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NON-LINEAR FREE PERIODIC OSCILLATIONS
OF A TETHERED SATELLITE SYSTEM

A. LUuoNGO AND F. VESTRONI

Dipartimenio di Ingegneria delle Strutture, Acque e Terreno, Universitd dell’ Aquila,
Monteluco di Roio, 67040 L’ Aquiia, ftaly

This paper- deals with the non-linear dynamics of a tethered satellite system, with
particular reference to periodic transverse oscillations. The motion is governed by two
integro-differential equations with quadratic non-linear terms associated to gyroscopic
forces. Notwithstanding the weakness of the non-linearities, the closeness of the in-plane
and out-of-plane frequencies suggest that it would be interesting to study the periodic finite
oscillations and analyze their stability. Since the system operates virtually in conditions of
internal resonance, a certain number of modes are involved in the phenomenon. An
asymptotic analysis of the partial differential equations of the continuous system makes it
possible to take into account the fact that both the frequencies and the oscillation shapes
are amplitude-dependent. Primary und secondary instability phenomena are investigated
by using the Floquet theory and approximate analytica! expressions of the unstable regions
are obtained.

1. INTRODUCTION

Since the proposal to run a series of experiments in space with a satellite tethered to an
orbiting station first appeared [1-3], much ground has been covered and substantial
research has been developed. Considerable efforts have been dedicated to the study of the
dynamic behaviour of the tethered satellite system (TSS) both during deployment and
retrieval of the satellite and during the station-keeping phase [4~6]. On this last aspect,
most papers have been limited in scope mainly to linear dynamics, while outlining some
important specific points [7-11]. The dynamical behaviour of the system is such that the
longitudinal and transversal osciliations are coupled by gyroscopic forces, but the coupling
is so weak that two distinct sets of eigenfunctions exist, one described by the prevailing
longitudinal displacement component and the other by the transverse component (8, 9].

By focusing on the transverse oscillations, which are more easily excited by various
sources of disturbance, it has been shown that the frequencies of the vibration modes both
in and out of the plane of orbit are very close and that the slight differences are attributable
to the different influences of centrifugal and gravitational forces on the geometric stiffness
of the string (the tether) in the two planes. More sophisticated analysis of the transverse
oscillations, carried out after removing the assumption of small amplitude, has shown that
the non-linearities associated mainly with the gyroscopic forces are fairly weak [12, 13).

Nonetheless, the closeness of the in-plane and out-of-plane frequencies and the coupling
between the motions in the two planes that occurs when large amplitude oscillations are
considered suggest the usefulness of studying the stability of the oscillations and the other
non-linear phenomena which typically arise in mechanical systems characterized by
internal resonance conditions [14, 15]. In the string system the natural frequencies are all
multiples of the lowest frequency, as is substantially the case in the TSS system. However,



the modes involved in the motion are practically only those excited since the equations of
motion of string do not possess the proper non-linear coupling terms [16, 17). On the
contrary, in the TSS dynamics numerous internal resonances can occur, similar to those
which can be found in cables and long cylindrical shells [18-20].

In this paper, the equations of motion obtained through Hamilton’s principle are
developed in a Taylor series up to the third order, so as to obtain a set of equations that
can be suitably solved by approximate analytical procedures. A closed form solution has
been pursued for the non-linear in-plane and out-of-plane oscillations.

An asymptotic analysis of the partial differential equations of the continuous system
makes it possible to consider the modification of the frequency along with the oscillation
shape with amplitude, rarely taken into account in similar studies. This is very important
for the TSS in which a number of modes are involved in the phenomenon due to conditions
of internal resonance. Primary and secondary instability phenomena are analyzed by using
Floquet theory. The description of the regions of instability reveals a number of conditions
of unstable behaviour for technical values of the TSS characteristics.

2. THE EQUATIONS OF MOTION

The shuttle rotates at constant angular velocity » in the X~Y plane along the circular
orbit of radius g from the centroid of the Earth (see Figure 1); in equilibrium conditions
the radius and angular velocity are related by

nl=yu,ja}, 4y

where y, is the gravitational constant.

Deployment of the tethered satellite produces a variation in the orbit of the shuttle.
However, since its mass is much greater than those of the satellite and of the string, this
variation is neglected and in the following the distance a of the shuttle from the Earth is
assumed to be constant.

Two reference systems are introduced to describe the motion. The first, OXYZ, is a fixed
frame with its origin in the centroid of the Earth; the second, Sxyz, is connected to the
shuttle and rotates at the angular velocity n.

The components u(s, ¢), v(s, #) and w(s, 1) measure the displacements in the x, y and
z directions respectively of the point P(s) from the static straight configuration x,(s).

