

Effect of household and industrial processing on levels of pesticide residues and degradation products in melons

Aurore Bonnechère, Vincent Hanot, Claude Bragard, Thomas Bedoret, Joris

van Loco

▶ To cite this version:

Aurore Bonnechère, Vincent Hanot, Claude Bragard, Thomas Bedoret, Joris van Loco. Effect of household and industrial processing on levels of pesticide residues and degradation products in melons. Food Additives and Contaminants, 2012, 29 (7), pp.1058-1066. 10.1080/19440049.2012.672339 . hal-00811703

HAL Id: hal-00811703 https://hal.science/hal-00811703

Submitted on 11 Apr 2013 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Food Additives and Contaminants

Effect of household and industrial processing on levels of pesticide residues and degradation products in melons

Journal:	Food Additives and Contaminants			
Manuscript ID:	TFAC-2011-530.R1			
Manuscript Type:	Original Research Paper			
Date Submitted by the Author:	20-Feb-2012			
Complete List of Authors:	Bonnechère, Aurore; Scientific Institute of Public Health, Pesticides Hanot, Vincent; Scientific Institute of Public Health, Bragard, Claude; Faculté d'ingénierie biologique, agronomique et environnementale UCL, Bedoret, Thomas; Redebel, Van Loco, Joris; Scientific Institute of Public Health,			
Methods/Techniques:	LC/MS, GC			
Additives/Contaminants:	Pesticide residues			
Food Types:	Fruit, Vegetables			
Abstract:	Two varieties of melons (Cucumis melo) were treated by two fungicides (carbendazim and maneb) and four insecticides (acetamiprid, cyromazin, imazalil and thiamethoxam) to quantify the effect of household processing on the pesticide residues. To ensure sufficiently high levels of residues in flesh and peels, the most concentrated formulations were applied pursuant to Good Agricultural Practices (GAPs). The peeling step decreased the concentration of pesticide residues for maneb, imazalil and acetamiprid by more than 90%. Cyromazin, carbendazim and thiamethoxam were reduced by ~50%. The reduction of the pesticides could not be fully explained by the systemic character of the pesticides. However, the agricultural practices (time of application), the solubility and mode of action (systemic vs. contact pesticide) of the pesticides allowed to make assumptions to explain the difference in processing factors for the studied pesticides. Degradation products (melamine and ethylenethiourea) were also investigated in this study but were not detected.			

1 Effect of household and industrial processing on levels of pesticide residues

and degradation products in melons

Aurore Bonnechère ^a, Vincent Hanot ^a, Claude Bragard ^b, Thomas Bedoret ^c and Joris Van Loco ^a

^a Food, Medicines and Consumer Safety Department, Scientific Institute of Public Health, Rue Juliette Wytsman 14, BE-1050 Ixelles, Belgium

^b Earth & Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain, Croix du Sud 2, L7.05.03, BE-1348 Louvain-la-Neuve, Belgium

^c Redebel sa, Rue de Chassart 4, 6221 Saint-Amand

Corresponding author: Vincent Hanot

- 18 Tel.: 00322/642.51.89
- 19 Fax: 00322/642.56.91
- 20 Email address: vincent.hanot@wiv-isp.be
- 21 Postal address: Rue Juliette Wytsman 14, BE-1050 Ixelles, Belgium

24 Abstract

Two varieties of melons (Cucumis melo) were treated by two fungicides (carbendazim and maneb) and four insecticides (acetamiprid, cyromazin, imazalil and thiamethoxam) to quantify the effect of household processing on the pesticide residues. To ensure sufficiently high levels of residues in flesh and peel, the most concentrated formulations were applied observing Good Agricultural Practice (GAP). The peeling step decreased the concentration of pesticide residues for maneb, imazalil and acetamiprid by more than 90%. Cyromazin, carbendazim and thiamethoxam were reduced by \sim 50%. The reduction of the pesticides could not be fully explained by the systemic character of the pesticides. However, the agricultural practices (time of application), solubility and mode of action (systemic vs. contact pesticide) of the pesticides could be used to explain the difference in processing factors for the studied

 pesticides. Degradation products (melamine and ethylenethiourea) were also investigated in
 this study but were not detected.

