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RESTRICTED INVERTIBILITY AND THE BANACH-MAZUR DISTANCE TO THE CUBE

. Applying this result, we get a new proof of the proportional Dvoretzky-Rogers factorization theorem recovering the best current estimate in the symmetric setting while we improve the best known result in the nonsymmetric case. As a consequence, we slightly improve the estimate for the Banach-Mazur distance to the cube: the distance of every n-dimensional normed space from n ∞ is at most (2n) 5 6 . Finally, using tools from the work of Batson-Spielman-Srivastava in [2], we give a new proof for a theorem of on the norm of restricted matrices.

INTRODUCTION

Given an n × m matrix U , viewed as an operator from m 2 to n 2 , the restricted invertibility problem asks if we can extract a large number of linearly independent columns of U and provide an estimate for the norm of the restricted inverse. If we write U σ for the restriction of U to the columns U e i , i ∈ σ ⊂ {1, . . . , m}, we want to find a subset σ, of cardinality k as large as possible, such that U σ x 2 c x 2 for all x ∈ R σ and to estimate the constant c (which will depend on the operator U ). This question was studied by Bourgain-Tzafriri [START_REF] Bourgain | Invertibility of large submatrices with applications to the geometry of banach spaces and harmonic analysis[END_REF] who obtained a result for square matrices: Given an n × n matrix T (viewed as an operator on n

2 ) whose columns are of norm one, there exists σ ⊂ {1, . . . , n} with |σ| d n T 2 such that T σ x 2 c x 2 for all x ∈ R σ , where d, c > 0 are absolute constants.

Here and in the rest of the paper, • 2 denotes the Euclidean norm. For any matrix A, A denotes its operator norm seen as an operator on l 2 and A HS denotes the Hilbert-Schmidt norm, i.e.

A HS = T r(A • A * ) = i C i 2 2 1/2
where C i are the columns of A.

Since the identity operator can be decomposed in the form Id = j n e j e t j where (e j ) j n is the canonical basis of R n , the previous result states that one can find a large part of this basis (of cardinality greater than d n T 2 ) on the span of which the operator T is invertible and the norm of its inverse is controlled by an absolute constant.

In [START_REF] Vershynin | John's decompositions: selecting a large part[END_REF], Vershynin generalized this result for any decomposition of the identity and improved the estimate for the size of the subset. Using a technical iteration scheme based on the previous result of Bourgain-Tzafriri, combined with a theorem of Kashin-Tzafriri which we will discuss in the last section, he obtained the following :

Let Id = j m x j x t j and let T be a linear operator on n 2 . For any ε ∈ (0, 1) one can find σ ⊂ {1, . . . , m} with

|σ| (1 -ε) T 2 HS T 2 1 such that j∈σ a j T x j T x j 2 2 c(ε)   j∈σ a 2 j   1 2
for all scalars (a j ).

One can easily check that, in the case of the canonical decomposition, this is a generalization of the Bourgain-Tzafriri theorem, which was previously only proved for a fixed value of ε. The constant c(ε) plays a crucial role in applications and finding the right dependence is an important problem. Let us mention that Veshynin obtained also a non trivial upper bound which we don't state here; we refer to [START_REF] Vershynin | John's decompositions: selecting a large part[END_REF] for a full statement.

Back to the original restricted invertibility problem, a recent work of Spielman-Srivastava [START_REF] Spielman | An elementary proof of the restricted invertibility theorem[END_REF] provides the best known estimate for the norm of the inverse matrix. Their proof uses a new deterministic method based on linear algebra, while the previous works on the subject employed probabilistic, combinatorial and functional-analytic arguments.

More precisely, Spielman-Srivastava proved the following:

Theorem A (Spielman-Srivastava). Let x 1 , . . . x m ∈ R n such that Id = i x i x t i and let 0 < ε < 1. For every linear operator T : n 2 → n 2 there exists a subset σ ⊂ {1, . . . , m} of size |σ| (1 -ε) 2 T 2 HS T 2
for which {T x i } i∈σ is linearly independent and

λ min i∈σ (T x i )(T x i ) t > ε 2 T 2 HS m ,
where λ min is computed on span{T x i } i∈σ or simply here λ min denotes the smallest nonzero eigenvalue of the corresponding operator. .

One can view the previous result as an invertibility theorem for rectangular matrices. Given, as above, a decomposition of the identity and a linear operator T , we can associate to these an n × m matrix U whose columns are the vectors (T x j ) j m . Since Id = j x j x t j , one can easily check that

U • U t = T • T t = j (T x j ) • (T x j ) t .
Hence, U HS = T HS and U = T , and thus the previous result can be written in terms of the rectangular matrix U .

In the applications, one might need to extract multiples of the columns of the matrix. Adapting the proof of Spielman-Srivastava, we will generalize the restricted invertibility theorem for any rectangular matrix and, under some conditions, for any choice of multiples.

If D is an m × m diagonal matrix with diagonal entries (α j ) j m , we set

I D := {j m | α j = 0} and write D -1
σ for the restricted inverse of D i.e the diagonal matrix whose diagonal entries are the inverses of the respective entries of D for indices in σ and zero elsewhere. The main result of this paper is the following: Theorem 1.1. Given an n × m matrix U and a diagonal m × m matrix D with (α j ) j m on its diagonal, with the property that Ker(D) ⊂ Ker(U ), then for any ε ∈ (0, 1) there exists σ ⊂ I D with

|σ| (1 -ε) 2 U 2 HS U 2 such that s min U σ D -1 σ > ε U HS D HS ,
where s min denotes the smallest singular value.

