
HAL Id: hal-00812063
https://hal.science/hal-00812063

Submitted on 11 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A QoS-Driven Self-Adaptive Architecture For Wireless
Sensor Networks

Ahmed Jemal, Riadh Ben Halima

To cite this version:
Ahmed Jemal, Riadh Ben Halima. A QoS-Driven Self-Adaptive Architecture For Wireless Sensor
Networks. IEEE International Conference on Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE), Jun 2013, Hammamet, Tunisia. 6p. �hal-00812063�

https://hal.science/hal-00812063
https://hal.archives-ouvertes.fr

1

 A QoS-Driven Self-Adaptive Architecture For Wireless
Sensor Networks

Ahmed JEMAL1,2,3 Riadh BEN HALIMA1,2,3
1University of Sfax, ReDCAD Laboratory, B.P. 1173, Sfax-Tunisia

2CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
3Univ de Toulouse, LAAS, F-31400 Toulouse, France

jmlhmd@gmail.com, riadh.benhalima@enis.rnu.tn, khalil@laas.fr

Abstract— Recently, Wireless Sensor Networks (WSN) have
become increasingly used to perform distributed sensing and
convey useful information. These kinds of environments are
complex, heterogeneous and often affected by unpredictable
behavior and poor management. This fostered considerable
research on designs and techniques that enhance these systems
with an adaptation behavior. In this paper, we focus on the self-
adaptation branch of the research and give an overview of the
current existing approaches. We also analyze the collected
approaches and we summarize their common and individual
characteristics. Then, we describe our proposed approach to
adapt running WSN applications while adopting the autonomic
control loop [1]; MAPE: Monitoring, Analysis, Planning, and
Execution. Differently from other approaches, where adaptation
is generally performed by simply re-deploying another version of
application, we focus on the distinction between three different
levels of adaptation. We define a sensor level (level1) composed
of terminal leaf nodes, a cluster head level (level2) that is an
elected node with collection capability and a base station level
(level3) which is an enhanced capabilities node that can be a
computer or a mobile smart phone. This makes our system able
to provide quick adaptation to multiple context parameter
changes and to deal with multiple users requirements changes in
order to preserve energy consumption efficiency, and maintain
system lifetime durability. To illustrate our approach, we study
the Smart Home Health Care (SHHC) system over the AZEM
simulator which is an enhanced version we developed of
AvroraZ. This case study enables us to show the feasibility and
the efficiency of our approach for self-adapting WSNs.
Keywords—WSN, Self-adaptation, Monitoring, Reconfiguration,
Energy and Mobility, Simulator, AZEM

I. INTRODUCTION

A Wireless Sensors Network (WSN) is a set of wireless
interconnected sensor nodes that are able to monitor
environment and give measures and alerts on indicators in
order to process their analyze [2]. WSN applications are
highly scalable and the number of connected nodes can vary
from hundreds to thousands at runtime. They provide a fine-
grain monitoring and represent a key feature in Quality of
Service (QoS) management. The WSNs show their
importance in many domains such as medical field, industrial
and military. Also, it enables managing smart buildings and
assisting ambient living applications. However, the
environments where they are deployed are in perpetual change.

We notice that nodes are battery operated, and generally we
cannot recharge them periodically. Consequently, the energy
monitoring and management have to be mastered in order to
better operate these long-lived applications [3]. This imposes

several requirements, compared to traditional information
systems. So, we need to dynamically adapt the behavior of
executed applications at runtime, and a solution that halts
applications and proceeds to reprogram nodes from scratch
which is not suitable in much cases.

Context changes and user requirements are the two major
triggers for adaptation in order to enhance the functioning and
manage degradations. In order to enable such dynamic
adaptation, WSNs must have an autonomous behavior in order
to react to context/resources and user requirements changes.

