Pierre Youssef 
  
A NOTE ON COLUMN SUBSET SELECTION

est destinée au dépôt  

INTRODUCTION

Let U a n × m matrix, the stable rank of U is given by srank(U ) = U 2 HS U 2 , where U 2 HS = Tr(U U t ) denotes the Hilbert-Schmidt norm of U and U 2 the operator norm of U seen as an operator from l m 2 to l n 2 . Denoting U the matrix whose columns are obtained by normalizing those of U , our aim is to extract almost srank(U ) number of linearly independent columns of U and estimate the smallest and the largest singular value of the restricted matrix.

This problem is closely related to the restricted invertibility where only an estimate on the smallest singular value is needed. The restricted invertibility was first studied by Bourgain-Tzafriri [START_REF] Bourgain | Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis[END_REF] who proved the following: Theorem A. Given an n × n matrix T whose columns are of norm one, there exists σ ⊂ {1, . . . , n} with |σ| d n T 2 2 such that T σ x 2 c x 2 for all x ∈ R σ , where d, c > 0 are absolute constants and T σ denotes the restriction of T onto the columns in σ.

In [START_REF] Vershynin | John's decompositions: selecting a large part[END_REF], Vershynin extended this result for any decomposition of the identity, whereas the previous result was valid for the canonical decomposition. Moreover the size of the restriction depended on the Hilbert-Schmidt norm of the operator. Precisely, Vershynin proved the following:

Theorem B. Let Id = j m x j x t j and let T be a linear operator on n 2 . For any ε ∈ (0, 1) one can find σ ⊂ {1, . . . , m} with

|σ| (1 -ε) T 2 HS T 2 2 such that c(ε)   j∈σ a 2 j   1 2 j∈σ a j T x j T x j 2 2 C(ε)   j∈σ a 2 j   1 2
for all scalars (a j ).

Vershynin applied this result to the study of contact points. The normalization on the vectors T x j is crucial for the applications and the dependence on ε plays an important role. Spielman-Srivastava [START_REF] Spielman | An elementary proof of the restricted invertibility theorem[END_REF] generalized the restricted invertibility principle (Theorem A) for any decomposition of the identity without the normalizing factors appearing in Vershynin's result and improved the dependence on ε. In [START_REF] Youssef | Restricted invertibility and the banach-mazur distance to the cube[END_REF], we unified the two previous results obtaining a good dependence on ε for any normalizing factors. However this result deals only with the lower bound and doesn't give any information on the norm of the restricted matrix. Our aim here, is to improve Vershynin's result obtaining simultaneously a restricted invertibility principle and an estimate on the norm of the restricted matrix. Our proof uses ideas of the method of Batson-Spielman-Srivastava ([1], [START_REF] Srivastava | Spectral sparsification and restricted invertibility[END_REF], see also [START_REF] Youssef | Restricted invertibility and the banach-mazur distance to the cube[END_REF] for related topics).

The main result of this paper is the following: Theorem 1.1. Let U be an n × m matrix and denote by U the matrix whose columns are the columns of U normalized. For all ε < 1, there exists σ ⊂ {1, ..., m} of size

|σ| (1 -ε) 2 U 2 HS U 2 such that ε 2 -ε s min U σ s max U σ 2 -ε ε In other terms, for all (a j ) j∈σ ε 2 -ε   j∈σ a 2 j   1 2 j∈σ a j U e j U e j 2 2 2 -ε ε   j∈σ a 2 j   1 2
.

Note that the lower bound problem is the restricted invertibility problem treated in [START_REF] Spielman | An elementary proof of the restricted invertibility theorem[END_REF] and [START_REF] Youssef | Restricted invertibility and the banach-mazur distance to the cube[END_REF] while the upper bound problem is related to the sparsification method and the Kashin-Tzafriri column selection theorem [START_REF] Kashin | Some remarks on the restriction of operators to coordinate subspaces[END_REF] treated respectively in [START_REF] Batson | Twice-Ramanujan sparsifiers[END_REF] and [START_REF] Youssef | Restricted invertibility and the banach-mazur distance to the cube[END_REF]. Our idea is to merge the two algorithms together to get the two conclusions simultaneously. The heart of these methods is the study of the evolution of the eigenvalues of a matrix when perturbated by a rank one matrix.