The equations of motion were obtained in reference [12] by using Hamilton’s principle:
no assumption for the amplitude of the displacement was introduced and the elongation
e(s, t) was used as a strain measure:

e=(x?+y?+z7% -1, ¢))

j=1

»nv
P (x,y,z}

X o Satellite

Figure 1. The tethered satellite system.



Here the prime denotes differentiation with respect to the abscissa s. The equations are
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with the boundary conditions
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In these equations EA is the axial stiffness of the string, /is the length, u is the mass density,
m is the mass of the satellite and the dot denotes a derivative with respect to . The physical
meanings of the different terms are easily recognizable: inertial, gyroscopic, a combination
of centrifugal and gravitational and elastic forces.

In order to obtain an asymptotic solution the governing equations are expanded in a
Taylor series up to the third order. The analysis of the smallness of the gravitational terms
makes it possible to neglect their non-linear contributions, which are very small in
comparison with other elastic terms. Indeed, the ratio between gravitational and elastic
non-linear terms is of O un*l*/(n*EAa)], which is a very small number for the actual values
of the system characteristics. The same does not hold good for the linear terms; among
these the gravitational force is thus included in the equations.

After introducing the dimensionless parameters

{mii —2mnu — rmn'v +

al=un¥}/EA, y=plim, &¢=lla, &)

and the dimensionless variables

E=x/l, §=s/l, f=m, dGi=ull, bF=ovfl, wWw=w, (6)



the governing equations at the third order, with the tilde dropped, are

2o a2 20%u , (vP4+w? P —uv?-—uw?y
@il —20% — el — ————s —u" — —— — > =0,
(1 +8x,) 2xg 2x4

al LT _(uv 2w —o” —vw?Y
al — 2% — ot + ——s || 1 —— —-( . =0,
‘ T+ &%) xi)] \%3 2x7

a’w INT [ww' 2uw —v?w —w?}
25 — ’, —— — _ =0
W ¥ ey [‘” (' xa)] [x& 2% ] O

with the relevant boundary conditions.

In the same way as the exact equations (3), equations (7) express that the large amplitude
oscillations are coupled and all the displacement components are involved in the motion.
Due to gyroscopic forces, the first two equations are also coupled in the linear terms.
However, the non-linear terms are such that the motion occurs in the orbit plane if zero
initial conditions on the w displacement are given. The dual situation is not true, since the
out-of-plane motion will always force the extensional oscillations, which in turn forces the
transverse oscillation.

According to the results of the static analysis [12], the elongation e can be omitted in
Xp=1+e. If one uses

J(sy=(1/a®)(1 = 1/x5) ®)

and only terms of order O(&x,) are retained in the expansion of 1/(1 + £x;)’ since ¢ <€ 1,
the equations of motion obtained are

2 ” ’
o — 2a% ~ 3a2u(l — 2¢x;) —[u’ vi+w? (u'z L%’L)u] -0,

+
T2
ai + 202 —a¥f(s)v’] — 3o¥x,w — [( v +w )v’—-u”v’:l =0,

a®W + aw(l ~ 3¢xg) ~ @’ f(s)w T [(“ L + “ )W’ - u’zw’]’ =0, ©)

with the boundary conditions

u(0,1) =v{0, 1) =w(0,1)=0,

12,,72 2 ”?
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This study is devoted mainly to motion with prevailing transverse components. In this
context, it is possible to neglect some of the terms in the longitudinal equation. The inestia
forces are negligible because the forcing terms due to the coupling with transverse
oscillations depend on the transverse frequency o, which is much smaller than the lowest
longitudinal frequency w,; thus a%i ~ a’w?u <u. Moreover, the third term can also be



omitted, since 3a*(1 —2¢x,) € 1. These assumptions make it possible to obtain an
integro-differential relation among u, v and w,

(11)

3 . v'2+w'2 v'2+w'2
wis,ty=u;—{ 20%ds — ! L,
, 2 3

and, similarly, on the boundary
uy=0,  yuj=2a%, —~y@Ey+w)2. (12)

The analysis performed is the same followed in the case of cables and beams with
immovable ends, but the conclusion is quite different. In those systems the increment of
axial force is constant along the axis and great in magnitude due to the stretching. Here,
according to equation (11), the increment is variable and equal to the resuftant of the
Coriolis forces in (s, /), which are small in magnitude.