Keywords: Pesticide residues, Processing factor, Fungicides, Insecticides, Degradation
products

7 Introduction

Melon (*Cucumis melo*) belongs to the same family as the cucumber, squash, pumpkin and gourd and grows on the ground on a trailing vine. It is a sweet, juicy and very nutritious fruit. The major producing countries are China (which produces more than 50 % of the world production), Turkey, Iran, Spain, the United States, Rumania, Egypt and India (FAO, 2011). This crop is susceptible to *fusarium* wilt disease (destructive vascular disease), downy mildew (killing plants prematurely and reducing sugar content of melons) and gummy stem blight (lesion on stems and leaves). To protect plants particularly during autumn growing seasons and avoid these type of diseases, fungicide applications are necessary (Keinath et al. 2007, Zhao et al. 2011). Furthermore, insecticides on melons are necessary to suppress high whitefly populations and aphids (Tong-Xian 2004).

Pesticides have been linked to a wide spectrum of human health hazards, ranging from short-term impacts such as headaches and nausea to chronic impacts like cancer, reproductive harm, and endocrine disruption. Chronic health effects may occur years after even minimal exposure to them in the environment, or result from their residues ingested through food and water (Berrada et al. 2010, Claeys et al. 2011, Keikotlhaile et al. 2010). Research focuses on the proper use of pesticides in terms of authorization and registration and on compliance with Maximum Residue Limits (MRLs). Given the potential risk of pesticides for public health, the use of pesticides in agriculture is subjected to constant monitoring. (Chen et al. 2011, Claevs

et al., 2011). It is important for the consumer to know the intake of pesticide residues. The processing factors (PF: ratio between residues concentration in the processed commodity and the same in the raw commodity) are useful to estimate the level of pesticide exposure at the point of consumption after processing (Ling et al. 2011). Until now, no processing factors are available for melons. However, melon consumption is increasing in the EU (AND International 2010). Indeed, among the EU 27, the volumes of import of melons increased twofold between 1999 and 2008.

It is well known that peeling plays a role in the reduction of residues (Holland et al. 1994, Kaushik et al. 2009, Timme et al. 2004). Several studies of peeling have been done on potatoes to measure some pesticides and minimum 90% reduction of pesticide residues were observed (Kaushik et al. 2009, Lentza-Rizos et al. 2001, Lewis et al. 1996, Randhawa et al. 2007, Schattenberg et al. 1996). The peeling of apples, tomatoes, peppers, carrots, bananas, oranges and lemons were also investigated in several studies (Balinova et al. 2006, Burchat et al. 1998, Chavarri et al. 2005, Rasmusssen et al. 2003, Timme & Walz-Tylla 2004). In these experiments, peeling decreased residues (70 to 100%). However, some pesticides were not influenced by this process because of their systemic activity (Krol et al. 2000).

Melons, frequently consumed in Belgium, were chosen in cooperation with the Belgian
Federal Agency for Safety of the Food Chain (FASFC). Pesticides were chosen according to
their frequency of MRL exceedance, frequency of detection and their toxicity (FASFC 2007,
FASFC 2008). Selected pesticides included acetamiprid, carbendazim, cyromazin, imazalil,
maneb and thiamethoxam.

To establish of processing factors for these pesticide residues, melons were grown, sprayed, harvested, peeled, homogenized and analyzed. The selected pesticides and the degradation products (ETU from maneb and melamine from cyromazin) were analysed before and after peeling with several analytical methods (GC-MS/MS, GC-ECD, UHPLC-MS/MS).