In the regime where ε is close to one, the previous result yields the following:

Corollary 1.2. Let U be an n × m matrix and denote by U the matrix whose columns are the columns of U normalized. For all ε < 1, there exists σ ⊂ {1, ..., m} of size

|σ| ε 2 9 . U 2 HS U 2 such that 1 -ε s min U σ s max U σ 1 + ε
In other terms, for all (a j ) j∈σ

(1 -ε)   j∈σ a 2 j   1 2 j∈σ a j U e j U e j 2 2 (1 + ε)   j∈σ a 2 j   1 2
Where (e j ) j m denotes the canonical basis of R m .

This result is also related to the problem of column paving that is partitioning the columns into sets such that each of the corresponding restrictions has "good" bounds on the singular values, in particular such that the singular values are close to one. We will show how our Theorem allows us to recover a result of Tropp [START_REF] Tropp | Column subset selection, matrix factorization, and eigenvalue optimization[END_REF] (and of Bourgain-Tzafriri [START_REF] Bourgain | Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis[END_REF]) dealing with this problem, using our deterministic method instead of the probabilistic methods used previously.

In a survey [START_REF] Naor | Sparse quadratic forms and their geometric applications (after batson, spielman and srivastava)[END_REF] on Batson-Spielman-Srivastava's sparsification theorem, Naor asked about giving a proof of another theorem of Bourgain-Tzafriri [START_REF] Bourgain | Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis[END_REF], which is stronger than the restricted invertibility, using tools from Batson-Spielman-Srivastava's method. The theorem in question is the following:

Theorem C (Bourgain-Tzafriri). There is a universal constant c > 0 such that for every ε < 1 and n ∈ N if an operator T : R n -→ R n satisfies T e i , e i = 0 for all i ∈ {1, . . . , n} then there exists a subset σ ⊆ {1, . . . , n} satisfying |σ| cε 2 n and R σ T R * σ ε T .

Using our result, we will be able to give a deterministic algorithm to solve this problem for symmetric matrices.

The paper is organized as follows: in section 2, we prove our main result, in section 3 we give applications to the local theory of Banach spaces and compare it with Vershynin's result. In section 4, we prove column paving results and finally in section 5 we answer Naor's question.

PROOF

OF THEOREM 1.1 Note k = |σ| = (1 -ε) 2 U 2 HS U 2 and A k = j∈σ s j U e j • U e j t ,
where s j are positive numbers which will be determined later. Since our aim is to find σ such that the smallest singular value of U σ is bounded away from zero and its largest one is upper bounded, it is equivalent to try to construct the matrix A k such that A k has k eigenvalues bounded away from zero and bounded from above and to estimate the weights s j . Our construction will be done step by step starting from A 0 = 0. So at the beginning, all the eigenvalues of A 0 are zero. At the first step we will try to find a vector v among the columns of U and a weight s such that A 1 = A 0 + svv t has one nonzero eigenvalue which have a lower and upper bound. Of course the first step is trivial, since for whatever column we choose the matrix A 1 will have one eigenvalue equal to s. At the second step, we will try to find a vector v among the columns of U and a weight s such that A 2 = A 1 + svv t has two nonzero eigenvalues for which we can update the lower and upper bound found in the first step. We will continue this procedure until we construct the matrix A k .