By integrating equation (11) and taking account of equations (12) one obtains:

2 s s 34,72 2
u(s,t).-:z.-(—ﬁls-—'[ J 2a215dsds-j pAw ds, (13)
4 o 0 2

which, if substituted into equations (10), makes it possible to describe the motion by only
two equations in the transverse variables v(s, 7) and w(s, 1): i.c.,

1

5= T - 3x — [ 074w as -[% o' — 0" f 2 as]’ -0,

w=[f(s)w] + (1 —3&x)w —~ I:g Hw' — w’f

i

2 ds]' =0, (14)

with the boundary conditions
v(0,1)=w(0,1)=0,

]
¥+ 9 (Vo] — 3Ex, (M, — J @?*+w? ds + 20,0, =0,
0

Wi+ 3 (Dwi + wi(l — 3¢x,(1)) + 20,w( = 0. (15)

Equations (14) and (15) govern the moderate amplitude transverse oscillations of the
orbiting string-satellite system. The equations were derived with coherent simplifying
assumptions which led to the presence of only quadratic non-linear terms descending from
gyroscopic forces. These are small, which limits the importance of non-linear effects, but
establishes a coupling between the equations of motion. As previously stated, the coupling
is such that in-plane oscillations in the orbit plane described by only displacement
component v(s, ¢) can exist, while the out-of-plane oscillations involve both components
with w(s, t) prevailing.

It is useful for further analytical developments to adopt formal and more compact
expressions of equations of motion and boundary conditions. These can be written as

{M(5) + L,(v) + B(v,0) + C(w, W)} - dv =0, {M(W)+ L,(w)+ D(w,v)}-éw =0,
(16)
where M and L are linear differential operators of s, and B, C and D are bi-linear
integro-differential operators. By using for the operator H() the inner product defined by

H()-u=.[ HDudD+I Houdr, an
D r



where H, is the formal part of the operator in the domain D and H; is its representation
on the boundary I', explicit expressions for the operators which appear in equation (16)
are obtained from a comparison with equations (I4) and (15):
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0
From equations (19) it follows that

B(x,y) y=0, Cx,y)z=~-D(x,2)"y, (20)
which will be used in the following.

2.1. SMALL AMPLITUDE OSCILLATIONS

The linearized equations of motion, obtained from equations (14) with the non-linear
terms omitted, are uncoupled: the first describes the small amplitude oscillations in the
plane of orbit and the second those out of plane. These are differential equations with
variable coefficients, but f(s) is very weakly dependent on s and can be represented by a
suitable constant value f; [9]. Under these assumptions the analytical solution is, in-plane,

v(s, )= A, sinpssinw,t, tgp=y/p, wl=pi, 21
and, out-of plane,
w(s, t)= A, singssino,t, tgg=y/g, =g+l 22)

The only difference is in the frequencies and is due to the slightly different contributions
of the gravitational and centrifugal forces to the stiffnesses in the two planes. These
differences strongly decrease with the mode number; indeed, for increasing values of p and
¢, equations (21;) and (22,) give o, >~ w,.

In the section on numerical investigations, reference will be made to two tethered satellite
systems that differ only in the lengths of the strings. The following geometric and
mechanical parameters, which cover a technical field of interest, were considered:
n?=135x10"%s"2, a = (u,/n?)'P =6657km, m =500kg, / =5-100km, m/4 = 1-44 x
100kg/m’, A =4 x107°*m? E =7 x 10" N/m~

The frequencies of the first five transverse modes are shown in Table 1. The first
frequencies of the two systems are very similar and quite distant from the others, since the
first mode is a pendulum-type mode while the others involve string deformation. In



TABLE |
Linear frequencies of transverse modes

First mode Second mode Third mode Fourth mode Fifth mode

| =Skm @, 1736 23-022 45-845 68712 91-590
o, 2004 23-044 45856 68-719 91-595

p=gq 0238 3160 6292 9431 12571

I=100km o, 1725 6571 12265 18122 24-030
o, 1995 6652 12:306 18149 24.051

p=q 0909 3-464 6461 9.545 12658

particular, the set of frequencies, apart from the first one, practically follows the law
P =4 = (k — Dr, which is the same spectrum as that of the taut string.

3. MONOFREQUENT OSCILLATIONS

This section is concerned with the solution of equations (16) for only the cases of
monofrequent oscillations where all the points of the system exhibit periodic motion [22].
In linear dynamics, when a system takes an eigenfunction as its initial shape, the motion
of each point is synchronous with the same frequency and, in general, the spatial shape
does not change during motion. In non-linear dynamics, monofrequent oscillations have
similar properties: i.e., cach point of the system moves with the same frequency or its
multiple, but the frequency of oscillation varies with the amplitude, as in a non-linear single
degree of freedom system; moreover, the shape of the monofrequent oscillation also varies
with the amplitude.