In this paper, we present an autonomic enabled-architecture
according to the IBM control loop [1]. It provides primitives
and mechanisms to adapt WSNs applications in order to
increase the WSNs life duration, to manage the mobility, and
to cope with context and requirements changes. The
autonomic loop is based on four phases, namely: monitoring
to collect data, analysis to identify degradation, planning to
plan for adaptation actions and execution to enact them. We
elaborate a MAPE pattern (see figure 3) that is deployed in
different levels of the sensors network, including the cluster
leafs level that is composed of terminal sensor nodes, the
cluster head level, and the base station level.

The SHHC is used to illustrate our approach. It is a smart
building that includes many equipment and sensors. Our
purpose is to increase the system efficiency and rationalize the
energy consumption while minimizing the message loss rate
that results from sensors mobility. Both aspects (Energy &
Mobility) are monitored thanks to monitors that we propose in
our self-adaptive approach and simulated through our
simulator: AZEM. AZEM1 is an extended version of AvroraZ
that we developed in order to consider Energy and Mobility
monitoring and management. Compared to other simulators
which simulate a static or pre-programmed scenario, it enables
interactivity during the simulation. For instance, it allows
modifying the sensor position during the simulation process.

The paper is organized as follows: Section 2 gives
taxonomy of WSNs where we focus on adaptive middleware.
The adaptation levels of WSNs are addressed in this section.
In Section 3, we detail our self-adaptive approach and give
details about our MAPE architecture. In Section 4, we present
the AZEM class diagram and underline the brought extensions.
In Section 5, we present the case study, and the carried out
experiments that show the feasibility and the efficiency of our
approach. The last section concludes the paper.

1 http://www.redcad.org/members/benhalima/azem/

2

II. SURVEY ON SENSOR NETWORK MIDDLEWARE

In this section, we examine the state of the art in WSN
middlewares. We classify the related works into two main
classes regarding their ability or not to adapt their states to the
environment constraints and user requirements.

A. Non-adaptive middleware

A middleware is called non-adaptive if it does not support
the architecture reconfiguration at runtime. In this case, in
order to operate a reconfiguration, we need to (i) halt the
current running application, (ii) reprogram and (iii) redeploy
the entire application which is difficult to perform. In this
class, we distinguish three solutions namely database-based,
in which applications use sql-like requests to extract sensing
values from network, event-based, in which sensing values are
pushed to the application following pre-programmed
thresholds, and the hybrid which corresponds to the
integration of both solutions.

1. Database-based solutions
The middleware that adopts a database-based solution

considers the entire network as a virtual database. It offers an
easy interface that allows users to query the sensors network
in order to extract data.

Cougar [4], MaD-WiSe [5] and TinyDB [6] belong to this
subclass of middleware and are generally used for limited-data
collection applications. These middlewares assume that
sensors are largely homogeneous and have consistent and
homogenous data types which are not always the case.
However, these middlewares become unsuitable for networks
integrating rich sensors such as camera and microphone.

2. Event-based solutions
The event-based middleware is a direct application of

Message-Oriented classic Middleware (MOM) initially
dedicated for distributed systems, to the context of WSNs.
Mires [7] is an example of that middleware. It provides an
asynchronous event-based communication model suitable for
sensor networks applications. It is built on TinyOS [8] using
NesC programming language [9]. It adopts a component-
oriented programming approach while using a communication
infrastructure based on the publish/subscribe model. This
allows decoupling producers and consumers of events.
However, this middleware has some deficiencies. Indeed, we
notice that it does not consider the heterogeneity of sensors or
their data.

3. Hybrid solutions
Such middleware subclass includes both database and

event-based mechanisms. For instance, DSWARE (Data
Service middleWARE) [10] integrates this subclass. It uses a
database-based solution designed for sensor networks based
on event detection. It supports a group-based decision making
and a centralized storage. It ensures reliable data, mainly
when the failure rate of messages exchange is high.