For a symmetric matrix A such that b < λ min (A) λ max (A) < u, we define:

φ(A, b) = Tr U t (A -b.Id) -1 U and ψ(A, u) = Tr U t (u.Id -A) -1 U
For l k, we denote by b l the lower bound of the l nonzero eigenvalues of A l and by u l the upper bound i.e A l ≺ u l .Id and has l eigenvalues > b l . We also note

φ = φ(A 0 , b 0 ) = - U 2 HS b 0 and ψ = ψ(A 0 , u 0 ) = U 2 HS u 0 ,
where b 0 and u 0 will be determined later.

As we said before, we want to control the evolution of the eigenvalues so we will make sure to choose a "good" vector so that our bounds b l and u l do not move too far. Precisely, we will fix this amount of change and denote it by δ for the lower bound and ∆ for the upper bound i.e at the next step the lower bound will be b l+1 = b l -δ and the upper one u l+1 = u l + ∆. We will choose these two quantities as follows:

δ = (1 -ε) b 0 k = b 0 U 2 (1 -ε) U 2 HS and ∆ = (1 -ε) u 0 k = u 0 U 2 (1 -ε) U 2 HS
Our choice of δ is motivated by the fact that after k steps we want the updated lower bound to remain positive but not too small due to some obstructions in the proof. In this case the final lower bound will be b

k = b k-1 -δ = ... = b 0 -kδ = εb 0
The choice of ∆ is motivated by the fact that we don't want the upper bound to move too far from the initial one and as for δ we have some obstruction on taking its value too small. The final upper bound will be

u k = u k-1 + ∆ = ... = u 0 + k∆ = (2 -ε)u 0 Definition 2.1.
We will say that a positive semidefinite matrix A satisfies the l-requirement if the following properties are verified:

• A ≺ u l .Id. • A has l eigenvalues > b l . • φ(A, b l ) φ. • ψ(A, u l ) ψ.
In order to construct A l+1 which has l + 1 nonzero eigenvalues larger than b l+1 and such that φ(A l+1 , b l+1 ) φ(A l , b l ), we may look at the algorithm used for the restricted invertibility problem ( [START_REF] Spielman | An elementary proof of the restricted invertibility theorem[END_REF], [START_REF] Youssef | Restricted invertibility and the banach-mazur distance to the cube[END_REF]) and more precisely, at the condition needed on the vector v to be chosen: Lemma 2.2. If A l has l nonzero eigenvalues greater than b l and if for some vector v and some positive scalar s we have

(1) G l (v) := - v t (A l -b l+1 .Id) -2 v φ(A l , b l ) -φ(A l , b l+1 ) • U 2 -v t (A l -b l+1 .Id) -1 v 1 s .
Then A l+1 = A l + svv t has l + 1 nonzero eigenvalues all greater than b l+1 and φ

(A l+1 , b l+1 ) φ(A l , b l ).
Now, in order to construct A l+1 which has all its eigenvalues smaller than u l+1 and such that ψ(A l+1 , u l+1 ) ψ(A l , u l ) we may look at the algorithm used for the sparsification theorem [START_REF] Batson | Twice-Ramanujan sparsifiers[END_REF] or the Kashin-Tzafriri column selection theorem (see Theorem 4.2 [START_REF] Youssef | Restricted invertibility and the banach-mazur distance to the cube[END_REF]):

Lemma 2.3. If A l ≺ u l .
Id and if for some vector v and some positive scalar s we have

(2) F l (v) := v t (u l+1 .Id -A l ) -2 v ψ(A l , u l ) -ψ(A l , u l+1 ) • U 2 + v t (u l+1 .Id -A l ) -1 v 1 s .
Then denoting

A l+1 = A l + svv t , we have A l+1 ≺ u l+1 .Id and ψ(A l+1 , u l+1 ) ψ(A l , u l ).
The proof of these two lemmas makes use of the Sherman-Morrison formula.

