
HAL Id: hal-00811748
https://hal.science/hal-00811748v1

Submitted on 11 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter optimization of a Fuzzy Inference System
using the FisPro open source software

Serge Guillaume, Brigitte Charnomordic

To cite this version:
Serge Guillaume, Brigitte Charnomordic. Parameter optimization of a Fuzzy Inference System us-
ing the FisPro open source software. IEEE International Conference on Fuzzy Systems, Jun 2012,
Brisbane, Australia. p. 402 - p. 409. �hal-00811748�

https://hal.science/hal-00811748v1
https://hal.archives-ouvertes.fr

Parameter optimization of a Fuzzy Inference System using the
FisPro open source software

Serge Guillaume, Brigitte Charnomordic

Abstract—This paper proposes a flexible optimization se-
quence that can be applied to any parameter of a fuzzy inference
system. Interrelated parameters can be optimized together,
and criteria include system accuracy and coverage. The fuzzy
inference system structure is preserved and constraints are
imposed to respect the fuzzy partition semantics. The procedure
described here uses a Solis & Wets based algorithm, but the
approach remains valid for other optimization techniques, pro-
vided that they accept semantic constraints. The optimization
sequence is implemented in an open source software, FisPro,
made for fuzzy inference system design and tuning.

I. INTRODUCTION

Fuzzy Inference Systems (FIS) are widely used in system
modeling either for classification or regression purposes.
Their acknowledged originality stems from the linguistic
interpretability of the fuzzy rules while they are able to
reach a comparable level of accuracy to the one gained by
alternative methods.

Whatever the technique used to design the FIS, their
numerical accuracy can be improved by optimizing their
different parts. This objective should be carried out without
loosing the system interpretability [2], [10].

Historically, research teams have been interested in dif-
ferent levels of FIS optimization falling into two main
categories: structure and parameter optimization. Various
methods are available for both levels: analytical methods,
mainly based on gradient descent [3], or evolutionist ones,
typically genetic algorithms [1] as well as ant colony tech-
niques [20].

Structure optimization deals with the definition of vari-
ables and rules. Feature selection can be carried out at the
global level as well as at the local rule level. The difference
between local and global levels is that the removed input
variable is no more available for any of the rules when
unselected at the global level. The number of membership
functions (MF) can also be tuned by appropriate algorithms.
Rule base optimization can be achieved using incremental
procedures, fuzzy set or cluster merging, or else rule selection
can be done using statistical criteria. A survey of those
structure optimization methods can be found in [14].

This paper focuses on parameter optimization, MF pa-
rameters and rule conclusions. It does not introduce a new
algorithm, but proposes an innovative optimization sequence
for the different FIS parameters. The optimization procedure
includes a ten-fold cross validation and a simple way to

Serge Guillaume is with the Cemagref, UMR ITAP, BP 5095, 34196
Montpellier, France (email: serge.guillaume@irstea.fr).

Brigitte Charnomordic is with the INRA/SupAgro, UMR MISTEA, 34060
Montpellier, France (email:bch@supagro.inra.fr).

define the final optimized system. The procedure is generic,
and it is illustrated using a simple and efficient evolutionist
algorithm.

All of the developments are implemented in an open
source software called FisPro1, which is used to illustrate
the approach with two benchmark data sets from the UCI
repository.

The next section recalls the main features of FisPro, and
the importance of fuzzy partitioning for system interpretabi-
lity. The optimization process is detailed in Section 3. Section
4 is dedicated to the experimental setup and results. Finally,
the main conclusions are summarized in Section 5.

II. FISPRO: DESIGN AND MAIN FEATURES

FisPro is a toolkit for FIS design and optimization. Four
points are of interest:

• the FIS interpretability. This is the main originality of
FisPro, as interpretability is guaranteed in each step:
variable partitioning, rule induction, rule base simplifi-
cation, optimization.

• a modular, portable software architecture that allows
platform independence and facilitates extension writing.

• the open source license.
• the C++ function library, which can be used indepen-

dently of the interface, for instance to design batch
sequences of optimization runs.

Let us recall the main functionalities of FisPro.

