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A NOTE ON COLUMN SUBSET SELECTION

PIERRE YOUSSEF

ABSTRACT. Given a matrix U , using a deterministic method, we extract a "large" submatrix of
Ũ (whose columns are obtained by normalizing those of U ) and estimate its smallest and largest
singular value. We apply this result to the study of contact points of the unit ball with its maximal
volume ellipsoid. We consider also the paving problem and give a deterministic algorithm to
partition a matrix into almost isometric blocks recovering previous results of Bourgain-Tzafriri
and Tropp. Finally, we partially answer a question raised by Naor about finding an algorithm in
the spirit of Batson-Spielman-Srivastava’s work to extract a "large" square submatrix of "small"
norm.

1. INTRODUCTION

Let U a n×m matrix, the stable rank of U is given by srank(U) = ‖U‖2
HS

‖U‖2 , where ‖U‖2
HS =

Tr(UU t) denotes the Hilbert-Schmidt norm of U and ‖U‖2 the operator norm of U seen as an
operator from lm2 to ln2 . Denoting Ũ the matrix whose columns are obtained by normalizing
those of U , our aim is to extract almost srank(U) number of linearly independent columns of
Ũ and estimate the smallest and the largest singular value of the restricted matrix.

This problem is closely related to the restricted invertibility where only an estimate on the
smallest singular value is needed. The restricted invertibility was first studied by Bourgain-
Tzafriri [2] who proved the following:

Theorem A. Given an n × n matrix T whose columns are of norm one, there exists σ ⊂
{1, . . . , n} with |σ| > d n

‖T‖2
2

such that ‖Tσx‖2 > c‖x‖2 for all x ∈ Rσ, where d, c > 0 are
absolute constants and Tσ denotes the restriction of T onto the columns in σ.

In [17], Vershynin extended this result for any decomposition of the identity, whereas the
previous result was valid for the canonical decomposition. Moreover the size of the restric-
tion depended on the Hilbert-Schmidt norm of the operator. Precisely, Vershynin proved the
following:

Theorem B. Let Id = ∑
j6m xjx

t
j and let T be a linear operator on `n2 . For any ε ∈ (0, 1) one

can find σ ⊂ {1, . . . ,m} with

|σ| > (1− ε)‖T‖
2
HS

‖T‖2
2

such that

c(ε)
∑
j∈σ

a2
j

 1
2

6

∥∥∥∥∥∥
∑
j∈σ

aj
Txj
‖Txj‖2

∥∥∥∥∥∥
2

6 C(ε)
∑
j∈σ

a2
j

 1
2

for all scalars (aj).

Vershynin applied this result to the study of contact points. The normalization on the vectors
Txj is crucial for the applications and the dependence on ε plays an important role. Spielman-
Srivastava [13] generalized the restricted invertibility principle (Theorem A) for any decom-
position of the identity without the normalizing factors appearing in Vershynin’s result and
improved the dependence on ε. In [18], we unified the two previous results obtaining a good
dependence on ε for any normalizing factors. However this result deals only with the lower
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bound and doesn’t give any information on the norm of the restricted matrix. Our aim here, is
to improve Vershynin’s result obtaining simultaneously a restricted invertibility principle and
an estimate on the norm of the restricted matrix. Our proof uses ideas of the method of Batson-
Spielman-Srivastava ([1], [14], see also [18] for related topics).

The main result of this paper is the following:

Theorem 1.1. Let U be an n ×m matrix and denote by Ũ the matrix whose columns are the
columns of U normalized. For all ε < 1, there exists σ ⊂ {1, ...,m} of size

|σ| > (1− ε)2‖U‖2
HS

‖U‖2

such that
ε

2− ε 6 smin
(
Ũσ
)
6 smax

(
Ũσ
)
6

2− ε
ε

In other terms, for all (aj)j∈σ

ε

2− ε

∑
j∈σ

a2
j

 1
2

6

∥∥∥∥∥∥
∑
j∈σ

aj
Uej
‖Uej‖2

∥∥∥∥∥∥
2

6
2− ε
ε

∑
j∈σ

a2
j

 1
2

.