1		
2	1	
3	1	
5 6	2	
7 8	3	Materials and Methods
9 10	4	Materials
11 12	5	Pesticides
13 14 15	6	Deuterated ethylenethiourea (d ₄ -ETU), ethylenethiourea, carbendazim and acetamiprid
16 17	7	were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany) with certified purity of
18 19	8	99.0%. Thiram, cyromazin, melamine, imazalil and thiamethoxam were purchased from
20 21	9	Sigma-Aldrich (Seelze, Germany) with certified purity of 99.0%, 99.9%, 99.0%, 99.8% and
22 23	10	99.7%, respectively. Carbon disulfide (99.9%) was obtained from Merck (Darmstadt,
24 25 26	11	Germany).
27 28	12	
29 30	13	Chemicals for analysis
31 32	14	Ultrapure water (< 8 M Ω ·cm resistance) was supplied by a Millipore purification system
33 34 35	15	(Millipore Milli-Q Water System, Bedford, USA). Methanol, dichloromethane and
36 37	16	acetonitrile were of HPLC grade from Biosolve (Valkenswaard, The Netherlands). Iso-octane,
38 39	17	sodium hydroxide and ammoniac (25%) came from Merck (Darmstadt, Germany).
40 41	18	Trifluoroacetic acid (TFA) and acid acetic (with certified purity of at least 99% for both) as
42 43	19	well as ammonium acetate were purchased from Aldrich (Steinheim, Germany). Hydrochloric
44 45 46	20	acid (37%) and tin(II)-chloride were obtained from VWR (Fontenay sous Bois, France).
47 48	21	Ethanol (96%), ammonium chloride (99.5%), celite® 545, sodium sulphate (99%) and sodium
49 50	22	chloride (99%) were purchased from VWR (Leuven, Belgium).
51 52	23	The stock solution of carbon disulfide (CS ₂), for analysis of maneb, was prepared at 4 mg
53 54 55	24	$mL^{\text{-1}}$ in iso-octane. Dilute standards at 40 $\mu g \ mL^{\text{-1}}$ were prepared by dilution of the stock
55 56		
57 58		4
эо 59		
60		

solution with iso-octane. A solution of thiram was prepared with ethanol to obtain an equivalent concentration in CS_2 of 63.23 mg L⁻¹.

The stock solutions of acetamiprid, carbendazim, cyromazin, imazalil and thiamethoxam
for LC-MS/MS were prepared at 1 mg mL⁻¹ in acetonitrile containing 0.1% of acetic acid.
Dilute standards at 10 µg mL⁻¹, 1 µg mL⁻¹ and 100 ng mL⁻¹ were prepared by dilution of the
stock solution with methanol.

The stock solution of internal standard, ETU D4, was prepared at 100 µg mL⁻¹ in
methanol. The stock solution of ETU was prepared at 1 mg mL⁻¹ in methanol. Dilute
standards were prepared by dilution of the stock solution with water.

10 The stock solution of melamine was prepared at 1 mg mL⁻¹ in NaOH 0.1%. Dilute 11 standards at 10 μ g mL⁻¹ and 1 μ g mL⁻¹ were prepared by dilution of the stock solution with 12 water.

Solutions for calibration were prepared with spiking of diluted standard solution on blank extract of melon. The blank extract came from melons previously tested in which no pesticides were detected above the limit of detection. All solutions were stored at -18 °C.

Produce

Cultivation

19 The purpose of the field experiment was to produce in parallel two different melons20 varieties, Mohican and Pancha, exposed to six selected pesticides.

Field melon was grown at Villers-Perwin, Belgium by Redebel sa. under greenhouse conditions. Four applications of pesticides were performed on different crop growth stages as shown in Table 1. The concentrations of the six active substances and the number of applications were as high as possible, but following the GAPs (pre-harvest time, time between two applications...), to ensure sufficiently high pesticide levels for the effects of processing

Food Additives and Contaminants

	_	2
pract	1	3 4
crops	2	5 6
using	3	7 8
	4	9 10
Harv	5	11 12
F	6	13 14
samp	7	15 16 17
from	8	18 19
Moh	9	20 21
Melo	10	22 23
trans	11	24 25 26
	12	20 27 28
Sam	13	29 30
Over	14	31 32
F	15	33 34 25
melo	16	35 36 37
batch	17	38 39
proc	18	40 41
exec	19	42 43
A	20	44 45 46
until	21	47 48
	22	49 50
Unpi	23	51 52
Т	24	53 54
is th 6	25	55 56 57 58
		59 60

tices to be studied. It should be noted that some pesticides are not approved for the melon s in Belgium but are in other countries. The formulations were applied in two passing g vertical spraying boom equipment at the proposed normal settings and timing.