A. Designing FIS from expert knowledge and data

FisPro allows to design fuzzy systems from the expert
knowledge available in a given field. It also implements
the automatic design of a fuzzy inference system from the
numerical data related to the problem under study.

• FIS design from expert knowledge
Two inference mechanisms are available in FisPro:
conjunctive rules, that represent joint sets of possible
input and output values, and another kind of fuzzy rules
[26], [8], called implicative rules, which model the input

1http://www.inra.fr/mia/M/fispro/

Author-produced version

in : IEEE International Conference on Fuzzy Systems, Brisbane, AUS,10-15 June 2012

output relationship using a fuzzy implication, and gene-
ralize the classical logic rules. They encode constraints
and each rule defines a fuzzy restriction on the set
of possible values. The difference of nature between
conjunctive and implicative rules impacts rule combi-
nation: while several conjunctive rules are combined
disjunctively (as they widen the scope of a single rule),
implicative rules are combined conjunctively, because
several constraints lead to a more restricted feasible set
of allowed situations than a single constraint. All details
can be found in [19]. Implicative rules are ususally
designed by experts.

• Learning FIS from data
To guarantee interpretability, FisPro proposes a learning
approach [16] decomposed into several steps: fuzzy
input (plus fuzzy output if defined) partitioning, rule
induction and rule base simplification. Fuzzy partition-
ing will be discussed in Section II-B, a brief discussion
on rule learning is done in Section II-C.

• Assessing the FIS behavior
To help users to assess the rule representativity, an
option that evaluates the links between rules and exam-
ples is available. A detailed cross-summary is accessible
giving, for each rule, the samples that fire this rule above
a given matching degree, and for each sample, the rules
that are fired.
Inference can be done manually or on the current data
file, with evaluation criteria which take into account
the numerical accuracy as well as the significance of
data items regarding the FIS. Response surfaces are
also available for an exploratory analysis of the system
behavior.

• Sampling from a data file
Random sampling from a data file is included in
FisPro to facilitate the setting of robust learning and
optimization procedures, and to avoid overfitting. Two
possibilities are given for sample generation: to generate
learning and test pairs, or blocks.
In the first case, each pair includes a sample file and its
complement, with a given relative sample file size. In
the second case, the procedure splits the data file into
K blocks for K-fold cross validation procedures.
Sampling can be done with respect to the class pro-
portions in a data file. A FisPro snapshot is shown in
Figure 1.

Semantic constraints are implemented in FisPro learning
techniques. This is to avoid a common drawback of many
automatic learning methods, which, in the absence of such
constraints, unfortunately may lead to uninterpretable sys-
tems.

B. Linguistic variable and fuzzy partitioning
The readability of fuzzy partitioning is a pre-requisite

condition to build an interpretable rule base [17]. The ne-
cessary conditions for interpretable fuzzy partitions have
been studied by several authors [21], [6], [13]. Let us recall
the main points:

Fig. 1. The sample generation window in FisPro

• Distinguishability: Semantic integrity requires that each
of the membership functions represents a distinct lin-
guistic concept.

• A justifiable number of fuzzy sets.
• Coverage: Each data point, x, should belong signifi-

cantly, μ(x) > ε, at least to one fuzzy set. ε is called
the coverage level.

• Normalization: All the fuzzy sets should be normal.
• Overlapping: All the fuzzy sets should significantly

overlap.

1 1 2 4 5

0

3

c2 c3 c4 c5c1
Fig. 2. A five linguistic strong fuzzy partition

These requirements are all fulfilled by the strong fuzzy
partitions, illustrated in Figure 2, such as:{ ∀x ∑

f=1,2,...,m

μf (x) = 1

∀f ∃ x μf (x) = 1
(1)

where m is the number of fuzzy sets in the partition and
μf (x) is the membership degree of x to the fth fuzzy set.
Equation 1 means that any point belongs at most to two fuzzy
sets when the fuzzy sets are convex.

These partitions are fully defined by a set of m points, m
being equal to the number of linguistic terms, denoted by ci,
i = 1, . . . , 5, in Figure 2. Various techniques are available to
identify these characteristic points from the data set.