We note that this subclass of middlewares does not take
into account neither the heterogeneity of sensors, nor the
resource constraints or the network topologies. Therefore, it is
not appropriate for complex applications. In addition, this kind
of middleware does not consider scalability, mobility of nodes,

security and availability. Also, we point out that this subclass
of middlewares does not handle adaptability. In other words,
this kind of middleware cannot continue to meet application
requirements when environment constraints change or user
requirements evolve. However, some work began to consider
the property of adaptability; they present only a simple tuning
and adjustment. SINA [11] is an example of a database-based
middleware for sensor networks that facilitates querying and
monitoring network nodes. It includes two low-level
mechanisms for sensors managing. The first level is the
hierarchical clustering of sensors for energy conservation and
scaling. The second level ensures their identification based on
attributes and makes easy the access to data. Nodes are
sensitive to two types of language used by the middleware: an
SQL-like query language as for TinyDB and Cougar, and a
procedural scripting language called LQTS that can be sent to
nodes and executed there through the SEE (Sensor Execution
Environment). That's what makes SINA a flexible middleware.

B. Self-adaptive middleware

The most used middleware is service oriented. This class
manages adaptation issues while using structural and
behavioral reconfiguration actions. A service is defined as a
modular, autonomous, and independent from execution
platform and having a well-defined interface. Indeed, the
service-oriented architecture (SOA) has been used to address
the heterogeneity of nodes, and ensure the composition. It
provides mechanisms to publish, find and bind services and
promotes their reuse.

We distinguish three levels where services can be deployed
namely: on the node, on the gateway and on the base station.

Firstly, the sensors are small equipment, with a small
processing capacity and various modes of wireless
communication, including WiFi, Bluetooth, ZigBee, Radio
and Infrared. These sensors offer some features such as
reading temperature, pressure, humidity, movement, etc...
Many technologies are available on the market: Telos, Mica2
and its successor Micaz of Crossbow, and SunSpot from SUN
micro-system are the most used.

Secondly, the gateways are collectors, and are characterized
by a higher cost, more resources and provide functionality to
mediate between sensors and the base station.

Thirdly, the base stations are the final collectors of
information from sensors and gateways to control them. They
are assimilated to traditional PCs, laptops, Palms, etc. Their
role is to manage the sensor network as a whole including
their administration and adaptation.

Therefore, we propose to classify the service-oriented
middleware into three categories according to the level where
services are deployed. The first one includes the middleware
in which management services are deployed on sensors. The
second includes the middleware where management services
are deployed on the base station. The third category is
characterized by cross-level deployed service-oriented
middleware architecture. We notice the absence of work in the
literature where services are deployed only on the gateway.

3

1. Sensor side adaptation
This first class implements and deploys adaptation

primitives on sensors. It enables horizontal interaction
between leaf nodes. This requires defining an appropriate
structure of adaptation services which enable interaction
within services deployed on other nodes. This class includes
middleware such as Tiny Web Services [12] and TinyWS [13].

Tiny Web Services [12] is a middleware built on the basis
of mini web services. These mini web services operate on a
small version of TCP/IP, called μIP. This middleware is based
on event notifications in order to save energy.

TinyWS [13] offers an embedded web services platform
residing on the sensor nodes, giving them the opportunity to
communicate directly without going through the gateway. It is
developed on the basis of TinyOS using TCP/IP. However,
this approach does not offer an abstract view of an application
before its implementation.

Meanwhile, the majority of the above middlewares uses an
XML based-communication that engenders an overhead and
consumes a large part of the device resources.

2. Base station side adaptation
The second class implements the services at the base station

level. In this class, the WSN is considered as a data source and
installed applications on the base station are web service-
based, in most cases. The work presented in [14] belongs to
this context and provides an OSGI based service-oriented
middleware deployed on the base station. Its proposed
middleware communicates with sensor network by using a
packet forwarder installed on the base station. It defines three
types of bundle, namely communication, wrapper and
application. This allows communicating different applications
while using different data types from heterogeneous nodes.
This middleware requires the continuous availability of data
sources and does not support their accidental interruption.
Moreover, the addition of a new hardware needs the
intervention of the system administrator on the middleware to
manage the wrapper for the added node.