Note that the lower bound problem is the restricted invertibility problem treated in [13] and
[18] while the upper bound problem is related to the sparsification method and the Kashin-
Tzafriri column selection theorem [8] treated respectively in [1] and [18]. Our idea is to merge
the two algorithms together to get the two conclusions simultaneously. The heart of these
methods is the study of the evolution of the eigenvalues of a matrix when perturbated by a rank
one matrix.

In the regime where ε is close to one, the previous result yields the following:

Corollary 1.2. Let U be an n ×m matrix and denote by Ũ the matrix whose columns are the
columns of U normalized. For all ε < 1, there exists σ ⊂ {1, ...,m} of size

|σ| > ε2

9 .
‖U‖2

HS
‖U‖2

such that
1− ε 6 smin

(
Ũσ
)
6 smax

(
Ũσ
)
6 1 + ε

In other terms, for all (aj)j∈σ

(1− ε)
∑
j∈σ

a2
j

 1
2

6

∥∥∥∥∥∥
∑
j∈σ

aj
Uej
‖Uej‖2

∥∥∥∥∥∥
2

6 (1 + ε)
∑
j∈σ

a2
j

 1
2

Where (ej)j6m denotes the canonical basis of Rm.

This result is also related to the problem of column paving that is partitioning the columns
into sets such that each of the corresponding restrictions has "good" bounds on the singular
values, in particular such that the singular values are close to one. We will show how our Theo-
rem allows us to recover a result of Tropp [16] (and of Bourgain-Tzafriri [2]) dealing with this
problem, using our deterministic method instead of the probabilistic methods used previously.

In a survey [11] on Batson-Spielman-Srivastava’s sparsification theorem, Naor asked about
giving a proof of another theorem of Bourgain-Tzafriri [2], which is stronger than the restricted
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invertibility, using tools from Batson-Spielman-Srivastava’s method. The theorem in question
is the following:

Theorem C (Bourgain-Tzafriri). There is a universal constant c > 0 such that for every ε < 1
and n ∈ N if an operator T : Rn −→ Rn satisfies 〈Tei, ei〉 = 0 for all i ∈ {1, . . . , n} then
there exists a subset σ ⊆ {1, . . . , n} satisfying |σ| > cε2n and ‖RσTR

∗
σ‖ 6 ε‖T‖.

Using our result, we will be able to give a deterministic algorithm to solve this problem for
symmetric matrices.

The paper is organized as follows: in section 2, we prove our main result, in section 3 we
give applications to the local theory of Banach spaces and compare it with Vershynin’s result.
In section 4, we prove column paving results and finally in section 5 we answer Naor’s question.

2. PROOF OF THEOREM 1.1

Note k = |σ| = (1− ε)2 ‖U‖2
HS

‖U‖2 and

Ak =
∑
j∈σ

sj
(
Ũej

)
·
(
Ũej

)t
,

where sj are positive numbers which will be determined later. Since our aim is to find σ such
that the smallest singular value of Ũσ is bounded away from zero and its largest one is up-
per bounded, it is equivalent to try to construct the matrix Ak such that Ak has k eigenvalues
bounded away from zero and bounded from above and to estimate the weights sj . Our construc-
tion will be done step by step starting from A0 = 0. So at the beginning, all the eigenvalues of
A0 are zero. At the first step we will try to find a vector v among the columns of Ũ and a weight
s such that A1 = A0 + svvt has one nonzero eigenvalue which have a lower and upper bound.
Of course the first step is trivial, since for whatever column we choose the matrix A1 will have
one eigenvalue equal to s. At the second step, we will try to find a vector v among the columns
of Ũ and a weight s such that A2 = A1 + svvt has two nonzero eigenvalues for which we can
update the lower and upper bound found in the first step. We will continue this procedure until
we construct the matrix Ak.

For a symmetric matrix A such that b < λmin(A) 6 λmax(A) < u, we define:

φ(A, b) = Tr
(
U t (A− b.Id)−1 U

)
and ψ(A, u) = Tr

(
U t (u.Id− A)−1 U

)
For l 6 k, we denote by bl the lower bound of the l nonzero eigenvalues of Al and by ul the
upper bound i.e Al ≺ ul.Id and has l eigenvalues > bl. We also note

φ = φ(A0, b0) = −‖U‖
2
HS

b0
and ψ = ψ(A0, u0) = ‖U‖

2
HS

u0
,

where b0 and u0 will be determined later.