In FisPro, fuzzy partitions can be manually built, by
specifying the MF shape and bounds. Or else, three methods
are available for automatic design . The first one generates
regular grids without taking into account the data distribution.
Another option is to use the classical k-means algorithm

Author-produced version

in : IEEE International Conference on Fuzzy Systems, Brisbane, AUS,10-15 June 2012

with various numbers of groups. The last available method is
called hfp, which stands for Hierarchical Fuzzy Partitioning.
It is described in [15]. According to the generation method,
the partitions are either independent one from the other
(k-means) or the k-1 term partition is derived from the k
term one by fuzzy set merging (hfp).

In Section IV, the k-means algorithm will be used to
generate the input fuzzy partitions of the FIS to be optimized.

C. Rule learning

In FisPro, all rule learning procedures produce conjunctive
rules. In the study presented in Section IV, conjunctive FIS
will be used in the optimization sequence, because it is
applied to FIS learned from data.

All the rule learning methods implemented in FisPro only
use the linguistic labels defined at the previous step, in
order to guarantee fuzzy set sharing and thus interpreta-
bility. Two broad categories of rule learning methods can
be distinguished: region based methods and prototype based
ones. In the case of region based methods, the rule premises
are chosen by splitting the input domains into regions and
selecting the relevant regions according to a given criterion
applied to the data set.

In the case of prototype based methods, the rule premises
are initialized from data by analyzing each row and building
the corresponding rule. The rule is kept if it satisfies a given
criterion, and assigned an appropriate conclusion.

Well known methods from both categories are available
in FisPro: Fuzzy Decision Trees [25] for the region based
family, Wang and Mendel algorithm [24], Orthogonal least
squares (OLS) [4], [5], [23], [18] for the prototype based
family. When necessary, they have been revisited to ensure
interpretable results. The key idea, which is valid for all
these revisited methods, is the use of predefined strong fuzzy
partitions for the rule generation, instead for instance of
the data based Gaussian membership functions used in the
original OLS.

A simple rule generation method, called FPA which stands
for Fast Prototyping Algorithm, is also available. Despite its
name, it belongs to the region based family.

Independently of the way the FIS was initially designed,
all of its parameters can be optimized. In the following, two
rule generation methods will be used to demonstate the utility
of optimization procedures: FPA and OLS. More details will
be given in Section IV.

III. THE OPTIMIZATION PROCEDURE

The optimization algorithm, proposed by Glorennec [12],
is based upon the work by Solis and Wets [22]. It is
summarized in Algorithm 1.

The vector of parameters is denoted by X(.) and the
system error by E(.).

The algorithm is a randomised hill-climber with an adap-
tive step size. Each step starts at a current vector X(.). A
deviate G(k) is chosen from a normal distribution whose
standard deviation is function of the Nmag parameter. This
is a simple method that can adapt its step size very quickly,

Algorithm 1: The Solis and Wets algorithm
input : Initial vector X(0), noise magnitude Nmag
output: The optimized vector, X = X(Max)

1 Initialization: k = 0, M (0) = 0.
2 while k ≤ Max do
3 Generate a Gaussian vector G(k),
4 with mean M (k) and noise magnitude Nmag
5 if E(X(k) +G(k)) < E(X(k)) then
6 X(k+1) = X(k) +G(k)

7 M (k+1) = 0.2M (k) + 0.4G(k)

8 else if E(X(k) −G(k)) < E(X(k)) then
9 X(k+1) = X(k) −G(k)

10 M (k+1) = M (k) − 0.4G(k)

11 else
12 X(k+1) = X(k)

13 M (k+1) = 0.5M (k)

14 end
15 k = k + 1
16 end

because it differs from pure random search algorithms in the
following way. The good directions in the research space
are memorized through the M vector (lines 7 and 10). This
biases the search process. In case of failure, the bias is
decreased in an exponential way (line 13).

The coefficient values 0.4, 0.2 and 0.5 are retained from
Solis and Wets’ experimental results in [22]. In the following
experiments, 0.005 is chosen for Nmag.