For our problem, we will need to find a vector v satisfying (1) and ( 2) simultaneously. For that we need to merge these two conditions in one equation: Lemma 2.4. If A l ≺ u l .Id has l eigenvalues greater than b l and if for some vector v we have

(3) F l (v) G l (v)
Then taking any s such that F l (v)

1 s G l (v), then A l+1 = A l + svv t satisfies the (l + 1)- requirement.
Remark 2.5. Since A l+1 has l +1 nonzero eigenvalues while A l had only l nonzero eigenvalues, then the vector v chosen is linearly independent with the eigenvectors of A l . Therefore one can see that Ker(A l+1 ) ⊂ Ker(A l ) and Dim [Ker(A l+1 )] = Dim [Ker(A l )] -1. Proof. According to Lemma 2.4, it is sufficient to find i m such that F l U e i G l U e i and then take s j such that (5)

F l U e i 1 s j G l U e i
Since F l and G l are quadratic forms, it is equivalent to find i m such that

F l (U e i ) G l (U e i ).
For that, it is sufficient to prove (6)

j m F l (U e j ) j m G l (U e j )
Before estimating j m F l (U e j ), let us note that

ψ(A l , u l ) -ψ(A l , u l+1 ) = Tr U t (u l .Id -A l ) -1 U -Tr U t (u l+1 .Id -A l ) -1 U = ∆Tr U t (u l .Id -A l ) -1 (u l+1 .Id -A l ) -1 U ∆Tr U t (u l+1 .Id -A l ) -2 U
Replacing this in F l we get

j m F l (U e j ) = j m e t j U t (u l+1 .Id -A l ) -2 U e j ψ(A l , u l ) -ψ(A l , u l+1 ) • U 2 + j m e t j U t (u l+1 .Id -A l ) -1 U e j = Tr U t (u l+1 .Id -A l ) -2 U ψ(A l , u l ) -ψ(A l , u l+1 ) • U 2 + Tr U t (u l+1 .Id -A l ) -1 U U 2 ∆ + ψ
Now we may estimate j m G l (U e j ). We denote by P l the orthogonal projection onto the image of A l and Q l the orthogonal projection onto the kernel of A l . Note that ∀l k we have the following

(7) b l δ Q l U 2 HS U 2
Since Q 0 = Id, this fact is true at the beginning by our choice of δ. Taking in account Remark 2.5, at each step Q l U 2 HS decreases by at most U 2 so that the right hand side of (7) decreases by at most δ. Since at each step we replace b l by b l+1 , (7) remains true. Since Id = P l + Q l and P l , Q l , A l commute we can write

Tr U t (A l -b l+1 .Id) -2 U = Tr U t P l (A l -b l+1 .Id) -2 P l U + Tr U t Q l (A l -b l+1 .Id) -2 Q l U = Tr U t P l (A l -b l+1 .Id) -2 P l U + Q l U 2 HS b 2 l+1
Doing the same decomposition for φ l (A l ) we get

φ(A l , b l ) = Tr U t P l (A l -b l .Id) -1 P l U + Tr U t Q l (A l -b l .Id) -1 Q l U = Tr U t P l (A l -b l .Id) -1 P l U - Q l U 2 HS b l := φ P (A l , b l ) + φ Q (A l , b l ) Denote Λ l = φ(A l , b l ) -φ(A l , b l+1
) and Λ P l , Λ Q l the corresponding decompositions onto the image part and the kernel part as above. As we did before, we have Λ l = Λ P l + Λ Q l and

Λ P l = Tr U t P l (A l -b l .Id) -1 P l U -Tr U t P l (A l -b l+1 .Id) -1 P l U = δTr U t P l (A l -b l .Id) -1 (A l -b l+1 .Id) -1 P l U δTr U t P l (A l -b l+1 .Id) -2 P l U
Using [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF] we have