The present study is limited to those monofrequent oscillations for which, as the
amplitude tends toward zero, the shape tends toward an eigenfunction. The deformed
configuration is mostly described by an eigenfunction and its modification with the
amplitude is represented by the contribution of other modes involved by non-linear
coupling.

The analytical solution can be pursued by either asymptotic or harmonic balance
methods. The evolution of the phenomenon can be more easily understood if a pertur-
bation approach is followed. The linear mode close to the monofrequent oscillation under
consideration is assumed to be the generating solution and the analysis of non-linear terms
makes it possible to predict the modes forced in the solution at higher order. For the
tethered satellite system when an in-plane mode with frequency o, is assumed as the
generating solution, the motion is governed only by equation (16,). At higher order the
non-linear term B(v, ¥), in which v is the generating solution, forces other modes, of which
the only important one is that with frequency w, close to 2w,. Similarly, when an
out-of-plane mode with frequency w, is assumed as the generating solution of equation
(16,), the term C(w, w) in equation (16,) forces the occurrence of in-plane modes, of which
the only one to be retained has a frequency w; close to 2w .

For these systems the condition of internal resonance (w; = 2wy ) is frequently found, as
can be argued from Table 1. Since the perturbation technigque could fail because the higher
order components tend to infinity, when the periodic solutions only are sought it is
preferable to use the harmonic balance method which is valid near or far from the internal
resonance. However, according to the previous considerations, the periodic solution is
studied by taking only two components, the kth mode and the jth mode with w, close
to 2w,.



3.1. OSCILLATIONS IN THE PLANE OF THE ORBIT

This section is concerned with the monofrequent in-plane oscillations of non-linear
frequency £2;. A periodic solution with only two components vibrating with frequency Q,
and 24, is sufficient to describe the phenomenon accurately:

v(s, 1) = Ay @i (s) cOs 2t + A;@;(s) sin 282, 1. (23)

Here ¢, and g, are the linear modes with frequency w,, close to £ for small amplitude,
and w;, which differs from 2w, by a small quantity o:

W;+ 0 = 2w,. (24)

In equation (23), 4, and A4, are the amplitudes of the two modes, suitably normalized.
The relation (23) and its derivative is substituted in equation (16, ) along with dv(s, ¢) again
expressed by means of equation (23). By performing the integrals according to equations
(18) and (19) and separating terms in cos 2,104, and sin 20,104,, the following two
equations are obtained:

m*Ak((Di - ‘22) + kakijkAj = 0, m,AJ(CD} — 492) - %Q&bﬂkAg =0. (25)

Here my, m; and b,, are given in Appendix A.
The first equation gives the frequency-amplitude relationship,

Q= {1 + (buyloem)4,]" + O(4}), (26)

and the second, together with equation (26), makes it possible to obtain a relationship
between A; and 4,

(bujimy) A} + 6 A; + (b, [8m)AE =0, 27

which governs the modification of the shape with oscillation amplitude.

3.2. OSCILLATIONS OUT OF THE PLANE OF THE ORBIT

On account of the nature of the coupling terms, the monofrequent oscillation near the
kth linear out-of-plane mode is characterized by a component that is also in the orbit
plane. Thus, the periodic solutions are described by both transverse displacements, the
prevailing displacement w(s, #) oscillating in the linear kth eigenfunction ¥, (s) and with
frequency 2, near w, and the forced displacements v(s, z) oscillating in the linear jth
eigenfunction ¢,(s) and with frequency 28, close to w;:

v(s, 1) = Ay, sin 20, ¢, w(s, 1) = A, cos 82, 1. (28)

If equations (28) are introduced into equations (16) and the same procedure outlined in
the study of in-plane monofrequent oscillations is followed, a similar system of two
equations is obtained,

mJA)(CD"z‘4Q£)—%QkCJuA£=O, m,,Ak(wi-—QZ)+dekijkA,=0, (29)

the solution of which gives the frequency-amplitude relationship and the relationship
between the amplitudes of the two modes involved in the motion:

g‘- = w,‘[l + (duj/wkmk)Aj]Uz + O(Af), (dw/mk)Af + O'Al + (c,-,,k/SMI)A,f =0.
(30, 31)

The coefficients c,, and d,,, are given in Appendix A.



3.3. COMMENTS

The peculiar features of monofrequent oscillations emerge from equations (27) or (31)
which establish a relation between the two amplitudes. This means that the deformed shape
of the system changes with amplitude and, moreover, according to equations (23) or (28),
does not remain constant during oscillation, as it does in the case of linearized motion.
Nevertheless, it repeats itself every period.