As we said before, we want to control the evolution of the eigenvalues so we will make sure
to choose a "good" vector so that our bounds bl and ul do not move too far. Precisely, we will
fix this amount of change and denote it by δ for the lower bound and ∆ for the upper bound i.e
at the next step the lower bound will be bl+1 = bl− δ and the upper one ul+1 = ul + ∆. We will
choose these two quantities as follows:

δ = (1− ε)b0

k
= b0‖U‖2

(1− ε)‖U‖2
HS

and ∆ = (1− ε)u0

k
= u0‖U‖2

(1− ε)‖U‖2
HS
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Our choice of δ is motivated by the fact that after k steps we want the updated lower bound to
remain positive but not too small due to some obstructions in the proof. In this case the final
lower bound will be

bk = bk−1 − δ = ... = b0 − kδ = εb0

The choice of ∆ is motivated by the fact that we don’t want the upper bound to move too far
from the initial one and as for δ we have some obstruction on taking its value too small. The
final upper bound will be

uk = uk−1 + ∆ = ... = u0 + k∆ = (2− ε)u0

Definition 2.1. We will say that a positive semidefinite matrix A satisfies the l-requirement if
the following properties are verified:

• A ≺ ul.Id.
• A has l eigenvalues > bl.
• φ(A, bl) 6 φ.
• ψ(A, ul) 6 ψ.

In order to construct Al+1 which has l + 1 nonzero eigenvalues larger than bl+1 and such
that φ(Al+1, bl+1) 6 φ(Al, bl), we may look at the algorithm used for the restricted invertibility
problem ([13], [18]) and more precisely, at the condition needed on the vector v to be chosen:

Lemma 2.2. If Al has l nonzero eigenvalues greater than bl and if for some vector v and some
positive scalar s we have

(1) Gl(v) := − vt (Al − bl+1.Id)−2 v

φ(Al, bl)− φ(Al, bl+1) · ‖U‖
2 − vt (Al − bl+1.Id)−1 v >

1
s
.

Then Al+1 = Al + svvt has l+ 1 nonzero eigenvalues all greater than bl+1 and φ(Al+1, bl+1) 6
φ(Al, bl).

Now, in order to construct Al+1 which has all its eigenvalues smaller than ul+1 and such that
ψ(Al+1, ul+1) 6 ψ(Al, ul) we may look at the algorithm used for the sparsification theorem [1]
or the Kashin-Tzafriri column selection theorem (see Theorem 4.2 [18]):

Lemma 2.3. If Al ≺ ul.Id and if for some vector v and some positive scalar s we have

(2) Fl(v) := vt (ul+1.Id− Al)−2 v

ψ(Al, ul)− ψ(Al, ul+1) · ‖U‖
2 + vt (ul+1.Id− Al)−1 v 6

1
s
.

Then denoting Al+1 = Al + svvt, we have Al+1 ≺ ul+1.Id and ψ(Al+1, ul+1) 6 ψ(Al, ul).

The proof of these two lemmas makes use of the Sherman-Morrison formula.

For our problem, we will need to find a vector v satisfying (1) and (2) simultaneously. For
that we need to merge these two conditions in one equation:

Lemma 2.4. If Al ≺ ul.Id has l eigenvalues greater than bl and if for some vector v we have

(3) Fl(v) 6 Gl(v)
Then taking any s such that Fl(v) 6 1

s
6 Gl(v), then Al+1 = Al + svvt satisfies the (l + 1)-

requirement.

Remark 2.5. SinceAl+1 has l+1 nonzero eigenvalues whileAl had only l nonzero eigenvalues,
then the vector v chosen is linearly independent with the eigenvectors of Al. Therefore one can
see that Ker(Al+1) ⊂ Ker(Al) and Dim [Ker(Al+1)] = Dim [Ker(Al)]− 1.
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Proposition 2.6. Let Al satisfying the l-requirement. If b0 and u0 satisfy

(4) b0 6
εu0

2− ε

then there exists i 6 m and a positive number si such that Al+1 = Al + si
(
Ũei

)
·
(
Ũei

)t
satisfies the (l + 1)-requirement.