3. Cross-level adaptation
The majority of the proposed middlewares deploys services

on the three levels while following a cross-layer architecture.
The work of Jeremie et al. [15] adopts a SOA for the WSN

applications. It proposes a layered service oriented approach:
the first is dedicated to limited capacity nodes called "WSN-
SOA", the second is devoted to gateway nodes and is based on
Devices Profile for Web Services (DPWS) [16] and the third
is used on the base station and adopts the SOA standard. So,
the applications deployed on such architecture offers its end-
results as web services. This solution ensures interoperability
between different levels through gateways that implement a
set of matching services offered as OSGI bundles. However,
no adaptation is proposed to deal with the service failure. Also,
WSN-SOA messages are not semantically expressive.

III. OUR SELF-ADAPTIVE ARCHITECTURE

In this section, we present our self-adaptive architecture
which implements the MAPE pattern as shown in Figure 2.

A. Self-adaptive control loop elements

In what follows, we identify and specify the role of each
element of our self-adaptive architecture.

1. The monitor:
We mean by monitor a component deployed on a sensor

node and capable of monitoring network QoS parameters that
we call metrics. Therefore, we need as many monitors as
metrics to be supervised.

Figure 1. The Monitoring Interface

These metrics focus on the communication quality within
the network and its life time. All these Monitors are exposed
on nodes as services and respect the Monitor_interface
presented in Figure 1. Thus, they implements
getSupervisedValue(), setSensingRate(int period) and
eventNotify(MonitoringMess *msg, ErrorMess error) methods
dedicated respectively to read monitored metric, to set the rate
of the sensing operation and to give the monitor the possibility
to notify when an event occurs.

2. The analyzer:
In our architecture, we propose two types of analyzers. The

first operates in the cluster head sensor and is called "in-
network analyzer". Indeed, it interprets data from the cluster
with the aim to infer the possibility of applying aggregate
functions like average, maximum and compression. The
second, called "out-network analyzer", is deployed on the base
station. This strategic place gives it a global view of the sensor
network allowing synthesizing and proposing actions to
overall network reconfiguration.

3. The planner:
The planner gets analysis reports, and provides a defined

sequence of actions to recover the system. It is driven by a set
of pre-defined rules. Indeed, in our architecture, we provide
two planners that meet the recommendations extracted from
both in and out network analysis reports. Actions on cluster
data optimization (number of messages exchanged) are taken
into account in the in-network planning phase. We can
mention an application of aggregation rules such as the sum
operation or the maximum number of received data. We can
also propose rules that reconfigure the overall structure of the
network while following instructions from out-networks
analysis. Migration plans can be planned during this phase.

4. The executor:
This is the component that ensures the enforcement of

planned adaptation actions to bring the system to its stable
state. According to the planned action, two types of executors
are deployed. The first turns on the cluster head achieving
actions like messages filtering, emission frequency adjustment,
and optimization of the transmission signal frequency. These
actions operate adjustments within the network. A second
executor operates on the base station and provides the actions
of global network reorganization, including components
deployment/ redeployment/ undeployment, activation /
deactivation.

 Interface Monitor_interface {
 command int getSupervisedValue();
 command void setSensingRate(int period);
 event void eventNotify (MonitoringMess *msg, ErrorMess error); }

4

B. Self-adaptive control loop pattern

The MAPE pattern shown in Figure 2, presents the
deployment architecture of the autonomic components. In the
bottom level (cluster leaf), a Monitor and an Executor are
deployed on each device. Collected data from this level are
sent to the cluster head’s Analyzer which plans for local
adaptation actions and asks Executors (belonging to cluster
head and leafs) for executing them. When local adaptation is
not sufficient, the base station Analyzer can perform a global
analysis (based on local analysis) and plan for a global
adaptation plan. Then, each local Planner receives his sub-
plan including elementary adaptation actions to be performed
by the device (Cluster leafs and head) Executor. This is the
case when all cluster nodes have not enough energy to play
the role of head. Therefore, we ask the global Analyzer and
Planner (belonging to the base station) to detect the nearest
node belonging to another cluster that has enough energy and
can play the role of head.

