
about the local plan to perform in its cluster. 

Intra-component interactions: They describe the 
interactions between MAPE components of the same level. 

IV.  AZEM: A NEW NETWORK SIMULATOR 

When developing or researching in WSN domains, it is 
better to use a WSN simulator for many reasons. On the one 
hand, it is so expensive to experiment WSN on real world 
which consists of tens or hundreds of sensor nodes and 
gateways. On the other hand, distributed nature of WSNs 
makes debugging of applications a very difficult task. So, 

using a WSN simulator can help researchers and developers of 
WSN applications to fetch and correct majority of bugs and 
code issues before performing deployment on real world. 

However, choosing a simulator for WSN is a specific 
application task that focuses on a deployment environment 
and a set of modules ensuring the WSN functionalities.  This 
task relies also on the capabilities required by application, 
namely the reusability, the availability, the performance, the 
scalability, the language and operating system dependency 
and techniques allowing base station application to 
communicate with sensor applications. WSN simulators are 
classified onto three categories regarding the different levels 
of the system. First, we distinguish simulators allowing 
network protocol experimentation. The most widely used one 
is ns-2 [17]. Second, we mention simulators that rely on the 
WSN operating system level. The most widely used one is 
Tossim [18]. Third, we recognize simulators that model 
accurately the hardware of sensor platforms. This class of 
simulators is called “instruction set level”. The leader of that 
class is Avrora [19] that has been extended by AvroraZ [20] 
which enables accurate simulation of IEEE 802.15.4 based 
protocols. We have chosen the latest one to simulate the NesC 
codes deployed in the cluster head and leaf nodes. This is an 
open source and scalable sensor network simulator. It scales to 
networks of up to 10,000 nodes and can handle as many as 25 
nodes in real-time.  

WiredNode 
Startup: real 

WiredNode (in  id : integer, in pf PlatformFactory,  

  in p : LoadablePrgram, in energy real) 
Instanciate() 
createNode() 
Remove() 

WiredSimulation  
HELP: string 
NODECUNT: Option.List 
RANDOM_STRAT : Option.Interval 
…. 

Process (in o : Option, in []args: string) 
createNodes(in [] args: string, in pf: PlatformFactory) 
…… 
newNode(in id: integer, in pf  : PlatformFactory, 

  in pp : LoadableProgram, in energy : real) 
nodeNumber() 

SensorSimulation  
HELP: string 
NODECOUNT: Option.List 
TOPOLOGY: Option.Str 
…. 

Process (in o : Option, in []args: string) 
createNodes(in [] args: string, in pf: PlatformFactory) 
…… 
newNode(in id: integer, in pf  : PlatformFactory, 

  in pp : LoadableProgram, in energy : real) 
nodeNumber() 

Node 
id : integer 
path : LoadableProgram 
platformFactory : PlatformFactory 
…. 

energy : real 

Node (in  id : integer, in pf PlatformFactory,  

  in p : LoadablePrgram, in energy real) 
Instanciate() 
…… 

getEnergy() 

SensorNode 
radio : Radio 
startup : real 
sensorInput : List 

SensorNode(in id : integer, in pf PlatformFactory,  

  in p : LoadablePrgram, in energy real) 
Instanciate() 
addSensorData() 
……. 

Simulation  
PLATFORM: Optin.Str 
EXTCLOCKSPEED: Option.Long 
Monitors: Option.List 
…. 

BATTERY: Option.List 

Process (in o : Option, in []args: string) 
getPrinter(in s: Simulator, in category: string) 
…… 
newNode(in id: integer, in pf  : PlatformFactory, 

  in pp : LoadableProgram, in energy : real) 

 
Figure 3. AZEM Class Diagram 

AvroraZ is language and operating system independent. 
Our choice is argued by the nature of our experiments. In fact, 
we are more interested in simulating dynamic network 
adaptation rather than performance. We have to interact with 
sensor network by sending adaptation commands with 
response to sensing readings. We have also to deal with 
different types of node with different types of operating 
system and thus AvroraZ is an appropriate tool. However, this 
simulator suffers from the inability to separately specify the 
value of energy of each node at design time. Further, it is 
unable to dynamically change the geographical position of a 
node at runtime. We have modified the actual version of 
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AvroraZ for this purpose and we propose a new version that 
makes possible to specify separately the energy level of each 
node and to modify nodes positions at runtime. We call our 
version AZEM (AvroraZ + Energy + Mobility). The AZEM 
class diagram is shown in Figure 3. So, we extracted the 
AvroraZ diagram class and added new features. We highlight 
our code extensions in gray.  

We added attributes and methods, and modified existing 
methods in order to enable energy and mobility management. 
For instance, we add the attribute energy in the Node class and 
initiate it on the constructor in order to save and follow the 
energy consumption. The detailed class diagram is available at 
http://www.redcad.org/members/benhalima/azem/. 

V. ILLUSTRATION 

The illustration is based on the smart home health care case 
study that is detailed in the following. 

A. The Smart Home Health Care 

 
Figure. 4 WSN in Smart Home Health Care 

The wireless sensor equipment is often used in healthcare 
applications while applying many types of portable sensors. 
These sensors are placed on the human body surface or just at 
its proximity. They are composed of small devices like heart 
rate, blood pressure, temperature, glucose sensors to measure 
the biophysical patient state, as illustrated in Figure 4.  

To be deployed comfortably on human body and for a long 
period without noising their usual life days, these devices 
must be small enough and battery powered. Thus, energy 
consumption must be managed properly and must be 
optimized so that the battery replacement occurs at periodic 
time with a maximum number of sensors battery replacements 
at the same time. 