Proof. According to Lemma 2.4, it is sufficient to find i 6 m such that Fl
(
Ũei

)
6 Gl

(
Ũei

)
and then take sj such that

(5) Fl
(
Ũei

)
6

1
sj
6 Gl

(
Ũei

)
Since Fl andGl are quadratic forms, it is equivalent to find i 6 m such that Fl (Uei) 6 Gl (Uei).
For that, it is sufficient to prove

(6)
∑
j6m

Fl (Uej) 6
∑
j6m

Gl (Uej)

Before estimating
∑
j6m Fl (Uej), let us note that

ψ(Al, ul)− ψ(Al, ul+1) = Tr
[
U t (ul.Id− Al)−1 U

]
− Tr

[
U t (ul+1.Id− Al)−1 U

]
= ∆Tr

[
U t (ul.Id− Al)−1 (ul+1.Id− Al)−1 U

]
> ∆Tr

[
U t (ul+1.Id− Al)−2 U

]
Replacing this in Fl we get

∑
j6m

Fl (Uej) =
∑
j6m e

t
jU

t (ul+1.Id− Al)−2 Uej

ψ(Al, ul)− ψ(Al, ul+1) · ‖U‖2 +
∑
j6m

etjU
t (ul+1.Id− Al)−1 Uej

=
Tr
[
U t (ul+1.Id− Al)−2 U

]
ψ(Al, ul)− ψ(Al, ul+1) · ‖U‖2 + Tr

[
U t (ul+1.Id− Al)−1 U

]
6
‖U‖2

∆ + ψ

Now we may estimate
∑
j6mGl (Uej). We denote by Pl the orthogonal projection onto the

image of Al and Ql the orthogonal projection onto the kernel of Al. Note that ∀l 6 k we have
the following

(7) bl 6 δ
‖QlU‖2

HS
‖U‖2

Since Q0 = Id, this fact is true at the beginning by our choice of δ. Taking in account Re-
mark 2.5, at each step ‖QlU‖2

HS decreases by at most ‖U‖2 so that the right hand side of (7)
decreases by at most δ. Since at each step we replace bl by bl+1, (7) remains true.
Since Id = Pl +Ql and Pl, Ql, Al commute we can write

Tr
[
U t (Al − bl+1.Id)−2 U

]
= Tr

[
U tPl (Al − bl+1.Id)−2 PlU

]
+ Tr

[
U tQl (Al − bl+1.Id)−2QlU

]
= Tr

[
U tPl (Al − bl+1.Id)−2 PlU

]
+ ‖QlU‖2

HS
b2
l+1
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Doing the same decomposition for φl(Al) we get

φ(Al, bl) = Tr
[
U tPl (Al − bl.Id)−1 PlU

]
+ Tr

[
U tQl (Al − bl.Id)−1QlU

]
= Tr

[
U tPl (Al − bl.Id)−1 PlU

]
− ‖QlU‖2

HS
bl

:= φP (Al, bl) + φQ(Al, bl)

Denote Λl = φ(Al, bl) − φ(Al, bl+1) and ΛP
l , ΛQ

l the corresponding decompositions onto the
image part and the kernel part as above. As we did before, we have Λl = ΛP

l + ΛQ
l and

ΛP
l = Tr

[
U tPl (Al − bl.Id)−1 PlU

]
− Tr

[
U tPl (Al − bl+1.Id)−1 PlU

]
= δTr

[
U tPl (Al − bl.Id)−1 (Al − bl+1.Id)−1 PlU

]
> δTr

[
U tPl (Al − bl+1.Id)−2 PlU

]

Using (7) we have

ΛQ
l = −‖QlU‖2

HS
bl

+ ‖QlU‖2
HS

bl+1
= δ‖QlU‖2

HS
blbl+1

>
‖U‖2

bl+1

Looking at the previous information, we can write

∑
j6m

Gl (Uej) = −
Tr
[
U t (Al − bl+1.Id)−2 U

]
Λl

· ‖U‖2 − Tr
[
U t (Al − bl+1.Id)−1 U

]