Solis and Wets established that convergence to a region
surrounding the optimum is inevitable under some mild
conditions (see [22] for details). As all random optimization
methods, it does not require the gradient of the problem to
be optimized and can therefore be used on functions that are
not continuous or differentiable.

All of the FIS parameters: input or output partitions, rule
conclusions, can be optimized by the process.

A. Control parameters and constraints

Several definitions are given below to introduce the Loss
of Coverage control parameter.

Definition 3.1: Data row items are labeled active or inac-
tive for a given rule base. A row item is active if its
maximum matching degree over all the rules is greater than a
user-defined threshold, denoted by blank threshold, inactive
otherwise.

Definition 3.2: The coverage index value for a given FIS

is CIk =
A

N
, where A is the number of active rows, N

the file size, and k the iteration number. CI0 stands for the
initial coverage index value.

Definition 3.3: The Loss of coverage for the kth iteration

is
CI0 − CIk

CI0
.

The Loss of coverage parameter is a control parame-
ter, used during the optimization procedure to reject fuzzy

Author-produced version

in : IEEE International Conference on Fuzzy Systems, Brisbane, AUS,10-15 June 2012

Fig. 3. The custom optimization window in FisPro

partition modifications that would degrade too much the
FIS representativeness. A decreased coverage may happen
because of an incomplete rule base.

Constraints can easily be imposed to guarantee semantic
properties. When optimizing MF parameters, all solutions
that do not lead to strong fuzzy partitions may be rejected
by being considered as failures. In the same way, it is also
possible to impose a minimum distance between characteris-
tic points.

B. Customizable procedure

FisPro Learning menu includes two optimization options
based on the Solis and Wets’ algorithm: either a very general
customizable procedure or a guided sequence. Figure 3
corresponds to the former one. It allows for individual selec-
tion of elements to be optimized together, either variables,
output (if fuzzy), MFs or/and rules. The advanced parameter
popup can be used to set algorithm parameters, like the seed
value for the random generator, if one wants repeatable trials.

However, because the space exploration is biased by the
M vector, it is better not to optimize all of the parameters

Author-produced version

in : IEEE International Conference on Fuzzy Systems, Brisbane, AUS,10-15 June 2012

in a single pass. Otherwise some components may behave in
opposite ways and penalize the search.

C. Guided sequence

Therefore it can be more efficient to design an optimization
sequence. This sequence is composed of several steps, each
of them optimizing a set of interrelated parameters. How to
define these sets? All rule conclusions have to be optimized
in the same process because a given sample is likely to fire
several rules. Similarly, fuzzy terms in an input fuzzy par-
tition come into mutual relationship and must be optimized
together. As a strong fuzzy partition is uniquely defined by
as many fuzzy set centers as linguistic terms, these center
values constitute the vector to be optimized.

The Solis & Wets algorithm does not guarantee a global
optimum. Consequently, the order in which the various
steps are done may change the optimization results. The
optimization procedure can be re-iterated in order to improve
the results. In the following, each iteration is called a loop.

The optimization procedure proposed in FisPro is summa-
rized below:

1) Call Fistree, the FisPro fuzzy decision tree, to sort
the input variables by order of importance. The most
influential variables come first in the tree hierarchy,

2) Optimize each of the selected input variables in turn
according to the sort order,

3) If the output is fuzzy, optimize the output partition,
4) Optimize the rule conclusions.
Note that the procedure does not require the variables to

be independent.
Figure 4 is a snapshot of the guided optimization win-

dow in FisPro. User-defined parameters include the blank
threshold and the allowed loss of coverage, as well as the
number of loops or iterations. Advanced parameters allow
users to change the noise magnitude default value and to set
the random generator seed. The default number of loops is
set to 2.

As desired, the optimization procedure does not modify
the system structure: the number of linguistic terms remains
the same for each variable, no input variable is added nor
removed in any rule.

This procedure also maintains the system interpretability.
Constraints are imposed to ensure the new partitions are
strong fuzzy partitions, and to keep the relative order of
linguistic terms within the partition: the kth fuzzy set center
value cannot be higher than the (k+1)th one.