Λ Q l = - Q l U 2 HS b l + Q l U 2 HS b l+1 = δ Q l U 2 HS b l b l+1 U 2 b l+1
Looking at the previous information, we can write

j m G l (U e j ) = - Tr U t (A l -b l+1 .Id) -2 U Λ l • U 2 -Tr U t (A l -b l+1 .Id) -1 U = - Tr U t P l (A l -b l+1 .Id) -2 P l U + Q l U 2 HS b 2 l+1 Λ l • U 2 -φ l+1 (A l ) - Λ P l δ + δ Q l U 2 HS b l b l+1 b l δb l+1 Λ l • U 2 + Λ l -φ l (A l ) - Λ P l δ + Λ Q l 1 δ + 1 b l+1 Λ l • U 2 + Λ Q l -φ - U 2 δ - U 2 b l+1 + Λ Q l -φ - U 2 δ -φ
Until now we have proven that

j m G l (U e j ) - U 2 δ -φ and j m F l (U e j ) U 2 ∆ + ψ
So in order to prove (6), it will be sufficient to verify

(8) U 2 ∆ + ψ - U 2 δ -φ
Replacing in [START_REF] Kashin | Some remarks on the restriction of operators to coordinate subspaces[END_REF] the values of the corresponding parameters as chosen at the beginning, it is sufficient to prove

(2 -ε) U 2 HS u 0 ε U 2

HS

b 0 which is after rearrangement condition (4).

Keeping in mind that

k = (1 -ε) 2 U 2 HS
U 2 , we are ready to finish the construction of A k . We may iterate Proposition 2.6 starting with A 0 = 0. Of course, A 0 satisfies the 0-requirement so by the proposition we can find a column vector and a corresponding scalar to form A 1 satisfying the 1-requirement. Once again we use the proposition to construct A 2 satisfying the 2-requirement. We can continue with this procedure as long as the corresponding lower bound b l is positve (which is the case for b k ). So after k steps we have constructed A k = j∈σ s j U e i • U e i t satisfying the k-requirement which means that

A k ≺ u k .Id = (1 -2ε)u 0 and A k has k eigenvalues bigger than b k = εb 0 .
Now it remains to estimate the weights s j chosen. This will be done by a trivial calculation: Lemma 2.7. For any l k and any unit vector v we have

G l (v) 1 εb 0 and F l (v) 1 (2 -ε)u 0 Proof. Write again Id = P l +Q l and notice that v t (A l -b l+1 .Id) -2 v φ(A l ,b l )-φ(A l ,b l+1 ) and v t P l (A l -b l+1 .Id) -1 P l v are positive then we have G l (v) -v t (A l -b l+1 .Id) -1 v -v t Q l (A l -b l+1 .Id) -1 Q l v Q l v 2 2 b l+1 v 2 2 b k 1 εb 0 Now since v t (u l+1 .Id-A l ) -2 v ψ(A l ,u l )-ψ(A l ,u l+1 ) 0 then F l (v) v t (u l+1 .Id -A l ) -1 v v t (u k .Id) -1 v 1 (2 -ε)u 0
The weights s j that we have chosen satisfied [START_REF] Casazza | Revisiting the Bourgain-Tzafriri restricted invertibility theorem[END_REF] and therefore by the previous lemma ∀i k, εb 0 s j (2 -ε)u 0 Back to our problem note that

U σ U t σ = j∈σ U e i • U e i t and therefore 1 (2 -ε)u 0 A k = 1 (2 -ε)u 0 j∈σ s j U e i • U e i t U σ U t σ 1 εb 0 j∈σ s j U e i • U e i t = 1 εb 0 A k Transfering the properties of A k , we deduce that U σ U t σ (2-ε)u 0 εb 0 Id and U σ U t σ has k eigen- values greater than εb 0 (2-ε)u 0 . This means that εb 0 (2 -ε)u 0 Id U t σ U σ (2 -ε)u 0 εb 0 Id
Taking b 0 = εu 0 2-ε in order to satsify (4) we finish the proof of Theorem 1.1.