Note that if we apply this fact to the matrix U which we associated with a linear operator T and a decomposition of the identity, and we take D to be the identity operator, we recover the restricted invertibility theorem of Spielman-Srivastava. Taking D the diagonal matrix with diagonal entries T x j 2 , it is easy to see that we recover the "normalized" restricted invertibility principle stated by Vershynin with c(ε) = ε.

In Section 2, we give the proof of the main result. In section 3, we use Theorem 1.1 to give an alternative proof for the proportional Dvoretzky-Rogers factorization; in the symmetric case, we recover the best known dependence and improve the constants involved which allows us to improve the estimate of the Banach-Mazur distance to the cube, while in the nonsymmetric case, we improve the best known dependence for the proportional Dvoretzky-Rogers factorization. Finally, in Section 4 we give a new proof of a theorem due to Kashin-Tzafriri [START_REF] Kashin | Some remarks on the restriction of operators to coordinate subspaces[END_REF] which deals with the norm of coordinate projections of a matrix; our proof slightly improves the result of Kashin-Tzafriri and has the advantage of producing a deterministic algorithm.

PROOF OF THEOREM 1.1

Since the rank and the eigenvalues of 

(U σ D -1 σ ) t • (U σ D -1 σ ) and (U σ D -1 σ ) • (U σ D -1 σ ) t are the same, it suffices to prove that (U σ D -1 σ ) • (U σ D -1 σ ) t has
(U σ D -1 σ ) • (U σ D -1 σ ) t = j∈σ U D -1 σ e j • U D -1 σ e j t = j∈σ U e j α j • U e j α j t
We are going to construct the matrix

A k = j∈σ U D -1 σ e j • U D -1 σ e j t
by iteration. We begin by setting A 0 = 0 and at each step we will be adding a rank one matrix U e j α j

• U e j α j t for a suitable j, which will give a new positive eigenvalue. This will guarantee that the vector U D -1 σ e j chosen in each step is linearly independent from the previous ones. If A and B are symmetric matrices, we write A B if B -A is a positive semidefinite matrix. Recall the Sherman-Morrison Formula which will be needed in the proof. For any invertible matrix A and any vector v we have

(A + v • v t ) -1 = A -1 - A -1 v • v t A -1 1 + v t A -1 v .
We will also apply the following lemma which appears as Lemma 6.3 in [START_REF] Srivastava | Spectral Sparsification and Restricted Invertibility[END_REF]:

Lemma 2.1. Suppose that A 0 has q nonzero eigenvalues, all greater than b > 0. If v = 0 and

(1)

v t (A -b I) -1 v < -1,
then A + vv t has q + 1 nonzero eigenvalues, all greater than b .

Proof. The proof of the lemma is simple and makes use of the Sherman-Morrison formula. Denote λ 1 λ 2 .. λ q > b the eigenvalues of A and λ 1 .. λ q λ q+1 0 the eigenvalues of A + vv t . By the Cauchy interlacing Theorem we have

λ 1 λ 1 λ 2 .. λ q λ q λ q+1
Since λ q > b then λ q > b and it remains to prove that λ q+1 > b .

Tr(A + vv t -b I) -1 = j q+1 1 λ j -b - j>q+1 1 b Tr(A -b I) -1 = j q 1 λ j -b - j>q 1 b Tr(A + vv t -b I) -1 -Tr(A -b I) -1 = j q 1 λ j -b - 1 λ j -b + 1 λ q+1 -b - 1 b 1 λ q+1 -b - 1 b
By the Sherman-Morrison's formula we have:

(A + vv t -b I) -1 = (A -b I) -1 - (A -b I) -1 vv t (A -b I) -1 1 + v t (A -b I) -1 v
Now taking the Trace we get:

Tr(A + vv t -b I) -1 -Tr(A -b I) -1 = - v t (A -b I) -2 v 1 + v t (A -b I) -1 v
Since (A -b I) -2 is positive definite and using the hypothesis, one can see that the right hand side in the previous equality is positive. Therefore we get:

1 λ q+1 -b - 1 b > 0 wich means that λ q+1 > b .
For any symmetric matrix A and any b > 0, we define

φ(A, b) = Tr U t (A -bI) -1 U
as the potential corresponding to the barrier b. At each step l, the matrix already constructed is denoted by A l and the barrier by b l . Suppose that A l has l nonzero eigenvalues all greater than b l . As mentioned before, we will try to construct A l+1 by adding a rank one matrix v • v t to A l so that A l+1 has l + 1 nonzero eigenvalues all greater than b l+1 = b l -δ and 1) and ( 2) is equivalent to choosing v which satisfies the following:

φ(A l+1 , b l+1 ) φ(A l , b l ). Note that φ(A l+1 , b l+1 ) = Tr U t (A l + vv t -b l+1 I) -1 U = Tr U t (A l -b l+1 I) -1 U -Tr U t (A l -b l+1 I) -1 vv t (A l -b l+1 I) -1 U 1 + v t (A l -b l+1 I) -1 v = φ(A l , b l+1 ) - v t (A l -b l+1 I) -1 U U t (A l -b l+1 I) -1 v 1 + v t (A l -b l+1 I) -1 v . So, in order to have φ(A l+1 , b l+1 ) φ(A l , b l ), we must choose a vector v verifying (2) - v t (A l -b l+1 I) -1 U U t (A l -b l+1 I) -1 v 1 + v t (A l -b l+1 I) -1 v φ(A l , b l ) -φ(A l , b l+1 ). Since v t (A l -b l+1 I) -1 U U t (A l -b l+1 I) -1 v and φ(A l , b l ) -φ(A l , b l+1 )) are positive, choosing v verifying conditions (
v t (A l -b l+1 I) -1 U U t (A l -b l+1 I) -1 v (φ(A l , b l ) -φ(A l , b l+1 )) -1 -v t (A l -b l+1 I) -1 v Since U U t U 2 Id and (A l -b l+1 I) -1 is symmetric, it is sufficient to choose v so that (3) v t (A l -b l+1 I) -2 v 1 U 2 (φ(A l , b l ) -φ(A l , b l+1 )) -1 -v t (A l -b l+1 I) -1 v
Recall the notation

I D := {j m | α j = 0}
where (α j ) j m are the diagonal entries of D. Since we have assumed that Ker(D) ⊂ Ker(U ), we have

U 2 HS = j m U e j 2 2 = j∈I D U e j 2 2 |I D | • U 2 ,
and thus

|I D | U 2 HS U 2 .
At each step, we will select a vector v satisfying (3) among ( U e j α j ) j∈I D . Our task therefore is to find j

∈ I D such that (4) (U e j ) t (A l -b l+1 I) -2 U e j φ(A l , b l ) -φ(A l , b l+1 ) U 2 -α 2 j -(U e j ) t (A l -b l+1 I) -1 U e j
The existence of such a j ∈ I D is guaranteed by the fact that condition (4) holds true if we take the sum over all ( U e j α j ) j∈D . The hypothesis Ker(D) ⊂ Ker(U ) implies that:

• j∈I D (U e j ) t (A l -b l+1 I) -2 U e j = Tr U t (A l -b l+1 I) -2 U , • j∈I D (U e j ) t (A l -b l+1 I) -1 U e j = Tr U t (A l -b l+1 I) -1 U .
Therefore it is enough to prove that, at each step, one has ( 5)

Tr(U t (A l -b l+1 I) -2 U ) φ(A l , b l ) -φ(A l , b l+1 ) U 2 -D 2 HS -φ(A l , b l+1 )
The rest of the proof is similar to the one in [START_REF] Srivastava | Spectral Sparsification and Restricted Invertibility[END_REF]. One just needs to replace m by D 2 HS . For the sake of completeness, we include the proof. The next lemma will determine the conditions required at each step in order to prove (5).

Lemma 2.2. Suppose that A l has l nonzero eigenvalues all greater than b l , and write Z for the orthogonal projection onto the kernel of A l . If Proof. As mentioned before, it is enough to prove inequality [START_REF] Diestel | Absolutely summing operators[END_REF]. We set

(6) φ(A l , b l ) -D 2 HS - U 2 δ and (7) 0 < δ < b l δ ZU 2 HS U 2 , then there exists i ∈ I D such that A l+1 := A l + U e i α i • U e i
∆ l := φ(A l , b l ) - φ(A l+1 , b l+1 ). By (6), we get φ(A l , b l+1 ) -D 2 HS - U 2 δ -∆ l .
Inserting this in [START_REF] Diestel | Absolutely summing operators[END_REF], we see that it is sufficient to prove the following inequality:

(8)

Tr U t (A l -b l+1 I) -2 U ∆ l ∆ l U 2 + 1 δ .
Now, denote by P the orthogonal projection onto the image of A l . We set

φ P (A l , b l ) := Tr U t P (A l -b l I) -1 P U and ∆ P l := φ P (A l , b l ) -φ P (A l , b l+1
) and use similar notation for Z. Since P , Z and A l commute, one can write

∆ l = ∆ P l + ∆ Z l and φ(A l , b l ) = φ P (A l , b l ) + φ Z (A l , b l ).
Note that:

(A l -b l I) -1 -(A l -b l+1 I) -1 = (A l -b l I) -1 (b l I -A l + A l -b l+1 I)(A l -b l+1 I) -1 = δ(A l -b l I) -1 (A l -b l+1 I) -1
and since P (A l -b l I) -1 P and P (A l -b l+1 I) -1 P are positive semidefinite, we have:

U t P (A l -b l I) -1 P U -U t P (A l -b l+1 I) -1 P U δU t P (A l -b l+1 I) -2 P U.
Inserting this in [START_REF] Giannopoulos | A proportional Dvoretzky-Rogers factorization result[END_REF], it is enough to prove that:

Tr U t Z(A l -b l+1 I) -2 ZU ∆ l ∆ l U 2 + 1 δ - ∆ P l δ .
Since A l Z = 0, we have:

• Tr(U t Z(A l -b l+1 I) -2 ZU ) = ZU 2 HS b 2 l+1 and • ∆ Z l = - ZU 2 HS b l + ZU 2 HS b l+1 = δ ZU 2

HS

b l b l+1 , so taking into account the fact that ∆ l ∆ Z l 0, it remains to prove the following:

(9) ZU 2 HS b 2 l+1 δ 2 ZU 4 HS U 2 2 b 2 l b 2 l+1 + ZU 2 HS b l b l+1 .
By Hypothesis [START_REF] Giannopoulos | A note on the Banach-Mazur distance to the cube[END_REF], this last inequality follows by

(10) ZU 2 HS b 2 l+1 δ ZU 2 HS b l b 2 l+1 + ZU 2 HS b l b l+1 , which is trivially true since b l+1 = b l -δ.
We are now able to complete the proof of Theorem 1.1. To this end, we must verify that conditions ( 6) and ( 7) hold at each step. At the beginning we have A 0 = 0 and Z = Id, so we must choose a barrier b 0 such that:

(11) - U 2 HS b 0 -D 2 HS - U 2 δ and (12) b 0 δ U 2 HS U 2 .
We choose

b 0 := ε U 2 HS D 2 HS and δ := ε 1 -ε U 2 D 2

HS

, and we note that [START_REF] Kashin | Some remarks on the restriction of operators to coordinate subspaces[END_REF] and ( 12) are verified. Also, at each step [START_REF] Dvoretzky | Absolute and unconditional convergence in normed linear spaces[END_REF] 

holds because φ(A l+1 , b l+1 ) φ(A l , b l ). Since ZU 2
HS decreases at each step by at most U 2 , the right-hand side of ( 7) decreases by at most δ, and therefore (7) holds once we replace b l by b l -δ.

Finally note that, after k = (1 -ε) 2 U 2 HS U 2 steps, the barrier will be

b k = b 0 -kδ = ε 2 U 2 HS D 2 HS .
This completes the proof.

PROPORTIONNAL DVORETZKY-ROGERS FACTORIZATION

Let BM n denote the space of all n-dimensional normed spaces X, known as the Banach-Mazur compactum. If X, Y are in BM n , we define the Banach-Mazur distance between X and Y as follows: By the classical Dvoretzky-Rogers lemma [START_REF] Dvoretzky | Absolute and unconditional convergence in normed linear spaces[END_REF], it is proven that if X is an n-dimensional Banach space then there exist x 1 , ..., x m ∈ X with m = √ n such that for all scalars (a j ) j m max j m

d(X, Y ) = inf{ T • T -1 | T is
|a j | j m a j x j X c   j m a 2 j   1 2
, where c is a universal constant. Bourgain-Szarek [START_REF] Bourgain | The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization[END_REF] proved that the previous statement holds for m proportional to n, and called the result "the proportional Dvoretzky-Rogers factorization":

Theorem B (Proportional Dvoretzky-Rogers factorization). Let X be an n-dimensional Banach space. ∀ε ∈ (0, 1), there exist x 1 , ...,

x k ∈ X with k [(1 -ε)n] such that for all scalars (a j ) j k max j k |a j | j k a j x j X c(ε)   j k a 2 j   1 2
, where c(ε) is a constant depending on ε. Equivalently, the identity operator i 2,∞ :

l k 2 -→ l k ∞ can be written i 2,∞ = α • β with β : l k 2 -→ X, α : X -→ l k ∞ and α • β c(ε).
Finding the right dependence on ε is an important problem and the optimal result is not known yet. In [START_REF] Szarek | Spaces with large distance to l n ∞ and random matrices[END_REF], Szarek showed that one cannot hope for a dependence better than cε -1 10 . Szarek-Talagrand [START_REF] Szarek | An "isomorphic" version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube[END_REF] proved that the previous result holds with c(ε) = cε -2 and in [START_REF] Giannopoulos | A note on the Banach-Mazur distance to the cube[END_REF] and [START_REF] Giannopoulos | A proportional Dvoretzky-Rogers factorization result[END_REF] Giannopoulos improved the dependence to get cε -3 2 and cε -1 . In all these results, a factorization for the identity operator i 1,2 : l k 1 -→ l k 2 was proven and by duality the factorization for i 2,∞ was deduced. The previous proofs used some geometric results, technical combinatorics and Grothendieck's factorization theorem. Here we present a direct proof using Theorem 1.1 which allows us to recover the best known dependence on ε and improve the universal constant involved.

Note that Theorem B can be formulated with symmetric convex bodies. In [START_REF] Litvak | Random aspects of high-dimensional convex bodies[END_REF], Litvak and Tomczak-Jaegermann proved a nonsymmetric version of the proportional Dvoretzky-Rogers factorization:

Theorem C (Litvak-Tomczak-Jaegermann). Let K ⊂ R n be a convex body, such that B n 2 is the ellipsoid of minimal volume containing K. Let ε ∈ (0, 1) and set k = [(1 -ε)n]. There exist vectors y 1 , y 2 , ..., y k in K, and an orthogonal projection P in R n with rank P k such that for all scalars t 1 , ..., t k

cε 3   k j=1 |t j | 2   1 2 k j=1 t j P y j P K 6 ε k j=1 |t j |,
where c > 0 is a universal constant.

Using again Theorem 1.1 combined with some tools developped in [START_REF] Bourgain | The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization[END_REF] and [START_REF] Litvak | Random aspects of high-dimensional convex bodies[END_REF], we will be able to improve the dependence on ε in the previous statement.