In both cases studied, the in-plane and out-of-plane oscillations, the frequency correc-
tion is due to the emergence of a new component A;, which produces a modification of
the fundamental mode shape. If this modification is not taken into account, the frequency
Q, is the same as the linear frequency.

When the condition of internal resonance occurs, a = o(1), 4, = O(4,) is obtained from
equation (27) or equation (31) apart from a range of A4, close to the origin. This means
that the reference kth mode no longer prevails beyond this range, but the motion in a
condition of internal resonance is described by both the resonant modes. When it is out
of resonance, g = O(l1), 4,=0(A4}) in a range of not too large amplitude, and the
oscillation is mainly described by the kth mode with a small contribution by the jth mode.

The features outlined above are illustrated in Figure 2, in which two cases with different
o are considered. In each case two curves (heavy line) of monofrequent oscillations are
found, one (a) emanating from the origin, the other (b) from a value A4; 0. Curve (a) is
an oscillation in which the amplitude of the fundamental mode A, always prevails on the
forced mode 4; and when the amplitude A, of the governing mode tends to zero 4; also
tends to zero: this is the linear solution. Curve (b) starts from a bifurcation point 4§ on
the path A4, =0, 4;#0 which is the solution of systems (25) or (29) with only one
component and represents monofrequent in-plane oscillations described by the jth mode.
They are stable for 0 < 4, < 4;, while they are unstable for 4, > 4. This curve (b) thus
represents the bifurcated solution path for which the kth mode does not always prevail
and the solution does not tend to the linear one¢ as A, tends to zero. The curves (a) and
(b) degenerate into the dotted lines emanating from the origin, when perfect resonance
occurs (¢ = 0). It is useful to note that the monofrequent oscillations characterized by two
components, curves (a) and (b), are always stable for small variations of A, and/or 4, [21].

In Figure 2 curves (c) are the non-resonant solution obtained by the Lindstedt-Poincaré
perturbation method which leads to a relation between 4; and 4, coincident with equations
(27) or (31) where the terms in A} are neglected. It well describes the phenomenon for a
large range of 4, when ¢ = O(1), while in conditions of internal resonance, ¢ = o(l), this
solution soon diverges from the harmonic balance solution. Thus, when the solution can
be suitably determined by the perturbation method, this may be preferable to the harmonic

0 A; A

Figure 2. The relation between the amplitudes of the two components of monofrequent oscillations.
(a) ¢ = 0(1), (b) o =o(l)



balance method, since the significant modes involved in the solution should not be selected
a priori but are straightforwardly determined during the solution procedure.

4. STABILITY ANALYSIS
A disturbance 5(s, t), {(s, ¢) is superimposed on the steady oscillation v,(s, t), w,(s, ),

(s, )=v,(s, ) +n(s 1),  ws,)=ws1)+{(s1) (32)
where each component of the disturbance is described by one suitably selected mode,
n(s, 1) =@ s (),  L(s, 1) =y,(s)(0). (33)

Equations (32) are introduced into equations (16); linearizing with respect to n(¢) and {(¢)
leads to

[M(7) + L,(m)+ B(v,, )+ B(n,5,) + C(w,, {) + C({, w,)] - o =0,
M)+ Lo + D(w,, 1)) + D, 5,)] - 8 = 0. (34)
If equations (33) are used and the Galerkin technique applied, one has

(- ([ki 0] [f“ an{ﬂ} [ 0 g"]{ﬁ} {0}
B + + = , 35
[0 ml]{f} 0 % 0 fo 4 —gn O { 0 (33)
where the quantities m,, k,, f,,, and g,, are as defined in Appendix B.

4.1. STABILITY OF THE OSCILLATIONS IN THE ORBIT PLANE

The stability of the oscillations in the orbit plane for both out-of-plane and in-plane
perturbations is considered in this section. The analysis is governed in turn by only one
of the two equations (35); indeed, when the in-plane motion is considered (equation (23)),
equations (35) are uncoupled, since f;, and g,, vanish. The stability for an out-of-plane
disturbance {(s, ) is then governed by equation (35,):

m{(8) + (e, + f2){ (1) = 0. (36)

Upon using equation (23) to calculate f;, and introducing a new time variable
T = (2, /2)t + (n/4), equation (36) becomes

() + (82 + €, co8 21 + ¢, c0s 1) (1) =0, &)
where
0 = 2w,/%,, €, =4(A, /mQ,)dy,, €= — 8(Aj/mIQk)dIIj- (38)

The differential equation (37) has periodic coefficients of frequency 2; according to
Floquet theory, the boundaries of the first instability region are associated with the
periodic solutions of frequency 1. The function { () is expanded in series of sin 7 and cos 7,