APPLICATION TO THE LOCAL THEORY OF BANACH SPACES

As for the restricted invertibility principle where one can interpret the result as the invertibility of an operator on a decomposition of the identity, we will write the result in terms of a decomposition of the identity. This will be useful for applications to the local theory of Banach spaces since by John's theorem [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF] one can have a decomposition of the identity formed by contact points of the unit ball with its maximal volume ellipsoid. Proposition 3.1. Let Id = i m y i y t i be a decomposition of the identity in R n and T be a linear operator on l n 2 . For ε < 1, there exists σ ⊂ {1, ..., m} such that

|σ| (1 -ε) 2 T 2 HS T 2
and for all (a j ) j k ,

ε 2 -ε   j k a 2 j   1 2 j k a j T y j T y j 2 2 2 -ε ε   j k a 2 j   1 2
.

Proof. Let U be the n × m matrix whose columns are T y j . Therefore we can write

U U t = j m (T y j ) • (T y j ) t = T T t
We deduce that U HS = T HS and U = T . Applying Theorem 1.1 to U , we find σ ⊂ {1, ..., m} such that

|σ| (1 -ε) 2 T 2 HS T 2 and for all (a j ) j∈σ , ε 2 -ε   j∈σ a 2 j   1 2 j∈σ a j U e j U e j 2 2 2 -ε ε   j∈σ a 2 j   1 2
Noting that U e j U e j 2 = T y j T y j 2 , we finish the proof.

This result improves the dependence on ε in comparison with Vershynin's result [START_REF] Vershynin | John's decompositions: selecting a large part[END_REF]. While Vershynin proved that (T y j ) j∈σ is c(ε)-equivalent to an orthogonal basis, the value of c(ε) was of the order of ε -c log(ε) . Here our sequence is (4ε -2 )-equivalent to an orthogonal basis.

In the regime where ε is close to one, the previous proposition yields the following:

Corollary 3.2. Let Id = i m y i y t i a decomposition of the identity in R n and T a linear operator on l n 2 . For ε < 1, there exists σ ⊂ {1, ..., m} such that

|σ| ε 2 T 2 HS 9 T 2
and for all (a j ) j k ,

(1 -ε)   j k a 2 j   1 2 j k a j T y j T y j 2 2 (1 + ε)   j k a 2 j   1 2
The two previous results can be written in terms of contact points, let us for instance write the case of T = Id.

If X = (R n , • ) where • is a norm on R n such that B n
2 is the ellipsoid of maximal volume contained in B X , then by John's theorem one can get an identity decomposition formed by contact points of B X with B n 2 . Applying Proposition 3.1 we get the following:

Proposition 3.3. Let X = (R n , • ) where • is a norm on R n such that B n 2 is the ellipsoid of maximal volume contained in B X . For ε < 1, there exists x 1 , ..., x k contact points of B X with B n 2 such that k (1 -ε) 2 n
and for all (a j ) j k ,

ε 2 -ε   j k a 2 j   1 2 j k a j x j 2 2 -ε ε   j k a 2 j   1 2
.

In other terms, we can find a system of almost n contact points which is (4ε -2 )-equivalent to an orthonormal basis. Looking at the lower bound, this gives a proportional Dvoretzky-Rogers factorization [START_REF] Giannopoulos | A proportional Dvoretzky-Rogers factorization result[END_REF] with the best known dependence on ε. If we are willing to give up on the fact of extracting a large number of contact points, we can have a system of contact points which is (1 + ε)-equivalent to an orthonormal basis. For that we write the previous proposition in the regime where ε is close to 1.