In addition, healthcare equipment must collaborate with 
WSN deployed on the patient home in order to transmit 
captured data to the home gateway using multi-hop relay. The 
gateway sends collected data to an application deployed on a 
medical server using Internet in order to be studied and to 
carry out the patient global health supervision. On critical 
state of the patient medical and nursing personals can indicate 
some urgent treatment to be performed remotely on the patient 
like injecting “Insulin”. The gateway receives commands from 
the medical server application and notifies the actuator to 
perform necessary actions. 

B. The Case Study Experimentation 

To experiment our approach, we propose to maintain 
patient connectivity using an optimal transmission frequency 
range when moving from one gateway scope to another. We 
suppose that two elder patients are living together in the same 
home composed of two floors. As described in Figure 5, each 
patient disposes of smart sensors deployed on his body that 
send collected data to a gateway through a clustered WSN. 
We deploy the first gateway in the first floor and the second 
one in the second. If one of the patients moves from one floor 
to another, the WSN connectivity may be interrupted. Thus, 
two alternatives can occur. First, sensors are using a high 
transmission frequency, thereby connectivity can be 
maintained. Nevertheless, sensors will consume more energy. 
Second, some messages will be lost. We choose this second 
case and enable the WSN self-adaptation in order to avoid 
messages loss. Therefore, it will increase the system 
efficiency and rationalize the energy consumption. We enable 
an adaptation action that connects sensors to the available 
gateway range. This will minimize the message loss rate that 
results from sensors mobility. 

 
Figure 5. The Initial architecture (before moving) 

Figure 5 shows the initial configuration. The node N1 reads 
a sensed value, and then transmits it to the cluster head CH1 
that forwards it to the gateway G1. CH1 sends also its sensed 
value to G1. Finally, G1 transmits data to the Base Station. N2, 
CH2 and G2 perform same transmission actions regarding the 
patient P2. 

Table I. Exchanged messages flow without adaptation 

Node  Sent Messages  
Received 
Messages  

Energy 
consumption  

Received messages 
in base station 

N1  68  -  11,66 J  
N2 68 -  11,66 J  

CH1  
136 = 68 (Node1 
data)+68 (CH1)   

68 (N1)  11,68 J 
 

CH2 136  68 (N2)  11,68 J 
G1  51 (life ping)  117 (CH1) 15,005 J 117  
G2 51 (life ping) 136 (CH2) 15,005 J 136  

The first experiment consists of moving CH1 and N1 
(deployed on patient P1) far from G1 scope for 30 seconds 
and then returning them to their initial place. Even if CH1 and 
N1 reach G2 scope, no messages will be received by G2 
because it is linked statically to G1 and no adaptive feature is 
applied. As a result, a lot of messages will be lost. This 
experiment is ensured using those properties: Simulation 
time=170s, initial energy value in G1 and G2=10 000 joules 
(generally mains powered), initial energy value in CH1, CH2, 
N1 and N2=15 joules. 

Table I summarizes the experimentation results. We focus 
on sent messages, received messages, consumed energy and 
base station received messages. We note here that the two 
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gateways broadcast life messages in order to initiate system 
deployment. These messages describe gateway properties. We 
show that 19 messages was lost that constitutes 7% of sent 
medical messages. Therefore, we need to resend these 
messages until their reception and as consequence we will 
lose more energy. In this paper, this part (resending lost 
messages) is not included in this experiment. 

 
Figure 6. The adapted architecture (after moving) 

In the second experiment, we apply our self-adaptive 
approach in the same conditions as the first experiment. In this 
case, the CH1 and N1 movement is detected using our link 
quality monitor deployed on the cluster head. So, the analysis 
and the planning are performed and an adaptation action is 
executed. Indeed, the adaptation action consists in connecting 
CH1 to G2 as shown in Figure 6. 

Appling our self-adaptive approach allows us to recover 16 
messages in 170 seconds that means 338 messages in one hour, 
and 8131 in one day. As a result, we recover 84 % of the lost 
messages compared to the first experiment.  

Table II. Exchanged messages flow with adaptation 

Node  Sent Messages  
Received 
Messages  

Energy 
consumption  

Received messages 
in base station 

N1  68  -  11,66 J  
N2 68 -  11,66 J  

CH1  
136 = 68 (Node1 
data)+68 (CH1)   

68 (N1)  11,68 J 
 

CH2 136  68 (N2)  11,68 J 
G1  51 (life ping)  117 (CH1) 15,005 J 117  

G2 51 (life ping) 
152 
(CH2+CH1) 

15,005 J 152  

In Table II, G2 receives 152 messages instead of 136 in the 
first experiment. As a result, we minimize the number of lost 
messages during sensors mobility and we rationalize the 
energy consumption. 

VI. CONCLUSIONS 

In the first part of this paper, we presented a survey of the 
state of the art on WSN middleware while focusing on service 
oriented self-adaptive approaches. Indeed, we have 
distinguished three classes of adaptive middleware according 
to the level where adaptable services are deployed namely 
sensor, base station and hybrid sides. In the second part, we 
proposed our self-adaptive architecture based on the MAPE 
control loop. Then, we presented the AZEM simulator which 
is an enhanced version we developed based on AvroraZ that 
enables mobility and energy management. In the third part, we 
study the Smart Home Health Care system, in order to 
illustrate our approach. This case study enables us to show the 
feasibility and the efficiency of our approach for self-adapting 
WSNs. It managed the sensors mobility and rationalized the 
energy consumption. 

Our future work will focus on the assessment of our 
approach and our simulator on a large scale experiments, and 
the optimization of the monitoring cost while predicting a part 
of the sensed values. 
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