{(z)=a,cost + b sint +a,cos 3t +bysin3r +- -, 39)

and is substituted into equation (37). The vanishing of the terms in sin 1, sin 37, cos 7 and
cos 3t leads separately to two uncoupled eigenvalue problems which give the boundaries
of the unstable regions as functions of &, ¢, and ¢,:

62=1x6/2)(6? =9 — (6 +¢)/2F =0. (40)
Recalling equations (38) and retaining terms up to A} leads to
62 =1%(/2) — (e £ &2)/32P + - (41)



A primary instability region emanates from £, = 2w,. This circumstance can be easily
verified between two modes higher than the first one (see Table 1). As might be expected,
the instability region is very narrow, on account of the weak non-linearities of the system,
but the phenomenon is, however, worthy of note, since the ratio between an in-plane and
an out-of-plane frequency is very close to 2.

To determine the region of secondary instability, the function {(t) is expanded in series
in sin 2t and cos 2t plus a constant term:

{(t) =ay+ a,cos 21 + b, sin 2t + a,cos 4t + b, sindt +- -, (42)

Substituting equation (42) into equation (37), and zeroing the terms with the same
harmonics leads to the equations describing the boundaries of the unstable region,

=4— (YD +3e}, 62=4+4(/2) — e (43)

which states that the second unstable region emanates from Q, = o,
The stability for an in-plane disturbance n(s, ¢) is governed by equation (35,),

mifi(t) + (k;+fim(@) =0, (44)
and as in the previous case equation (44) is transformed into
() + (6% + €, c08 2t +¢;¢0s dT)n(t) =0, 45)
where
6 =2w,/9, €=HA/mQ)by, = —8(4;/mQ)b,;. (46)

The instability region emanates from 2, = 2w;, a circumstance which can effectively occur
since for each in-plane mode there is always a higher mode with almost double frequency.
The boundaries of the region are again described by equations (41) with the symbols
therein as given by equations (46).

For the in-plane disturbance, there is no point in considering the case of secondary
instability. The disturbance would coincide with the steady mode itself, a condition—free
oscillations of a conservative single-degree-of-freedom system—in which the motion is
naturally stable.

4.2. STABILITY OF THE OSCILLATIONS OUT OF THE ORBIT PLANE

The steady oscillation has two components of different order, described by equations
(28) and (31). In this case the system (35) is effectively coupled and a spatial disturbance
n(s, 1), {(s, 1) must be considered. By referring to a new time variable T = Q,t +#/2, a
non-dimensionalized form of equations (35) is obtained,

(1) + (62 + ¢, cos 2t[n (1) + 6;6[{ (¢) sin ]’ =0,

E(1) + [v262 + ¢, c0s 2t ){ (1) — €, 00 (t) sin T =0, ey
where
0 = w;/Q, v =w /w, (48)
€ = (2/m2)A;by, &= —2/mS2)A;dy;, €y = (A, Jm,w,)cyy, €= (m;/my)e,.
(49)

System (47) has periodic coefficients of frequency 1. The boundaries of the primary
instability regions are obtained by the periodic solution n(¢), {(¢) with frequency 1/2. The
analysis furnishes two coincident curves with which no instability region is associated. This
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Figure 3. A sketch of the instability regions.

result is consistent with the kind of non-linearities of the problem described by equations
(16). Indeed, under conditions of primary instability ©, ~2w,, no resonant term is
produced by the non-linearities in equation (16,). The phenomenon is thus different from
the similar situation, already studied, of an in-plane stationary oscillation where conditions
of primary instability coincide with conditions of internal resonance. In the last case the
term D(w, 5) with frequency w, + @, is resonant when w, ~ 2w, .

Our interest is therefore drawn to the study of the secondary instability region, on the
boundaries of which the solution is periodic with frequency 1. The functions 5(¢) and {(¢)
are expanded in series in sin 7 and cos 7, plus a constant term:

{Z((:; } = 1/2{:’} + {:‘} cost + {3:} sin 1 + {2} cos 2t + {2} sin2r.  (50)

Substituting equations (50) into equations (47) and separating terms with the same time
dependence leads to a homogeneous system which, after the elimination of the a, and ¢,
coefficients, can be reduced to four uncoupled two-by-two eigenvalue problems. Zeroing
of the determinant of the system gives the curves § — ¢, which determine two unstable
regions of secondary resonance between the two modes considered and resonance regions
of higher order. In Figure 3 is shown a typical sketch in which the boundaries emanate
from ©,=w] and Q, =w} and half, this means when the frequency of the steady
oscillation is equal to, or half, the frequencies of the two modes selected to describe the
disturbance.