Corollary 3.4. Let X = (R n , • ) where • is a norm on R n such that B n 2 is the ellipsoid of maximal volume contained in B X . For ε < 1, there exists x 1 , x k contact points of B X with B n
2 such that k ε 2 n 9 and for all (a j ) j k ,

(1 -ε)   j k a 2 j   1 2 j k a j x j 2 (1 + ε)   j k a 2 j   1 2
Applying proposition 3.3, we get the following corollary:

Corollary 3.5. Let X = (R n , • ) where • is a norm on R n such that B n
2 is the ellipsoid of maximal volume contained in B X . For ε < 1, there exists x 1 , ..., x k linearly independent contact points of B X with B n 2 such that k ( √ 2 -1) 4 ε 2 n and for any i k,

j =i x j , x i 2 ε
Proof. Let ε < 1 and denote α = ( √ 2 -1) 2 . Apply proposition 3.3 with (1 -αε) in order to find a system of linearly independent contact points (x j ) j k such that

A k = j k x j x t j 1 + αε 1 -αε 2 Id For i k, A k x i , x i = 1 + j =i x j , x i 2 1 + αε 1 -αε 2
The conclusion follows by a trivial calculation.

COLUMN PAVING

Extracting a large column submatrix reveals to be useful since the extracted matrix may have better properties. First results in this direction were given by Kashin in [START_REF] Kašin | Some properties of matrices of bounded operators from the space l n 2 into l m 2[END_REF], and others followed improving or dealing with different properties (see [START_REF] Batson | Twice-Ramanujan sparsifiers[END_REF], [START_REF] Bourgain | Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis[END_REF], [START_REF] Kashin | Some remarks on the restriction of operators to coordinate subspaces[END_REF], [START_REF] Lunin | On operator norms of submatrices[END_REF], [START_REF] Tropp | Column subset selection, matrix factorization, and eigenvalue optimization[END_REF]). One can also be interested in partitioning the matrix into disjoint sets of columns such that each block has "good" properties. Obtaining a constant number of blocks (independent of the dimension) turns out to be a difficult problem and many conjectures concerning this were given previously (see [START_REF] Casazza | Equivalents of the Kadison-Singer problem[END_REF]).

The previous algorithms for extraction used probabilistic arguments and Grothendieck's factorization theorem. Here we propose a deterministic algorithm to achieve the extraction, we apply our main result iteratively in order to partition the matrix into blocks on each of them we have good estimates on the singular values. Definition 4.1. Let U a n × m matrix. We will say that U is standardized if all its columns are of norm 1.

Note that when U is standardized we have U 2 HS = m and U 1. Applying Theorem 1.1 to a standardized matrix, we get the following proposition: Proposition 4.2. Let U a n × m standardized matrix. For ε < 1, there exists σ ⊂ {1, ..., m} with

|σ| (1 -ε) 2 m U 2 such that ε 2 -ε s min (U σ ) s max (U σ ) 2 -ε ε
In the regime where ε is close to one, the previous proposition yields an almost isometric estimation: 

|σ 1 | (1 -ε) 2 U 2 m such that ε 2 -ε s min (U σ 1 ) s max (U σ 1 ) 2 -ε ε Now note that U σ c 1 is a n×|σ 1 | standardized matrix and U σ c 1 U and apply Proposition 4.2 to U σ c 1 in order to get σ 2 ⊂ σ c 1 verifying |σ 2 | = (1 -ε) 2 U 2 |σ c 1 | = (1 -ε) 2 U 2 1 - (1 -ε) 2 U 2 m
Doing this procedure p times, the number of remaining columns is

1 - (1 -ε) 2 U 2 p m
So in order to cover all the columns, we need to take p such that

1 - (1 -ε) 2 U 2 p m < 1
By a trivial calculation, it is sufficient to take U 2 log(m)

(1-ε) 2 blocks.