3.1. The symmetric case. Let us start with the original proportional Dvoretzky-Rogers factorization. We will prove the following: Theorem 3.2. Let X be an n-dimensional Banach space. ∀ε ∈ (0, 1), there exist x 1 , ..., x k ∈ X with k [(1 -ε) 2 n] such that for all scalars (a j ) j m

ε   j k a 2 j   1 2 j k a j x j X j k |a j | Equivalently, the identity operator i 1,2 : l k 1 -→ l k 2 can be written as i 1,2 = α • β, where β : l k 1 -→ X, α : X -→ l k 2 and α • β ε -1 .
Proof. Without loss of generality, we may assume that X = (R n , • X ) and B n 2 is the ellipsoid of minimal volume containing B X . By John's theorem [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF] there exist x 1 , ..., x m contact points of B X with B n 2 ( x j X = x j X * = x j 2 = 1) and positive scalars c 1 , ..., c m such that 

Id = j m c j x j x t j and • 2 • X Let U = √ c 1 x 1 , ..., √ c m x m
k = |σ| (1 -ε) 2 n
and for all a = (a j ) j m

(13) U σ D -1 σ a 2 = j∈σ a j x j 2 ε   j∈σ |a j | 2   1 2
To simplify the notations, we may assume that σ = {1, . . . , k}. Denote P the orthogonal projection of X onto Y = span {(x j ) j k }. Now note that (13) guarantees that the (x j ) j k are linearly independent and therefore that P is of rank k. Define T and β as follows:

β : l k 1 → X and T : Y → l k 2
e j → x j for j k x j → e j for j k and write α = T P . For a = (a j ) j k ∈ R k , by the triangle inequality we have

β(a) X = j k a j x j X j k |a j | • x j X = j k |a j |,
and therefore β 1. Now let x ∈ X, then P x ∈ Y and one can write P x = j k a j x j . Using (13) we get

α(x) 2 =   j k a 2 j   1 2 1 ε j k a j x j 2 = 1 ε P x 2 1 ε x 2 1 ε x X ,
and therefore α ε -1 which finishes the proof.

As a direct application of the previous result, we have Corollary 3.3. Let X be an n-dimensional Banach space. For any ε ∈ (0, 1), there exists Y a subspace of

X of dimension k [(1 -ε) 2 n] such that d(Y, l k 1 )
√ n ε . 3.2. The nonsymmetric case. Let us now turn to the nonsymmetric version of Theorem 3.2. We will prove the following: Theorem 3.4. Let K ⊂ R n be a convex body, such that B n 2 is the ellipsoid of minimal volume containing K. ∀ε ∈ (0, 1), there exist x 1 , ..., x k with k [(1 -ε)n] contact points and there exists P an orthogonal projection of rank k such that for all (a j ) j k

ε 2 16   k j=1 |a j | 2   1 2 k j=1 a j P x j P K 4 ε k j=1 |a j |
Proof. By John's Theorem [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF], we get an identity decomposition in R n Id = j m c j x j x t j and j m c j x j = 0 where x 1 , ..., x m are contact points of K and B n 2 and (c j ) j m positive scalars. Note that we will not use the second assertion i.e the fact that j m c j x j = 0.

As before, take U = √ c 1 x 1 , ..., √ c m x m the n × m rectangular matrix whose columns are √ c j x j . Denote D = diag( √ c 1 , ..., √ c m ) the m × m diagonal matrix with √ c j on its diagonal.

Applying Theorem 1.1 to U and D with ε 4 , we find σ 1 ⊂ {1, ..., m} such that

s = |σ 1 | 1 - ε 4 2 n (1 - ε 2 )n
and for all a = (a j ) j m

(14) U σ 1 D -1 σ 1 a 2 = j∈σ 1 a j x j 2 ε 4   j∈σ 1 |a j | 2   1 2
Define Y = span{x j } j∈σ 1 . We will now use the argument of Litvak and Tomczak-Jaegermann to construct the projection P . First partition σ 1 into ε 2 s disjoint subsets A l of equal size. Clearly

|A l | s [ ε 2 s] + 1 2 ε • ε 2 s [ ε 2 s] + 1 4 ε + 1
Let z l = i∈A l x i and take P : Y -→ Y the orthogonal projection onto span{z l } ⊥ . For every l, we have P z l = 0 so that for j ∈ A l we can write

-P x j = i∈A l ,i =j P x i = (|A l | -1) • 1 |A l | -1 i∈A l ,i =j P x i
We deduce that for every l and every j ∈ A l , we have -P

x j ∈ (|A l | -1) P K ⊂ 4 ε P K.
Let T : R |σ 1 | -→ Y a linear operator defined by T e j = x j for all j ∈ σ 1 , where (e j ) j∈σ 1 denotes the canonical basis of R |σ 1 | and Y is equipped with the euclidean norm. Since (x j ) j s are linearly independent, T is an isomorphism. Moreover, by [START_REF] Lunin | On operator norms of submatrices[END_REF], we have T -1 4 ε . Take P = T -1 P T and P the orthogonal projection onto ImP . It is easy to check that P P = P and