= −
Tr
[
U tPl (Al − bl+1.Id)−2 PlU

]
+ ‖QlU‖2

HS
b2

l+1

Λl

· ‖U‖2 − φl+1(Al)

> −
ΛP

l

δ
+ δ‖QlU‖2

HS
blbl+1

[
bl

δbl+1

]
Λl

· ‖U‖2 + Λl − φl(Al)

> −
ΛP

l

δ
+ ΛQ

l

[
1
δ

+ 1
bl+1

]
Λl

· ‖U‖2 + ΛQ
l − φ

> −‖U‖
2

δ
− ‖U‖

2

bl+1
+ ΛQ

l − φ

> −‖U‖
2

δ
− φ

Until now we have proven that∑
j6m

Gl (Uej) > −
‖U‖2

δ
− φ and

∑
j6m

Fl (Uej) 6
‖U‖2

∆ + ψ

So in order to prove (6), it will be sufficient to verify

(8)
‖U‖2

∆ + ψ 6 −‖U‖
2

δ
− φ

Replacing in (8) the values of the corresponding parameters as chosen at the beginning, it is
sufficient to prove

(2− ε)‖U‖2
HS

u0
6
ε‖U‖2

HS
b0

which is after rearrangement condition (4). �
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Keeping in mind that k = (1 − ε)2 ‖U‖2
HS

‖U‖2 , we are ready to finish the construction of Ak. We
may iterate Proposition 2.6 starting withA0 = 0. Of course,A0 satisfies the 0-requirement so by
the proposition we can find a column vector and a corresponding scalar to formA1 satisfying the
1-requirement. Once again we use the proposition to construct A2 satisfying the 2-requirement.
We can continue with this procedure as long as the corresponding lower bound bl is positve
(which is the case for bk). So after k steps we have constructed Ak = ∑

j∈σ sj
(
Ũei

)
·
(
Ũei

)t
satisfying the k-requirement which means that

Ak ≺ uk.Id = (1− 2ε)u0 and Ak has k eigenvalues bigger than bk = εb0.

Now it remains to estimate the weights sj chosen. This will be done by a trivial calculation:

Lemma 2.7. For any l 6 k and any unit vector v we have

Gl(v) 6 1
εb0

and Fl(v) > 1
(2− ε)u0

Proof. Write again Id = Pl+Ql and notice that vt(Al−bl+1.Id)−2v
φ(Al,bl)−φ(Al,bl+1) and vtPl (Al − bl+1.Id)−1 Plv

are positive then we have

Gl(v) 6 −vt (Al − bl+1.Id)−1 v 6 −vtQl (Al − bl+1.Id)−1Qlv 6
‖Qlv‖2

2
bl+1

6
‖v‖2

2
bk
6

1
εb0

Now since vt(ul+1.Id−Al)−2v
ψ(Al,ul)−ψ(Al,ul+1) > 0 then

Fl(v) > vt (ul+1.Id− Al)−1 v > vt (uk.Id)−1 v >
1

(2− ε)u0

�

The weights sj that we have chosen satisfied (5) and therefore by the previous lemma

∀i 6 k, εb0 6 sj 6 (2− ε)u0

Back to our problem note that

ŨσŨ
t
σ =

∑
j∈σ

(
Ũei

)
·
(
Ũei

)t
and therefore

1
(2− ε)u0

Ak = 1
(2− ε)u0

∑
j∈σ

sj
(
Ũei

)
·
(
Ũei

)t
� ŨσŨ

t
σ �

1
εb0

∑
j∈σ

sj
(
Ũei

)
·
(
Ũei

)t
= 1
εb0

Ak

Transfering the properties of Ak, we deduce that ŨσŨ t
σ �

(2−ε)u0
εb0

Id and ŨσŨ t
σ has k eigen-

values greater than εb0
(2−ε)u0

.
This means that

εb0

(2− ε)u0
Id � Ũ t

σŨσ �
(2− ε)u0

εb0
Id

Taking b0 = εu0
2−ε in order to satsify (4) we finish the proof of Theorem 1.1.