IV. EXPERIMENTS

This section presents, compares and discusses results ob-
tained on two well known cases chosen in the UCI repository
[11]. The data sets are the following ones:

• Cpu-performance (209 samples):
Published by Ein-Dor and Feldmesser [9], this data
set contains the measured CPU performance and 6
continuous variables such as main memory size or
machine cycle time.

Fig. 4. The guided optimization window in FisPro

• Auto-mpg (392 samples):
Coming from the StatLib library maintained at Carnegie
Mellon University, this case concerns the prediction of
city-cycle fuel consumption in miles per gallon from 4
continuous and 3 multi-valued discrete variables.

For the experiments, a repeated random sub-sampling
cross validation method is used on each dataset. Ten pairs of
learning and test subsets are generated by random sampling
from the data set. For each pair, the learning subset size
is 75% of the data set size, and the test subset is the
complement of the learning subset. The noise magnitude for
Gaussian vector generation is 0.005. The tolerated loss of
coverage is 10%.

The error index is the Mean Absolute Error (MAE) defined
in Equation 2, yi and ŷi being respectively the observed and
inferred output for the ith example.

MAE =
1

A

A∑
i=1

|ŷi − yi| (2)

The index only takes into account active row items (see
Definition 3.1), A being the number of active items.

Tests have been carried out in the range 0.01 − 0.2 to
evaluate the sensitivity to the blank threshold defined in

Author-produced version

in : IEEE International Conference on Fuzzy Systems, Brisbane, AUS,10-15 June 2012

Section III and results proved not to be sensitive to this
threshold. In the following tables, this value is set to 0.1.

A. Two rule induction methods

In order to illustrate its generic behavior, the optimization
process has been tested with two rule bases generated with
two different induction algorithms. The first one is the Fis-
Pro implementation of the fuzzy Orthogonal Least Squares,
denoted by OLS, and the second one is called FPA which
stands for Fast Prototyping Algorithm. Some elements are
given below for each algorithm.

1) OLS: the algorithm is well known and thoroughly
described in [7]. It is a statistical based algorithm restricted
to regression models, and it yields uncorrelated rules which
explain a new part of variance. The higher the sample size,
the better the results.

2) FPA: the algorithm is simple and efficient for summa-
rizing data sets. It acts in two steps: first, all of the rules
corresponding to the input combinations are generated, and
second their conclusions are initialized according to the data
values.
In the regression case, this is achieved by Equation 3.

Cr =

∑
i∈Er

μr(xi) ∗ yi∑
i∈Er

μr(xi)
(3)

μr(xi) is the matching degree of the ith example for the
rth rule. Er is a subset of examples chosen according to
their matching degree to the rule. Its size (cardinality) is
user-defined. If there are not enough items which fire the
rth rule with a degree higher than the threshold, the rule is
removed. Both parameters, threshold and cardinality, control
the number of rules as well as their generalization ability. A
snapshot of FisPro rule generation using FPA is shown in
Figure 5.

Fig. 5. The FPA rule generation window in FisPro

Strategy for the choice of the Er subset
The selection of Er elements can be done in two different

ways, depending of the chosen strategy.

The first strategy is called decrease. It retains the examples
which most activate the rule. The user can specify two
parameters : the cardinality threshold CardMin, and the

MatchMin matching degree threshold. If the number of
examples matching the rule to a degree ≥ MatchMin
is lower than CardMin, the required matching degree is
decreased according to a given step. The default step value is
equal to 0.1, and the default matching degree is set to 0.7 in
FisPro. The decrease procedure stops as soon as the required
cardinality is reached, or when the required matching degree
goes below the MatchMin value.

This strategy privileges the rule prototypes. It is assumed
that the examples with a lower matching degree will be
dealt with by means of interpolating during the inference
procedure.

The other strategy is called minimum. it retains all the
examples whose matching degree for the rule is greater than
the MatchMin threshold.

The FPA algorithm can manage classification as well as
regression cases. Once the input space regions are defined
by rule premises, only the samples which best match a rule
premise are used to set the rule conclusion. The algorithm is
faster than OLS, but less accurate when large data sets are
available.