k = rankP = rankP 1 - ε 2 s (1 -ε) n
For all scalars (a j ) j∈σ 1 ,

j∈σ 1 a j P x j 2 = j∈σ 1 a j P T e j 2 = j∈σ 1 T (a j P e j ) 2 1 T -1 • j∈σ 1 a j P e j 2 ε 4 • j∈σ 1 a j P e j 2
Now take U = (P e 1 , ..., P e s ) the s×s matrix whose columns are (P e j ). Apply Theorem 1.1 with U and Id as diagonal matrix and ε 4 as parameter, then there exists σ ⊂ σ 1 of size

|σ| 1 - ε 4 2 s (1 -ε)n
such that for all scalars (a j ) j∈σ , j∈σ

a j P e j 2 ε 4   j∈σ |a j | 2   1 2
This gives us the following j∈σ

a j P x j 2 ε 4 • j∈σ a j P e j 2 ε 2 16   j∈σ |a j | 2   1 2
On the other hand, since K ⊂ B n 2 we have P K ⊂ B k 2 and therefore j∈σ a j P x j 2 j∈σ a j P x j P K

Denoting A = -P K ∩ P K which is a centrally symmetric convex body and using the fact that -P y j ∈ 4 ε P K alongside the triangle inequality, one can write j∈σ

a j P x j A 4 ε j∈σ |a j |
Finally, we have

ε 2 16   j∈σ |a j | 2   1 2
j∈σ a j P x j 2 j∈σ a j P x j P K j∈σ

a j P x j A 4 ε j∈σ |a j |
One can interpret the previous result geometrically as follows:

Corollary 3.5. Let K ⊂ R n be a convex body such that B n 2 is the ellipsoid of minimal volume containing K. ∀ε ∈ (0, 1), there exists P an orthogonal projection of rank k

[(1 -ε)n] such that ε 4 B k 1 ⊂ P K ⊂ 16 ε 2 B k 2 .
Moreover,

d(P K, B k 1 ) 64 √ n ε 3 .
By duality, this means that there exists a subspace

E ⊂ R n of dimension k [(1 -ε)n] such that ε 2 16 B k 2 ⊂ K ∩ E ⊂ 4 ε B k ∞ . Moreover, d(K ∩ E, B k ∞ ) 64 √ n ε 3 . 3.3.
Estimate of the Banach-Mazur distance to the Cube. In [START_REF] Bourgain | The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization[END_REF], Bourgain-Szarek showed how to estimate the Banach-Mazur distance to the cube once a proportional Dvoretzky-Rogers factorization is proven. This technique was again used in [START_REF] Giannopoulos | A note on the Banach-Mazur distance to the cube[END_REF] and [START_REF] Szarek | An "isomorphic" version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube[END_REF]. Since we are able to obtain a proportional Dvoretzky-Rogers factorization with a better constant, using the same argument we will recover the best known asymptotic for the Banach-Mazur distance to the cube and improve the constants involved. Let us start defining

R n ∞ = max {d(X, l n ∞ )/ X ∈ BM n } Similarly one can define R n
1 , and since the Banach-Mazur distance is invariant by duality then

R n 1 = R n ∞ .
It follows from John's theorem [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF] that the diameter of BM n is less than n and therefore a trivial estimate is R n ∞ n. In [START_REF] Szarek | Spaces with large distance to l n ∞ and random matrices[END_REF], Szarek showed the existence of an n-dimensional [START_REF] Szarek | An "isomorphic" version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube[END_REF] and Giannopoulos [START_REF] Giannopoulos | A note on the Banach-Mazur distance to the cube[END_REF] improved this upper bound to cn 7 8 and cn 5 6 respectively. Here, we will prove the following estimate: Theorem 3.6. Let X be an n-dimensional Banach space. Then d(X, l n 1 ) 2

Banach space X such that d(X, l n ∞ ) c √ n log(n). Bourgain-Szarek proved in [3] that R n ∞ o(n) while Szarek-Talagrand
5 6 √ n • d(X, l n 2 ) 2 3 . 
Since by John's theorem [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF], for any X ∈ BM n we have d(X, l n 2 )

√ n then we get the following:

Corollary 3.7. R n 1 = R n ∞ (2n) 5 6 . 
Proof of Theorem 3.6. We denote d X = d(X, l n 2 ). In order to bound d(X, l n 1 ), we need to define an isomorphism T : l n 1 -→ X and estimate T • T -1 . A natural way is to find a basis of X and then define T the operator which sends the canonical basis of R n to this basis of X. The main idea is to find a "large" subspace Y of X which is "not too far" from l 1 (actually more is needed), then complement the basis of Y to obtain a basis of X. Finding the "large" subspace is the heart of the method and is given by the proportional Dvoretzky-Rogers factorization. The proof is mainly divided in four steps: -First step: Place B X into a "good" position. Since the Banach-Mazur distance is invariant under linear transformation, we may change the position of B X . Therefore without loss of generality we may assume that

• 2 • X d X • 2 -Second step: Let ε > 0 and set k = (1 -2ε)n. Apply Theorem 3.2 to find x 1 , ..., x k in X such that for all scalars (a j ) j k (15) ε   j k a 2 j   1 2 j k a j x j X j k |a j |
Note that (x j ) j k are linearly independent and are a good candidate to be part of the basis of X.