3. APPLICATION TO THE LOCAL THEORY OF BANACH SPACES

As for the restricted invertibility principle where one can interpret the result as the invert-
ibility of an operator on a decomposition of the identity, we will write the result in terms of a
decomposition of the identity. This will be useful for applications to the local theory of Banach
spaces since by John’s theorem [7] one can have a decomposition of the identity formed by
contact points of the unit ball with its maximal volume ellipsoid.
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Proposition 3.1. Let Id = ∑
i6m yiy

t
i be a decomposition of the identity in Rn and T be a linear

operator on ln2 . For ε < 1, there exists σ ⊂ {1, ...,m} such that

|σ| > (1− ε)2‖T‖2
HS

‖T‖2

and for all (aj)j6k,

ε

2− ε

∑
j6k

a2
j

 1
2

6

∥∥∥∥∥∥
∑
j6k

aj
Tyj
‖Tyj‖2

∥∥∥∥∥∥
2

6
2− ε
ε

∑
j6k

a2
j

 1
2

.

Proof. Let U be the n×m matrix whose columns are Tyj . Therefore we can write

UU t =
∑
j6m

(Tyj) · (Tyj)t = TT t

We deduce that ‖U‖HS = ‖T‖HS and ‖U‖ = ‖T‖. Applying Theorem 1.1 to U , we find
σ ⊂ {1, ...,m} such that

|σ| > (1− ε)2‖T‖2
HS

‖T‖2

and for all (aj)j∈σ,

ε

2− ε

∑
j∈σ

a2
j

 1
2

6

∥∥∥∥∥∥
∑
j∈σ

aj
Uej
‖Uej‖2

∥∥∥∥∥∥
2

6
2− ε
ε

∑
j∈σ

a2
j

 1
2

Noting that Uej

‖Uej‖2
= Tyj

‖Tyj‖2
, we finish the proof.

�

This result improves the dependence on ε in comparison with Vershynin’s result [17]. While
Vershynin proved that (Tyj)j∈σ is c(ε)-equivalent to an orthogonal basis, the value of c(ε) was
of the order of ε−c log(ε). Here our sequence is (4ε−2)-equivalent to an orthogonal basis.

In the regime where ε is close to one, the previous proposition yields the following:

Corollary 3.2. Let Id = ∑
i6m yiy

t
i a decomposition of the identity in Rn and T a linear

operator on ln2 . For ε < 1, there exists σ ⊂ {1, ...,m} such that

|σ| > ε2‖T‖2
HS

9‖T‖2

and for all (aj)j6k,

(1− ε)
∑
j6k

a2
j

 1
2

6

∥∥∥∥∥∥
∑
j6k

aj
Tyj
‖Tyj‖2

∥∥∥∥∥∥
2

6 (1 + ε)
∑
j6k

a2
j

 1
2

The two previous results can be written in terms of contact points, let us for instance write
the case of T = Id. If X = (Rn, ‖ · ‖) where ‖ · ‖ is a norm on Rn such that Bn

2 is the
ellipsoid of maximal volume contained in BX , then by John’s theorem one can get an identity
decomposition formed by contact points of BX with Bn

2 . Applying Proposition 3.1 we get the
following:

Proposition 3.3. Let X = (Rn, ‖ ·‖) where ‖ ·‖ is a norm on Rn such that Bn
2 is the ellipsoid of

maximal volume contained in BX . For ε < 1, there exists x1, ..., xk contact points of BX with
Bn

2 such that
k > (1− ε)2n
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and for all (aj)j6k,

ε

2− ε

∑
j6k

a2
j

 1
2

6

∥∥∥∥∥∥
∑
j6k

ajxj

∥∥∥∥∥∥
2

6
2− ε
ε

∑
j6k

a2
j

 1
2

.

In other terms, we can find a system of almost n contact points which is (4ε−2)-equivalent to
an orthonormal basis. Looking at the lower bound, this gives a proportional Dvoretzky-Rogers
factorization [6] with the best known dependence on ε.
If we are willing to give up on the fact of extracting a large number of contact points, we can
have a system of contact points which is (1 + ε)-equivalent to an orthonormal basis. For that
we write the previous proposition in the regime where ε is close to 1.