Figure 2. Self-adaptive control loop; Master/Slave Analysis and

Planning modules

The legend of figure 3 is described in the following:
Device endpoint: They are two kinds of interaction

between the device and the MAPE components. First, the
monitor (M) interacts with the device for monitoring purposes.
Second, the Executor (E) interacts with the device to enforce
planned adaptation actions.

Inter-component interactions: They describe the
interactions between MAPE components belonging to
different levels. For instance, M (from cluster leaf) sends
monitoring date to A (from Cluster head).

Inter-component notifications: They describe the
notifications exchanged between the same MAPE components
belonging to different levels. For instance, P (from Base
station that has the global plan) notifies P (from Cluster head)
about the local plan to perform in its cluster.

Intra-component interactions: They describe the
interactions between MAPE components of the same level.

IV. AZEM: A NEW NETWORK SIMULATOR

When developing or researching in WSN domains, it is
better to use a WSN simulator for many reasons. On the one
hand, it is so expensive to experiment WSN on real world
which consists of tens or hundreds of sensor nodes and
gateways. On the other hand, distributed nature of WSNs
makes debugging of applications a very difficult task. So,

using a WSN simulator can help researchers and developers of
WSN applications to fetch and correct majority of bugs and
code issues before performing deployment on real world.

However, choosing a simulator for WSN is a specific
application task that focuses on a deployment environment
and a set of modules ensuring the WSN functionalities. This
task relies also on the capabilities required by application,
namely the reusability, the availability, the performance, the
scalability, the language and operating system dependency
and techniques allowing base station application to
communicate with sensor applications. WSN simulators are
classified onto three categories regarding the different levels
of the system. First, we distinguish simulators allowing
network protocol experimentation. The most widely used one
is ns-2 [17]. Second, we mention simulators that rely on the
WSN operating system level. The most widely used one is
Tossim [18]. Third, we recognize simulators that model
accurately the hardware of sensor platforms. This class of
simulators is called “instruction set level”. The leader of that
class is Avrora [19] that has been extended by AvroraZ [20]
which enables accurate simulation of IEEE 802.15.4 based
protocols. We have chosen the latest one to simulate the NesC
codes deployed in the cluster head and leaf nodes. This is an
open source and scalable sensor network simulator. It scales to
networks of up to 10,000 nodes and can handle as many as 25
nodes in real-time.

WiredNode
Startup: real

WiredNode (in id : integer, in pf PlatformFactory,

 in p : LoadablePrgram, in energy real)
Instanciate()
createNode()
Remove()

WiredSimulation
HELP: string
NODECUNT: Option.List
RANDOM_STRAT : Option.Interval
….

Process (in o : Option, in []args: string)
createNodes(in [] args: string, in pf: PlatformFactory)
……
newNode(in id: integer, in pf : PlatformFactory,

 in pp : LoadableProgram, in energy : real)
nodeNumber()

SensorSimulation
HELP: string
NODECOUNT: Option.List
TOPOLOGY: Option.Str
….

Process (in o : Option, in []args: string)
createNodes(in [] args: string, in pf: PlatformFactory)
……
newNode(in id: integer, in pf : PlatformFactory,

 in pp : LoadableProgram, in energy : real)
nodeNumber()

Node
id : integer
path : LoadableProgram
platformFactory : PlatformFactory
….

energy : real

Node (in id : integer, in pf PlatformFactory,

 in p : LoadablePrgram, in energy real)
Instanciate()
……

getEnergy()

SensorNode
radio : Radio
startup : real
sensorInput : List

SensorNode(in id : integer, in pf PlatformFactory,

 in p : LoadablePrgram, in energy real)
Instanciate()
addSensorData()
…….

Simulation
PLATFORM: Optin.Str
EXTCLOCKSPEED: Option.Long
Monitors: Option.List
….