B. Initial system

Obviously, optimization results highly depend upon the
initial system. As it is easy to improve a poor system, it is
important to start from an accurate initial system, in order to
illustrate the procedure efficiency.

• For each data set, the input fuzzy partitions are genera-
ted from data with the k-means algorithm, with k = 3
fuzzy sets per partition.
The output is crisp, e.g. we have a Sugeno-zero-order
FIS.
The initial rule base is built using the OLS algorithm.
The number of rules is selected to get an accuracy,
measured by MAE (see Equation 2), averaged over the
ten test sets, comparable to the one published in [7], and
given in Table 1.

TABLE I
INITIAL OLS FIS FEATURES

MAE # rules
Auto-mpg 2.02 54
Cpu 28.77 9

• For each dataset, the same fuzzy partitions are used for
FPA and OLS, and the FPA algorithm is run, with its
parameters tuned to yield a FIS with the number of rules
given in Table I.

• The fuzzy decision tree procedure is run to rank vari-
ables, by decreasing order of importance. The results
are:

– Auto-mpg: 1 6 4 5
– Cpu: 3 6 2

• The optimization procedure is run on each of the four
FIS, as described in Section III.

Table II summarizes the results. The optimization algo-
rithm improves the performance of both systems for both data

Author-produced version

in : IEEE International Conference on Fuzzy Systems, Brisbane, AUS,10-15 June 2012

sets. However, the FPA-based optimized FIS remains less

TABLE II
OPTIMIZATION RESULTS: MAE AND RELATIVE GAIN AVERAGED OVER

THE TEST SETS

Ols Fpa
Auto-mpg Initial 2.02 2.22

Optimized 1.96 2.14
Gain (%) 3.0 3.6

Cpu Initial 28.77 31.1
Optimized 27.47 30.49
Gain (%) 4.5 2.0

accurate than the initial OLS-based FIS. The optimization
procedure does not erase the differences between the rule
generation methods.

C. Final FIS selection
The cross validation procedure yields not a single FIS,

but ten different ones, which share the same structure: same
number and type of fuzzy sets in the fuzzy partitions, same
number of rules, identical rule premises.

It seems a good policy to present the users with a unique
FIS, resulting of the combination of all optimized ones.
Therefore, we compute a median FIS, where the various
optimized parameters are replaced by their median value,
which is a more robust statistic than the mean.

The averaged results of the median FIS over the ten test
samples are given in Table III. On average, the median FIS
has a better accuracy than the individually optimized FIS
with their corresponding test samples. As the FIS parameters
are optimized according to the learning sample, the perfor-
mance may decrease when assessed using the test set. This
phenomenon happens as shown in Table IV.

TABLE III
OPTIMIZED MEDIAN FIS RESULTS: MAE AND RELATIVE GAIN

AVERAGED OVER THE TEST SETS

Ols Fpa
Auto-mpg MAE 1.91 2.01

Gain (%) 5.4 9.5
Cpu MAE 27.05 29.83

Gain (%) 6.0 4.1

TABLE IV
NUMBER OF SAMPLES WITH POORER PERFORMANCE

Ols Fpa
Auto-mpg Optim 2 3

Median 0 0
Cpu Optim 4 4

Median 2 3

Thanks to the robustness due to the median statistics, the
number of samples affected by this side effect decreases.
Moreover, further investigation showed than the magnitude
of the degradation is reduced, e.g. for two of the three
samples of CPU and FPA with poorer accuracy, the accuracy
degradation becomes lower than 1 %.

D. Discussion

The optimization procedure described above yields in-
terpretable FIS, with the same structure as the initial one,
making the comparison easy. Let us give some details about
the FIS built using the OLS method for Cpu data. In both
tables V and VI, I stands for initial, while F corresponds to
final, i.e. the median FIS.

Table V compares the fuzzy partition characteristic points
(defined in Section II-B) before and after optimization.