Corollary 3.4. Let X = (Rn, ‖ · ‖) where ‖ · ‖ is a norm on Rn such that Bn
2 is the ellipsoid of

maximal volume contained in BX . For ε < 1, there exists x1, ..., xk contact points of BX with
Bn

2 such that

k >
ε2n

9
and for all (aj)j6k,

(1− ε)
∑
j6k

a2
j

 1
2

6

∥∥∥∥∥∥
∑
j6k

ajxj

∥∥∥∥∥∥
2

6 (1 + ε)
∑
j6k

a2
j

 1
2

Applying proposition 3.3, we get the following corollary:

Corollary 3.5. Let X = (Rn, ‖ · ‖) where ‖ · ‖ is a norm on Rn such that Bn
2 is the ellipsoid

of maximal volume contained in BX . For ε < 1, there exists x1, ..., xk linearly independent
contact points of BX with Bn

2 such that

k > (
√

2− 1)4ε2n

and for any i 6 k, ∑
j 6=i
〈xj, xi〉2 6 ε

Proof. Let ε < 1 and denote α = (
√

2 − 1)2. Apply proposition 3.3 with (1 − αε) in order to
find a system of linearly independent contact points (xj)j6k such that

Ak =
∑
j6k

xjx
t
j �

(1 + αε

1− αε

)2
Id

For i 6 k,

〈Akxi, xi〉 = 1 +
∑
j 6=i
〈xj, xi〉2 6

(1 + αε

1− αε

)2

The conclusion follows by a trivial calculation. �

4. COLUMN PAVING

Extracting a large column submatrix reveals to be useful since the extracted matrix may
have better properties. First results in this direction were given by Kashin in [9], and others
followed improving or dealing with different properties (see [1], [2], [8], [10],[16]). One can
also be interested in partitioning the matrix into disjoint sets of columns such that each block
has "good" properties. Obtaining a constant number of blocks (independent of the dimension)
turns out to be a difficult problem and many conjectures concerning this were given previously
(see [4]).



10 PIERRE YOUSSEF

The previous algorithms for extraction used probabilistic arguments and Grothendieck’s fac-
torization theorem. Here we propose a deterministic algorithm to achieve the extraction, we
apply our main result iteratively in order to partition the matrix into blocks on each of them we
have good estimates on the singular values.

Definition 4.1. Let U a n×m matrix. We will say that U is standardized if all its columns are
of norm 1.

Note that when U is standardized we have ‖U‖2
HS = m and ‖U‖ > 1. Applying Theorem 1.1

to a standardized matrix, we get the following proposition:

Proposition 4.2. Let U a n ×m standardized matrix. For ε < 1, there exists σ ⊂ {1, ...,m}
with

|σ| > (1− ε)2m

‖U‖2

such that
ε

2− ε 6 smin (Uσ) 6 smax (Uσ) 6 2− ε
ε

In the regime where ε is close to one, the previous proposition yields an almost isometric
estimation:

Corollary 4.3. Let U a n×m standardized matrix. For ε < 1, there exists σ ⊂ {1, ...,m} with

|σ| > ε2m

9‖U‖2

such that
1− ε 6 smin (Uσ) 6 smax (Uσ) 6 1 + ε

Proposition 4.4. Let U a n × m standardized matrix. For ε < 1, there exists a partition of
{1, ...,m} into p sets σ1, ..., σp such that

p 6
‖U‖2 log(m)

(1− ε)2

and for any i 6 p,
ε

2− ε 6 smin (Uσi
) 6 smax (Uσi

) 6 2− ε
ε

Proof. Apply Proposition 4.2 to U in order to get σ1 verifying

|σ1| >
(1− ε)2

‖U‖2 m

such that
ε

2− ε 6 smin (Uσ1) 6 smax (Uσ1) 6 2− ε
ε

Now note that Uσc
1

is a n×|σ1| standardized matrix and ‖Uσc
1
‖ 6 ‖U‖ and apply Proposition 4.2

to Uσc
1

in order to get σ2 ⊂ σc1 verifying

|σ2| =
(1− ε)2

‖U‖2 |σ
c
1| =

(1− ε)2

‖U‖2

[
1− (1− ε)2

‖U‖2

]
m

Doing this procedure p times, the number of remaining columns is(
1− (1− ε)2

‖U‖2

)p
m



11

So in order to cover all the columns, we need to take p such that(
1− (1− ε)2

‖U‖2

)p
m < 1

By a trivial calculation, it is sufficient to take ‖U‖
2 log(m)