BATTERY: Option.List

Process (in o : Option, in []args: string)
getPrinter(in s: Simulator, in category: string)
……
newNode(in id: integer, in pf : PlatformFactory,

 in pp : LoadableProgram, in energy : real)

Figure 3. AZEM Class Diagram

AvroraZ is language and operating system independent.
Our choice is argued by the nature of our experiments. In fact,
we are more interested in simulating dynamic network
adaptation rather than performance. We have to interact with
sensor network by sending adaptation commands with
response to sensing readings. We have also to deal with
different types of node with different types of operating
system and thus AvroraZ is an appropriate tool. However, this
simulator suffers from the inability to separately specify the
value of energy of each node at design time. Further, it is
unable to dynamically change the geographical position of a
node at runtime. We have modified the actual version of

5

AvroraZ for this purpose and we propose a new version that
makes possible to specify separately the energy level of each
node and to modify nodes positions at runtime. We call our
version AZEM (AvroraZ + Energy + Mobility). The AZEM
class diagram is shown in Figure 3. So, we extracted the
AvroraZ diagram class and added new features. We highlight
our code extensions in gray.

We added attributes and methods, and modified existing
methods in order to enable energy and mobility management.
For instance, we add the attribute energy in the Node class and
initiate it on the constructor in order to save and follow the
energy consumption. The detailed class diagram is available at
http://www.redcad.org/members/benhalima/azem/.

V. ILLUSTRATION

The illustration is based on the smart home health care case
study that is detailed in the following.

A. The Smart Home Health Care

Figure. 4 WSN in Smart Home Health Care

The wireless sensor equipment is often used in healthcare
applications while applying many types of portable sensors.
These sensors are placed on the human body surface or just at
its proximity. They are composed of small devices like heart
rate, blood pressure, temperature, glucose sensors to measure
the biophysical patient state, as illustrated in Figure 4.

To be deployed comfortably on human body and for a long
period without noising their usual life days, these devices
must be small enough and battery powered. Thus, energy
consumption must be managed properly and must be
optimized so that the battery replacement occurs at periodic
time with a maximum number of sensors battery replacements
at the same time.

In addition, healthcare equipment must collaborate with
WSN deployed on the patient home in order to transmit
captured data to the home gateway using multi-hop relay. The
gateway sends collected data to an application deployed on a
medical server using Internet in order to be studied and to
carry out the patient global health supervision. On critical
state of the patient medical and nursing personals can indicate
some urgent treatment to be performed remotely on the patient
like injecting “Insulin”. The gateway receives commands from
the medical server application and notifies the actuator to
perform necessary actions.

B. The Case Study Experimentation

To experiment our approach, we propose to maintain
patient connectivity using an optimal transmission frequency
range when moving from one gateway scope to another. We
suppose that two elder patients are living together in the same
home composed of two floors. As described in Figure 5, each
patient disposes of smart sensors deployed on his body that
send collected data to a gateway through a clustered WSN.
We deploy the first gateway in the first floor and the second
one in the second. If one of the patients moves from one floor
to another, the WSN connectivity may be interrupted. Thus,
two alternatives can occur. First, sensors are using a high
transmission frequency, thereby connectivity can be
maintained. Nevertheless, sensors will consume more energy.
Second, some messages will be lost. We choose this second
case and enable the WSN self-adaptation in order to avoid
messages loss. Therefore, it will increase the system
efficiency and rationalize the energy consumption. We enable
an adaptation action that connects sensors to the available
gateway range. This will minimize the message loss rate that
results from sensors mobility.

Figure 5. The Initial architecture (before moving)

Figure 5 shows the initial configuration. The node N1 reads
a sensed value, and then transmits it to the cluster head CH1
that forwards it to the gateway G1. CH1 sends also its sensed
value to G1. Finally, G1 transmits data to the Base Station. N2,
CH2 and G2 perform same transmission actions regarding the
patient P2.