The region that emanates from £, = w} is not of interest in the present problem. Indeed,
if 1 # k, then the frequency—-amplitude curve of the steady motion that emanates from w;}
is far from the unstable region; otherwise, if / =k, it is possible to show that the
frequency-amplitude curve lies on the boundary, since no unstable phenomenon can arise
from a disturbance described by the same steady mode.

The region emanating from £, = w} must then be considered. It should be pointed out
that the shape of the boundaries depends strongly on the modes selected as disturbances.
The approximate analytical solution of curves III and IV can be expressed as

€ €

1 H ] 2
., #=1-3-5(5) o e+ Zmm) o

and the term in ¢, that plays a fundamental role is determined by ¢;; (equations (49,)).
Among the modes referred to in the evaluation of ¢, the kth and ith modes are stated,
since the former is the base mode and the latter the resonant mode, while the /th mode
can be selected. The problem arises because in this analytical procedure the perturbation
is described by only two components, while the phenomenon of secondary instability
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occurs precisely because more components than the two resonant modes are involved in
the motion. Thus the accuracy of the solution would depend strongly on the choice of the
modes involved.

From a numerical point of view, the coefficient ¢,, could be evaluated for different
choices of /th mode and the maximum value selected. However, since the secondary
instability region concerns the internal resonance w) ~ !, the analysis of the non-linear
terms in equations (16) could facilitate this selection. Indeed the resonant terms come from
the modes oscillating with frequency 26, forced by the prevailing non-linear term C(w, w).
All the modes are forced but the most important one is just the /th mode with its frequency
o, ~ 2w;. In this way the /th mode must be selected in equations (33) to be used in
equations (47). The validity of this will be shown in the numerical applications in the next
section.

5. NUMERICAL INVESTIGATION

The phenomenon of non-linear coupling on which the stability of motion depends
mainly affects modes higher than the first, since this latter mode is a nearly rigid body
mode. The study will also include consideration of the first modes, but will start from the
second.

5.1, IN-PLANE OSCILLATIONS

The first monofrequent oscillation considered in the orbit plane is close to the second
mode. According to the results obtained in section 3.1, the motion is described by a
prevailing component of the second mode, with amplitude dependent frequency 2, ~ w$
and shape ¢,(s), and another component of the third mode, with frequency 22, ~ w§ and
shape ¢;(s), the contributions of which are measured by the amplitudes 4, and A4,
respectively. For the two cases in which the length of the string is 5 and 100 km, the
relationship between A4, and A, for the stationary solution, described by equation (27), is
shown in Figure 4(a).

With attention limited to the solutions for which A, tends to zero when A, tends to zero
(curve a in Figure 2) it follows from Figure 4(a) that 4, is smaller than 4, but its presence
is responsible for the frequency modification, which is important in the stability analysis,
as will be shown.

Since there is no out-of-plane mode close to the region of primary instability, w, ~ @, /2,
the instability of the second mode oscillation can only be produced by a phenomenon of

(a)‘l (b)‘\ T I ) (C) T I H I
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Figure 4. Monofrequent in-plane oscillations close 1o the second mode: the amplitudes of the two modes
involved and the secondary instability regions for two string lengths under out-of-plane disturbance.
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Figure 5. Monofrequent in-plane oscillations close to the the third mode: the amplitudes of the two modes
involved and the primary instability regions for two string lengths under in-plane (dashed) and out-of-plane
disturbance. (b) @, 205/w] = 1-004; Q, 2w /w}=1005. (c) @, 2wi/w}=1-072; O, 2w} /w}=1-085.

secondary resonance, w; >~ , associated with the interaction between the second in-plane
and out-of-plane modes. Although the problem is slightly non-linear, the frequency of the
two modes involved are so close that the oscillation can become unstable. For the 5§km
string the frequency—amplitude curve (heavy line in Figure 4(b)) crosses the instability
region, while for the 100 km string the curve enters the region for high values of amplitudes
(Figure 4(c)). It is worth noting that the modification of the frequency that follows the
occurrence of a new component is significant.

The in-plane oscilllation with a frequency close to the third mode is described by a
prevailing component 4,¢;(s), with frequency ©; =~ w} and another component A;¢s(s)
with frequency 2Q; ~ w}. The relationship between A; and A, is illustrated in Figure 5(a).

For this oscillation the primary instability involves the second modes, the in-plane or
out-of-plane mode depending on the type of perturbation; in fact for both modes
w5 >~ w3/2. In Figure 5(b) and (c) the instability regions for an in-plane and out-of-plane
disturbance are drawn for both string lengths. The region of out-of-plane disturbance is
always narrower than the other, As in the previous case the behaviour of the longer tether
is less non-linear and the frequency of the monofrequent oscillation is further from the
cusps of the instability regions; thus the oscillation becomes unstable for an in-plane
disturbance at values of amplitudes higher than those of the shorter tether, while it is
always stable in the amplitude range considered for an out-of-plane disturbance.