TABLE V
CPU OLS FIS: INITIAL (I) AND FINAL (F) FUZZY SET CHARACTERISTIC

POINTS

C1 C2 C3

I F I F I F
V2 2292 2634 14484 14259 31310 31379
V3 10404 7789 27254 27838 63110 63168
V6 12021 6916 65833 64972 144000 144000

Table VI shows the evolution of the rule conclusions. In
this table, the rule premise is defined by the MF numbers of
input variables.

TABLE VI
CPU OLS FIS: INITIAL (I) AND FINAL (F) RULE BASES

Premise I F
1 3 2 2 3 1033 1023
3 3 2 2 2 1144 1140
2 2 1 2 1 339 322
1 2 1 1 1 146 133
2 3 1 2 1 658 639
1 1 1 1 1 37 37
2 2 2 2 1 332 314
1 2 2 3 2 274 272
2 2 3 2 1 395 396

The final FIS is, as expected, not very different from the
initial one and as much interpretable. However the slight
modifications in the FIS parameters resulting from the opti-
mization procedure systematically improve the performance,
even though the initial FIS already had a good accuracy.
A snapshot of the FisPro inference window is shown in
Figure 6.

V. CONCLUSION

This work has presented a flexible optimization procedure
for FIS parameters, input or output MF parameters and rule
conclusions. The guiding criteria include accuracy and cov-
erage. The example developed in the present paper is based
upon a classic random optimization technique, the Solis and
Wets algorithm, but the principles of the guided optimization
sequence remain valid whatever the optimization algorithm.

The Solis and Wets algorithm is a mono-agent evolutionist
method. Its complexity, either in time or space, is reduced
compared to genetic algorithms. There is no need to maintain
a population because there are no genetic operations (neither
crossover nor mutation), and the time convergence to the

Author-produced version

in : IEEE International Conference on Fuzzy Systems, Brisbane, AUS,10-15 June 2012

Fig. 6. The inference window in FisPro

local optimum is short (the default number of iterations is
set to 100 in FisPro) because the good search directions
are memorized. As interpretability constraints are imposed to
the algorithm, the system accuracy can be improved without
loosing the semantics attached to the partitions or rules.

The optimization algorithm has a few parameters only,
which makes it easy to use. The software implementation
in FisPro makes it available in two versions, an entirely
customizable version and a guided sequential one.

The proposed sequence processes, at a given step, a set of
interrelated parameters, such as the MF bounds of a single
variable.

Applied to two well known data sets from the UCI
repository, the overall procedure proved to be robust and
efficient, independently from the initial rule base. For each of
the two data sets, two systems have been built using different
rule generation methods. Robustness has been checked using
a cross-validation procedure, and the final system parameters
are the median values of the cross validation runs. In all
cases, the optimization leads to a significant improvement of
accuracy preserving system interpretability.

Through the FisPro2 implementation, the optimization
procedure is freely available to users by the means of either
a user-friendly interface or batch scripts.

REFERENCES

[1] R. Alcala, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni, “A
multiobjective evolutionary approach to concurrently learn rule and
data bases of linguistic fuzzy-rule-based systems,” IEEE Transactions
on Fuzzy Systems, vol. 17(5), pp. 1106–1122, 2009.

2http://www.inra.fr/Internet/Departements/MIA/M/fispro

[2] J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, “Interpretability
improvements to find the balance interpretability-accuracy in fuzzy
modeling: an overview,” in Interpretability Issues in Fuzzy Modeling.
Springer, 2003, pp. 3–22.

[3] L. Chen, C. Chen, and W. Pedrycz, “A gradient-descent-based ap-
proach for transparent linguistic interface generation in fuzzy mod-
els,” IEEE Transactions on Systems, Man and Cybernetics, part B:
Cybernetics, vol. 40(5), pp. 1219–1230, 2010.

[4] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares
methods and their application to non-linear system identification,” Int.
J. Control, vol. 50, pp. 1873–1896, 1989.

[5] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least
squares learning algorithm for radial basis function networks,” IEEE
Transactions on Neural Networks, vol. 2 (No 2), pp. 302–309, March
1991.