(1−ε)2 blocks. �

In the regime where ε is close to one, the previous proposition yields a column partition
with almost isometric blocks. This recovers a result of Tropp (see Theorem 1.2 in [16]), which
follows results of Bourgain-Tzafriri [2], with a deterministic method.

Corollary 4.5. Let U a n × m standardized matrix. For ε < 1, there exists a partition of
{1, ...,m} into p sets σ1, ..., σp such that

p 6
9‖U‖2 log(m)

ε2

and for any i 6 p,
1− ε 6 smin (Uσi

) 6 smax (Uσi
) 6 1 + ε

The number of blocks here depends on the dimension. The challenging problem is to partition
into a number of blocks which does not depend on the dimension. This would give a positive
solution to the paving conjecture (see [4] for related problems).

5. EXTRACTING SQUARE SUBMATRIX WITH SMALL NORM

In this section, we will show how using our main result we can answer Naor’s question [11]:
find an algorithm, using the Batson-Spielman-Srivastava’s method [1], to prove Theorem C [2].
However, we will be able to do this only for symmetric matrices.

Proposition 5.1. Let T a n × n symmetric matrix with 0 diagonal. For any ε < 1, there exists
σ ⊂ {1, ..., n} of size

|σ| > (
√

2− 1)4ε2n

2
such that

‖PσTP ∗σ‖ 6 ε‖T‖

Proof. Denote A = T + ‖T‖.Id, then A is a positive semidefinite symmetric matrix so we may
take U = A

1
2 . First note that since T has 0 diagonal then

‖Uei‖2
2 = 〈Uei, Uei〉 = 〈Aei, ei〉 = ‖T‖

Therefore Ũ = U

‖T‖
1
2

is a standardized matrix. Moreover ‖Ũ‖2 = 2.

Denote α = (
√

2 − 1)2 and apply Proposition 4.2 with 1 − αε to find σ ⊂ {1, ..., n} of size
α2ε2n

2 such that
1− αε
1 + αε

6 smin
(
Ũσ
)
6 smax

(
Ũσ
)
6

1 + αε

1− αε
This means that (1− αε

1 + αε

)2
.Idσ �

(
Ũσ
)∗
·
(
Ũσ
)
�
(1 + αε

1− αε

)2
.Idσ

Recall that Ũσ = ŨP ∗σ and Ũ∗ · Ũ = A
‖T‖ . Therefore by the choice of α

(1− ε)‖T‖.Idσ � PσAP
∗
σ � (1 + ε)‖T‖.Idσ

which after rearrangement gives

−ε‖T‖ � PσTP
∗
σ � ε‖T‖
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and finishes the proof. �

Iterating the previous result, we obtain by a deterministic method the strongest result on the
paving problem which is due to Bourgain-Tzafriri ([2], see also [15]) that is every zero-diagonal
matrix of size n × n can be paved with at most O(log(n)) blocks. Once again, we are able to
achieve this for symmetric matrices.

Proposition 5.2. Let T a n × n symmetric matrix with 0 diagonal. For any 0 < ε < 1, there
exists a partition of {1, ..., n} into k subsets σ1, .., σk such that

k 6
2 log(n)

(
√

2− 1)4ε2

and for any i 6 k, ∥∥∥Pσi
TP ∗σi

∥∥∥ 6 ε‖T‖

Proof. As before denote A = T + ‖T‖.Id and U = A
1
2 . Note Ũ = U

‖T‖
1
2

the standardized

matrix. Applying Corollary 4.5, we have a column partition for which we do on each block as
we did in the previous proposition. The result follows easily. �

Acknowledgement : I am grateful to my PhD advisor Olivier Guédon for his constant en-
couragement and his careful review of this manuscript.
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