Table I. Exchanged messages flow without adaptation

Node Sent Messages
Received
Messages

Energy
consumption

Received messages
in base station

N1 68 - 11,66 J
N2 68 - 11,66 J

CH1
136 = 68 (Node1
data)+68 (CH1)

68 (N1) 11,68 J

CH2 136 68 (N2) 11,68 J
G1 51 (life ping) 117 (CH1) 15,005 J 117
G2 51 (life ping) 136 (CH2) 15,005 J 136

The first experiment consists of moving CH1 and N1
(deployed on patient P1) far from G1 scope for 30 seconds
and then returning them to their initial place. Even if CH1 and
N1 reach G2 scope, no messages will be received by G2
because it is linked statically to G1 and no adaptive feature is
applied. As a result, a lot of messages will be lost. This
experiment is ensured using those properties: Simulation
time=170s, initial energy value in G1 and G2=10 000 joules
(generally mains powered), initial energy value in CH1, CH2,
N1 and N2=15 joules.

Table I summarizes the experimentation results. We focus
on sent messages, received messages, consumed energy and
base station received messages. We note here that the two

6

gateways broadcast life messages in order to initiate system
deployment. These messages describe gateway properties. We
show that 19 messages was lost that constitutes 7% of sent
medical messages. Therefore, we need to resend these
messages until their reception and as consequence we will
lose more energy. In this paper, this part (resending lost
messages) is not included in this experiment.

Figure 6. The adapted architecture (after moving)

In the second experiment, we apply our self-adaptive
approach in the same conditions as the first experiment. In this
case, the CH1 and N1 movement is detected using our link
quality monitor deployed on the cluster head. So, the analysis
and the planning are performed and an adaptation action is
executed. Indeed, the adaptation action consists in connecting
CH1 to G2 as shown in Figure 6.

Appling our self-adaptive approach allows us to recover 16
messages in 170 seconds that means 338 messages in one hour,
and 8131 in one day. As a result, we recover 84 % of the lost
messages compared to the first experiment.

Table II. Exchanged messages flow with adaptation

Node Sent Messages
Received
Messages

Energy
consumption

Received messages
in base station

N1 68 - 11,66 J
N2 68 - 11,66 J

CH1
136 = 68 (Node1
data)+68 (CH1)

68 (N1) 11,68 J

CH2 136 68 (N2) 11,68 J
G1 51 (life ping) 117 (CH1) 15,005 J 117

G2 51 (life ping)
152
(CH2+CH1)

15,005 J 152

In Table II, G2 receives 152 messages instead of 136 in the
first experiment. As a result, we minimize the number of lost
messages during sensors mobility and we rationalize the
energy consumption.

VI. CONCLUSIONS

In the first part of this paper, we presented a survey of the
state of the art on WSN middleware while focusing on service
oriented self-adaptive approaches. Indeed, we have
distinguished three classes of adaptive middleware according
to the level where adaptable services are deployed namely
sensor, base station and hybrid sides. In the second part, we
proposed our self-adaptive architecture based on the MAPE
control loop. Then, we presented the AZEM simulator which
is an enhanced version we developed based on AvroraZ that
enables mobility and energy management. In the third part, we
study the Smart Home Health Care system, in order to
illustrate our approach. This case study enables us to show the
feasibility and the efficiency of our approach for self-adapting
WSNs. It managed the sensors mobility and rationalized the
energy consumption.

Our future work will focus on the assessment of our
approach and our simulator on a large scale experiments, and
the optimization of the monitoring cost while predicting a part
of the sensed values.