In the regime where ε is close to one, the previous proposition yields a column partition with almost isometric blocks. This recovers a result of Tropp (see Theorem 1.2 in [START_REF] Tropp | Column subset selection, matrix factorization, and eigenvalue optimization[END_REF]), which follows results of Bourgain-Tzafriri [START_REF] Bourgain | Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis[END_REF], with a deterministic method. Corollary 4.5. Let U a n × m standardized matrix. For ε < 1, there exists a partition of {1, ..., m} into p sets σ 1 , ..., σ p such that p 9 U 2 log(m) ε 2 and for any i p,

1 -ε s min (U σ i ) s max (U σ i ) 1 + ε
The number of blocks here depends on the dimension. The challenging problem is to partition into a number of blocks which does not depend on the dimension. This would give a positive solution to the paving conjecture (see [START_REF] Casazza | Equivalents of the Kadison-Singer problem[END_REF] for related problems).

EXTRACTING SQUARE SUBMATRIX WITH SMALL NORM

In this section, we will show how using our main result we can answer Naor's question [START_REF] Naor | Sparse quadratic forms and their geometric applications (after batson, spielman and srivastava)[END_REF]: find an algorithm, using the Batson-Spielman-Srivastava's method [START_REF] Batson | Twice-Ramanujan sparsifiers[END_REF], to prove Theorem C [START_REF] Bourgain | Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis[END_REF]. However, we will be able to do this only for symmetric matrices. Iterating the previous result, we obtain by a deterministic method the strongest result on the paving problem which is due to Bourgain-Tzafriri ( [START_REF] Bourgain | Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis[END_REF], see also [START_REF] Tropp | The random paving property for uniformly bounded matrices[END_REF]) that is every zero-diagonal matrix of size n × n can be paved with at most O(log(n)) blocks. Once again, we are able to achieve this for symmetric matrices. 
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 5121222221222 Let T a n × n symmetric matrix with 0 diagonal. For any ε < 1, there exists σ ⊂ {1, ..., n} of size |σ| ( such that P σ T P * σ ε T Proof. Denote A = T + T .Id, then A is a positive semidefinite symmetric matrix so we may take U = A 1 First note that since T has 0 diagonal then U e U e i , U e i = Ae i , e i = T Therefore U = U T 1 is a standardized matrix. Moreover U 2 = 2. Denote α = ( √ and apply Proposition 4.2 with 1 -αε to find σ ⊂ {1, ..., n} of size α Recall that U σ = U P * σ and U * • U = A T . Therefore by the choice of α (1 -ε) T .Id σ P σ AP * σ (1 + ε) T .Id σ which after rearrangement gives -ε T P σ T P * σ ε T and finishes the proof.
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 52211 Let T a n × n symmetric matrix with 0 diagonal. For any 0 < ε < 1, there exists a partition of {1, ..., n} into k subsets σ 1 , .., σ k such that k 2 log(n) ( √ 4 ε 2 and for any i k, P σ i T P * σ i ε T Proof. As before denote A = T + T .Id and U = A Corollary 4.5, we have a column partition for which we do on each block as we did in the previous proposition. The result follows easily. PIERRE YOUSSEF, UNIVERSITÉ PARIS-EST LABORATOIRE D'ANALYSE ET MATHÉMATIQUES APPLIQUÉES (UMR 8050 CNRS) 5, BOULEVARD DESCARTES, CHAMPS SUR MARNE, 77454 MARNE-LA-VALLÉE, CEDEX 2, FRANCE E-M A I L:P I E R R E.Y O U S S E F@U N I V-M L V.F R

  Corollary 4.3. Let U a n × m standardized matrix. For ε < 1, there exists σ ⊂ {1, ..., m} with

		|σ|	ε 2 m 9 U 2
		p	U 2 log(m) (1 -ε) 2
	and for any i p,	
	ε 2 -ε	s

such that 1 -ε s min (U σ ) s max (U σ ) 1 + ε Proposition 4.4. Let U a n × m standardized matrix. For ε < 1, there exists a partition of {1, ..., m} into p sets σ 1 , ..., σ p such that min (U σ i ) s max (U σ i ) 2 -ε ε Proof. Apply Proposition 4.2 to U in order to get σ 1 verifying
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