[6] J. V. de Oliveira, “Semantic constraints for membership functions
optimization,” IEEE Transactions on Systems, Man and Cybernetics.
Part A, vol. 29, no. 1, pp. 128–138, 1999.

[7] S. Destercke, S. Guillaume, and B. Charnomordic, “Building an
interpretable fuzzy rule base from data using orthogonal least squares-
application to a depollution problem,” Fuzzy Sets and Systems, vol.
158, pp. 2078–2094, 2007.

[8] D. Dubois, H. Prade, and L. Ughetto, “A new perspective on reasoning
with fuzzy rules,” International Journal of Intelligent Systems, vol. 18,
pp. 541–567, 2003.

[9] P. Ein-Dor, “Grosch’s law re-revisited: Cpu power and the cost of
computation,” Commun. ACM, vol. 28, no. 2, pp. 142–151, 1985.

[10] A. G. Evsukoff, S. Galichet, B. S. de Lima, and N. F. Ebecken, “Design
of interpretable fuzzy rule-based classifiers using spectral analysis with
structure and parameters optimization,” Fuzzy sets and Systems, vol.
160, pp. 857–881, April 2009.

[11] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[12] P.-Y. Glorennec, Constrained optimization of FIS using an evolution-
ary method, ser. Studies in Fuzziness and Soft Computing. Physica-
Verlag, 1996, pp. 349–368.

[13] ——, Algorithmes d’apprentissage pour systèmes d’inférence floue.
Editions Hermès, Paris, 1999.

[14] S. Guillaume, “Designing fuzzy inference systems from data: an
interpretability-oriented review,” IEEE Transactions on Fuzzy Systems,
vol. 9, no. 3, pp. 426–443, 2001.

[15] S. Guillaume and B. Charnomordic, “Fuzzy models to deal with
sensory data in food industry,” Journal of Donghua University, vol. 21,
no. 3, pp. 43–48, June 2004.

[16] ——, “Learning interpretable fuzzy inference systems with fispro,”
International Journal of Information Sciences, vol. 181, pp. 4409–
4427, 2011.

[17] S. Guillaume and L. Magdalena, “Expert guided integration of induced
knowledge into a fuzzy knowledge base,” Soft computing, vol. 10,
no. 9, pp. 773 – 784, 2006.

[18] J. Hohensohn and J. M. Mendel, “Two pass orthogonal least-squares
algorithm to train and reduce fuzzy logic systems,” in Proc. IEEE
Conf. Fuzzy Syst., Orlando, Florida, June 1994, pp. 696–700.

[19] H. Jones, B. Charnomordic, D. Dubois, and S. Guillaume, “Practical
inference with systems of gradual implicative rules,” IEEE Transac-
tions on Fuzzy Systems, vol. 17, no. 1, pp. 61–78, 2009.

[20] C.-F. Juang and P.-H. Chang, “Designing fuzzy-rule-based systems
using continuous ant-colony optimization,” IEEE Transactions on
Fuzzy Systems, vol. 18(1), pp. 138–149, 2010.

[21] E. H. Ruspini, Recent developments in fuzzy clustering. Pergamon
Press, New York, 1982, pp. 133–147.

[22] F. J. Solis and R. J. Wets, “Minimization by random search tech-
niques,” Mathematics of Operation Research, vol. 6, pp. 19–30, 1981.

[23] L.-X. Wang and J. M. Mendel, “Fuzzy basis functions, universal
approximation, and orthogonal least squares learning,” IEEE Trans-
actions on Neural Networks, vol. 3, pp. 807–814, 1992.

[24] ——, “Generating fuzzy rules by learning from examples,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 22 (6), pp. 1414–
1427, November/December 1992.

[25] R. Weber, “Fuzzy-id3: A class of methods for automatic knowledge
acquisition,” in 2nd International conference on fuzzy logic and neural
networks, 1992, pp. 265–268.

[26] J. Weisbrod, “A new approach to fuzzy reasoning,” Soft Computing,
vol. 2, pp. 89–99, 1998.

Author-produced version

in : IEEE International Conference on Fuzzy Systems, Brisbane, AUS,10-15 June 2012