REFERENCES
[1] Jeffrey, O. K.; Chess, D. M. (2003). "The vision of autonomic
computing." Computer, 36(1):41- 50.
[2] Akyildiz, I. F.; Kasimoglu, I. H. (2004). "Wireless sensor and actor
networks: research challenges." Ad Hoc Networks, 2(4):351- 367.
[3] Avvenuti, M.; Corsini, P.; Masci, P.; Vecchio. A. (2007). "An application
adaptation layer for wireless sensor networks." Pervasive Mob. Comput.
3(4):413-438.
[4] Bonnet, P.; Gehrke, J.; Seshadri, P. (2001). "Towards Sensor Database
Systems." In Proceedings of the Second International Conference on Mobile
Data Management (MDM '01), Springer-Verlag, London, UK, pages 3-14.
[5] MaD-WiSe project. http://mad-wise.isti.cnr.it/
[6] Madden, S. R.; Franklin,M. J.; Hellerstein, J. M.; Hong, W. (2005).
"TinyDB: an acquisitional query processing system for sensor
networks." ACM Trans. Database Syst. 30(1):122-173.
[7] Souto, E.; Guimarães, G.; Vasconcelos, G.; Vieira, M.; Rosa, N. S.; Ferraz,
C.; Ferraz, C. A. G. (2004). "A message-oriented middleware for sensor
networks." In Proceedings of the 2nd workshop on Middleware for pervasive
and ad-hoc computing. ACM, New York, NY, USA, pages 127-134.
[8] Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Whitehouse, K.; Woo,
A.; Gay, D.; Hill, J.; Welsh, M.; Brewer, E.; Culler, D. (2005). "TinyOS: An
Operating System for Sensor Networks". Ambient Intelligence,pages 115-148.
[9] Gay, D.; Levis, P.; von Behren, R.; Welsh, M.; Brewer, E.; Culler, D.
(2003). "The nesC language: A holistic approach to networked embedded
systems." Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, ACM, New York, USA, pages 1-11.
[10] Li, S.; Lin, Y.; Son, S. H.; Stankovic, J. A. and Wei, Y. (2004). "Event
detection services using data service middleware in distributed sensor
networks". Telecommunication Systems, 26(2-4):351–368.
[11] Chien-Chung, S; Srisathapornphat, C.; Jaikaeo, C. (2001). "Sensor
information networking architecture and applications," Personal
Communications, IEEE, 8(4):52-59.
[12] Nissanka, B.; Priyantha, A. K.; Goraczko, M.; Zhao, F.(2008). "Tiny web
services: design and implementation of interoperable and evolvable sensor
networks." In Proceedings of the 6th ACM conference on Embedded network
sensor systems. ACM, New York, NY, USA, pages 253-266.
[13] Othman, N.Y.; Glitho, R.H.; Khendek, F. (2007) "The Design and
Implementation of a Web Service Framework for Individual Nodes in
Sinkless Wireless Sensor Networks," 12th IEEE Symposium on Computers
and Communications, pages 941-947.
[14] Prinsloo, J.M.; Schulz, C.L.; Kourie, D.G.; Theunissen, W.H.M.; Strauss,
T.; Van Den Heever, R.; Grobbelaar, S. (2006). "A service oriented
architecture for wireless sensor and actor network applications."
In Proceedings of the 2006 annual research conference of the South African
institute of computer scientists and information technologists on IT research
in developing countries (SAICSIT '06), pages 145-154.
[15] Leguay, J.; Lopez-Ramos, M.; Jean-Marie, K.; Conan, V. (2008). "An
efficient service oriented architecture for heterogeneous and dynamic wireless
sensor networks," 33rd IEEE Conference on Local Computer Networks, pages
740-747.
[16] Devices Profile for Web Services (DPWS) specification. (2006).
http://schemas.xmlsoap.org/ws/2006/02/devprof/
[17] McCanne, S.; Floyd, S. (2011). "Network simulator ns-2."
http://nsnam.isi.edu/nsnam/index.php/
[18] Levis, P.; Lee, N.; Welsh, M.; Culler, D. (2003). "TOSSIM: accurate
and scalable simulation of entire TinyOS applications." In Proceedings of the
1st international conference on Embedded networked sensor systems. ACM,
New York, NY, USA, pages 126-137.
[19] Titzer, B.L.; Lee, D.K.; Palsberg, J. (2005). "Avrora: scalable sensor
network simulation with precise timing," Fourth International Symposium on
Information Processing in Sensor Networks, pages 477- 482.
[20] De Paz Alberola, R. ; Pesch, D. (2008). "AvroraZ: extending Avrora with
an IEEE 802.15.4 compliant radio chip model." Proceedings of the 3nd ACM
workshop on Performance monitoring and measurement of heterogeneous
wireless and wired networks. ACM, New York, NY, USA, pages 43-50.