-Third step: To form a basis of X, we simply take y k+1 , .., y n an orthogonal basis of span{(x j ) j k } ⊥ such that y j 2 = 1 d X . By [START_REF] Spielman | An elementary proof of the restricted invertibility theorem[END_REF], we have ∀j > k, y j X 1 -Fourth step Define T : l k 1 -→ X by T (e j ) = x j if j k and T (e j ) = y j if j > k. Let a = (a j ) j n ∈ R n and

T a = k j=1 a j x j + n j=k+1 a j y j .
Then using the triangle inequality and [START_REF] Spielman | An elementary proof of the restricted invertibility theorem[END_REF], one can write

a 1 = j k |a j | + j>k |a j | j k a j x j + j>k a j y j X j k a j x j + j>k a j y j 2 .
We also have

T a 2    j k a j x j 2 2 + j>k a j y j 2 2    1 2
by orthogonality

  ε 2 j k a 2 j + j>k a 2 j y j 2 2   1 2    ε 2 n   j k |a j |   2 + 1 d 2 X (n -k)   j>k |a j |   2    1 2 by Cauchy-Shwarz    ε 2 n   j k |a j |   2 + 1 2εnd 2 X   j>k |a j |   2    1 2 1 √ 2   ε √ n j k |a j | + 1 d X √ 2εn j>k |a j |   1 2 5 6 √ nd 2 3 X n j=1 |a j | taking ε = ( √ 2d X ) -2 3 .
As a conclusion, 1 2

5 6 √ nd 2 3 X a 1 T a X a 1
and therefore d(X, l n 1 ) 2

5 6 √ nd 2 3
X for all X ∈ BM n . Remark 3.8. Here we are interested in high dimensional results; this is why the constant is not that important. If we want an estimate for "small" dimensions, then the value of the constant becomes important. In [START_REF] Giannopoulos | A note on the Banach-Mazur distance to the cube[END_REF], Giannopoulos proved that R n ∞ cn 5 6 with c = ( √ 2-1)

1 3 ∼ 3, 0116,
and thus his result becomes nontrivial when the dimension is larger than 747. On the other hand, our result becomes nontrivial whenever the dimension is bigger than 32. Moreover, if we are interested in small dimensions, we can obtain a better result by choosing ε in the last inequality in a different way: in fact we have chosen ε = (2n) -1 3 (replacing d X with √ n) in the asymptotic regime, otherwise one just need to optimize on ε so that it satisfies

ε √ (1-ε) 2 n = 1 n √
1-(1-ε) 2 ; then our result becomes nontrivial when the dimension is larger than 16. In [START_REF] Taschuk | The Banach-Mazur distance to the cube in low dimensions[END_REF], Taschuk has also obtained an estimate for the Banach-Mazur distance to the cube of "small"-dimensional spaces. Precisely, he proved the following

R n ∞ n 2 -2n + 2 + 2 √
n + 2 -1 One can check that our result improves on that whenever the dimension is larger than 22.

PROJECTION ON COORDINATE SUBSPACES

Given an n × m matrix U and an integer k m, our aim is to find a coordinate projection of U of rank k which gives the best minimal operator norm among all coordinate projections. First results were obtained by Lunin [START_REF] Lunin | On operator norms of submatrices[END_REF], and a complete answer to this question was given by Kashin-Tzafriri [START_REF] Kashin | Some remarks on the restriction of operators to coordinate subspaces[END_REF] who proved the following:

Theorem D (Kashin-Tzafriri). Let U be an n × m matrix. Fix λ with 1/m λ 1 4 . Then, there exists a subset ν of {1, . . . , m} of cardinality |ν| λm such that

U ν c √ λ U 2 + U HS √ m ,
where U ν = U P ν and P ν denotes the coordinate projection onto R ν .

The conclusion of the Theorem states that for a fixed λ < 

U σ c √ λ U + U HS √ m ,
and this estimate is optimal in the sense that the dependence on the parameters in the right hand side cannot be improved. Kashin-Tzafriri's proof (see [START_REF] Vershynin | John's decompositions: selecting a large part[END_REF]) uses the selectors with some other probabilistic arguments and the Grothendieck's factorization Theorem. In [START_REF] Tropp | Column subset selection, matrix factorization, and eigenvalue optimization[END_REF], Tropp gave a randomized algorithm to realize Grothendieck's factorization theorem and therefore he was able to give a randomized algorithm to find the subset σ promised in Theorem C.

Our aim here is to give a deterministic algorithm to find the subset σ. Our method uses tools from the work of Batson-Spielman-Srivastava [START_REF] Batson | Twice-Ramanujan sparsifiers[END_REF] and allows us to improve Kashin-Tzafriri's result by extending the size of the coordinate projection and getting better constants in the result. Theorem 4.1. Let U be an n × m matrix and let 1/m λ η < 1. Then, there exists σ ⊂ {1, . . . , m} with |σ| = k λm such that

U σ 1 √ 1 -λ λ + η U + 1 + λ η U HS √ m ,
In particular,

U σ √ 2 √ 1 -λ √ λ U + U HS √ m ,
where U σ denotes the selection of the columns of U with indices in σ.