Secondary instability that might involve the third out-of-plane mode is not studied.

5.2. OUT-OF-PLANE OSCILLATIONS

The oscillation with a prevailing out-of-plane component and a frequency close to that
of the second mode is described by the two components, 4,,(s) with a frequency 2, ~ w3
and A.¢,;(s) with a frequency 202, ~ w}. Although the contribution of 4, is fairly small
(see Figure 6(a)), the monofrequent oscillation is non-planar.

As discussed in the previous section, for the out-of-plane modes no resonant phenomena
arise in conditions of primary instability, It is therefore interesting to consider the
secondary instability region of the second out-of-plane mode. The phenomenon is
illustrated in Figures 6(b) and (c). In both cases the frequency—amplitude curve crosses the
instability region. This happens for a range of greater amplitude as the length of the tether
increases due mainly to the fact that the out-of- and in-plane frequencies are more distant
when the tethers are longer.
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Figure 6. Monofrequent out-of-plane oscillations close to the second mode: the amplitudes of the two modes
involved and the secondary instability regions for two string lengths under in-plane disturbance.

These regions have been obtained by considering a disturbance described by the resonant
in-plane mode (i = 2, w; ~ w,) and the third out-of-plane mode with a double frequency
(! =3, w, > 2w, ), which is the correct choice according to the considerations developed in
section 4.2, If the apparently more straightforward choice has been followed and the two
resonant modes, | =2 and ! = 2, had been assumed as a disturbance the dotted boundaries
of instability would be found, which does not accurately describe the actual phenomenon.
Indeed, in the truncated description of the problem the phenomenon of internal resonance
(w4 >~ wYy) responsible for unstable behaviour requires one to take into account the third
out-of-plane mode (w3 >~ 2w}), which is the most important among those involved in the
motion. Its omission strongly modifies the instability region.

6. CONCLUSIONS

After condensing the longitudinal displacement, the non-linear transverse oscillations of
a tethered satellite system can be adequately described by two equations. These reveal weak
quadratic non-linear terms, due mainly to gyroscopic forces. By using the harmonic
balance method, the monofrequent oscillations have been determined.

The modification of frequency with the amplitude, which would be negligible in a weakly
non-linear system, is here appreciable because, it is always associated with a modification
in the shape of the oscillation, due to an internal resonance phenomenon which
characterizes this orbiting system. The oscillation shape is in fact described by the
fundamental mode with the linear frequency close to the harmonic considered and by a
contribution of other modes, of which the double frequency mode is the most important
to retain. Since this contribution increases with the amplitude, the shape also changes with
the amplitude. Moreover, although the motion is periodic, the shape changes during each
period on account of the presence of higher harmonics, but is the same at the end of the
period. These shapes, the role of which is similar to that of linearized modes, could merit
the name of non-linear modes, used elsewhere to denote the harmonic motion of
multi-degree-of-freedom systems [15, 23] and recently re-analyzed in a more general
context [24, 25].

Primary and secondary stability of monofrequent oscillations in and out of the plane
of orbit were studied through an asymptotic solution of two variational equations obtained
by assuming one mode to describe each disturbance in the two planes. While in the study
of primary instability it is clear which two modes are involved in the resonance



phenomenon, in the case of secondary instability more than two modes are invoived and
an accurate selection of modes needs to be made to describe the disturbance.

The stability analysis performed for different geometrical characteristics of the TSS

reveals unstable behaviour in both monofrequent oscillations for certain values of the
amplitude, although the non-linearities of the system are very weak. Again, this occurs
because the condition for numerous internal resonances is almost satisfied.
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APPENDIX A
The following positions are introduced:
M= Mg, m=y; M(Y),
bijk =o B(‘Pj: @), Cipe =@ ° ij, ¥ dljk =y, D(%, @)
The operators B, C, D and M have been defined in equations (18) and (19).

APPENDIX B
The quantities introduced in equation (35) are defined as follows:

m=¢; M(@), m=y¢ -MY) k=0 Lle) k=v L)
gn=¢," B(v,, ¢), gu=¢," C(w, ¥,), gn =Y, D(w,, 9),
Ju =" B(g,, V), Sz=0, C{Y, W), Ja=V," Dy, 8,).
Due to the properties (20), g,, =0 and g, = —g,;. Due to the symmetry of C, f}, =g,,.