Proof. We denote by (e j ) j m the canonical basis of R m . Since

U σ • U t σ = j σ (U e j ) • (U e j ) t ,
our problem reduces to the question of estimating the largest eigenvalue of this sum of rank one matrices. We will follow the same procedure as in the proof of the restricted invertibility theorem: at each step, we would like to add a column of the original matrix and then study the evolution of the largest eigenvalue. However, it will be convenient for us to add suitable multiples of the columns of U in order to construct the l-th matrix; for each l we will choose a subset σ k of cardinality |σ l | = l and consider the matrix A l = j∈σ l s j (U e j ) • (U e j ) t where (s j ) j∈σ will be positive numbers which will be suitably chosen. At the step l, the barrier will be denoted by u l , namely the eigenvalues of A l will be all smaller than u l . The corresponding potential is ψ(A l , u l ) := Tr (U t (u l I -A l ) -1 U ). We set A 0 = 0, while u 0 will be determined later.

As we did before, at each step the value of the potential ψ(A l , u l ) will decrease so that we can continue the iteration, while the value of the barrier will increase by a constant δ, i.e. u l+1 = u l + δ. We will use a lemma which appears as Lemma 3.4 in [START_REF] Srivastava | Spectral Sparsification and Restricted Invertibility[END_REF]. We state it here in the notation introduced above. Lemma 4.2. Assume that λ max (A l ) u l . Let v be a vector in R n satisfying

F l (v) := v t (u l+1 I -A l ) -2 v ψ(A l , u l ) -ψ(A l , u l+1 ) U 2 + v t (u l+1 I -A l ) -1 v 1 s .
Then, if we define A l+1 = A l + svv t we have λ max (A l+1 ) u l+1 and ψ(A l+1 , u l+1 ) ψ(A l , u l ).

Proof. Using Sherman-Morrison formula we have:

ψ(A l+1 , u l+1 ) = Tr U t u l+1 I -A l -svv t U = Tr U t (u l+1 I -A l ) U + sv t (u l+1 I -A l ) -1 U U t (u l+1 I -A l ) -1 v 1 -sv t (u l+1 I -A l ) -1 v ψ(A l , u l ) -(ψ(A l , u l ) -ψ(A l , u l+1 )) + v t (u l+1 I -A l ) -2 v 1 s -v t (u l+1 I -A l ) -1 v U 2
Since v t (u l+1 I -A l ) -1 v < F l (v) and F l (v)

1 s we deduce that the quantity above is finite. This implies that λ max (A l+1 ) < u l+1 , since otherwise one would find s < s such that λ max (A l + s vv t ) = u l+1 and therefore ψ(A l + s vv t , u l+1 ) would blow up which contradicts the fact that it is finite. On the other hand, rearranging the inequality above using the fact that F l (v) 1 s we get ψ(A l+1 , u l+1 ) ψ(A l , u l ).

We write α for the initial potential, i.e. α = U 2 HS u 0 . Suppose that A l = j∈σ l s j (U e j )•(U e j ) t is constructed so that ψ(A l , u l ) ψ(A l-1 , u l-1 ) α and λ max (A l ) u l . We will now use Lemma 4.2 in order to construct A l+1 . To this end, we must find a vector U e j not chosen before and a scalar s l+1 so that F l (U e j ) 1 s l+1 , and then use the lemma. Since (u l I -A l ) -1 and (u l+1 I -A l ) -1 are positive semidefinite, one can easily check that

(u l I -A l ) -1 -(u l+1 I -A l ) -1 δ(u l+1 I -A l ) -2 .
Therefore,

Tr U t (u l+1 I -A l ) -2 U 1 δ (ψ(A l , u l ) -ψ(A l , u l+1 )) .
It follows that j ∈σ l F l (U e j ) j m F l (U e j ) = T r (U t (u l+1 I -A l ) -2 U ) ψ(A l , u l ) -ψ(A l , u l+1 ) U 2 + ψ(A l , u l+1 )

U 2 δ + α,
and therefore one can find i ∈ σ l such that

F l (U e i ) 1 |σ c l | U 2 δ + α 1 |σ c k | U 2 δ + α ,
where k is the maximum number of steps (which is in our case λm).

We are going to choose all s j equal to s := (1-λ)m α+ U 2 δ

. By the previous lemma, it is sufficient to take A l+1 = A l + s (U e i ) • (U e i ) t . After k = λm steps, we get σ = σ k such that

λ max   j∈σ k (U e j ) • (U e j ) t   1 s (u 0 + kδ) = α + U 2 δ (1 -λ)m (u 0 + kδ) = 1 1 -λ U 2 HS m + λ U 2 + λ U 2 HS δ u 0 + U 2 m u 0 δ
The result follows by taking u 0 = ηmδ. The second part of the theorem follows by taking λ = η.
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α i t has l + 1

 1 nonzero eigenvalues all greater than b l+1 := b l -δ and φ(A l+1 , b l+1 ) φ(A l , b l ).

  an isomorphism between X and Y } Remark 3.1. For K, L two symmetric convex bodies in R n , one can define the Banach-Mazur distance between K and L asd(K, L) = inf {α/β | βL ⊂ T (K) ⊂ αL}One can easily check that this distance is coherent with the previous one as d(X, Y ) = d(B X , B Y ).

  be the n × m rectangular matrix whose columns are √ c j x j and denote D = diag( √ c 1 , ..., √ c m ) the m × m diagonal matrix with √ c j on its diagonal. Let ε < 1, applying Theorem 1.1 to U and D, we find σ ⊂ {1, ..., m} such that

2

 2 

  rank equal to k = |σ| and its smallest positive eigenvalue is greater than ε 2 U 2

	HS HS D 2	. Note that