rest

ruit specimens were taken manually. Sterile disposable (nitrile) gloves were worn for the bling. The first and the last plants of plot, diseased and undersized fruits were excluded sampling. To obtain more than 70 kg of melons, 67 melons Pancha and 103 melons ican were randomly collected from the whole plot. A number identified each variety. ons were stored in a refrigerator room at 4 °C directly after the sampling. They were ported in refrigerated condition to the laboratory on the day of harvest.

ple preparation and processing

view of processing and sampling steps

igure 1 shows the sampling flow diagram. To minimize the factor of variability, the two on varieties were each divided into two batches of 18 kg of raw melons, giving four hes in total (Figure 1). As shown in Figure 1, part of melons did not undergo any essing and was used as "positive control sample". Peeling step for all batches was uted on the same day.

At each step, melons were homogenized and 500 g were collected and stored at -20 °C pesticide residue analysis. Frozen samples were analyzed within one month.

rocessed melon

These melons, which did not undergo any processing are the "positive control sample". It e raw melon used to calculate the PFs. The harvested melons (18 kg of melons taken randomly) were cut into pieces and comminuted with the Robot Coupe® R23 (Mont-Saint Genevieve, Belgium). A sample was taken after a rough cut (~ 1 cm) and frozen for the
 analysis of mancozeb. The rest was comminuted for a longer time and frozen until analysis.

- 5 Peeling

The peeling was realised with a knife with a blade of 10 cm and corresponded to the
peeling done by the consumer at home. We left the green part on the peels (< 0.5 cm). Melons
Mohican were smaller than melons Pancha but both varieties were highly variegated.

9 After removal of the peels, flesh (about 10 kg) and peels (about 7 kg) were comminuted
10 separately with the Robot Coupe® R23 (Mont-Saint-Genevieve, Belgium) and frozen until
11 analysis.

Extraction and analysis of pesticides

14 Analysis of maneb by GC-ECD

The analysis of maneb as CS_2 (compound obtained when dithiocarbamates are heated in presence of acid and tin chloride) is based on methods normalized by the European Committee for Standardization and modified by de Kok to replace the existing headspace chromatography method by a liquid injection in GC-ECD (de Kok 2001, European Committee for Standardization 1998).

The extraction of 25 g of matrix was done in presence of hydrochloric acid, iso-octane and tin chloride. A closed vessel was stirred during 2 h in a water bath at 80 °C. After cooling, 1 µl of the supernatant containing 0.28 g matrix per mL was injected on a Varian 3400 gas chromatographic system coupled with a ⁶³Ni Electron Capture Detector and a Varian 8200C autosampler. The GC separation of CS₂ was achieved on a DB-5 column (60 m, 0.53 mm and 1.5 µm) from Grace (Deerfield, USA). The helium gas flow was at 2.6 mL min⁻¹ at 5 psi. The

Food Additives and Contaminants

injector and detector temperatures were 250 °C and 300 °C, respectively. The column
temperature was at 50 °C for 5 min, after that it increased by 50 °C per min until 250 °C. This
temperature was maintained for 5 min to obtain a total run time of 19 min. The retention time
of CS₂ was 3.3 min.

6 Analysis of acetamiprid, carbendazim, cyromazin, imazalil and thiamethoxam by LC-MS/MS

This method followed the Granby principle (Granby et al. 2004) with some adaptations. A 10 g sample of melons was extracted with a mixture of an extraction solvent (5mM ammonium acetate, 90% MeOH-10% water), blended during 1 min with an ultra-turrax homogenizer (Ultra-turrax IKA) and filtrated on büchner. Oxfendazole, the internal standard was added to the filtrate. Mixture of extraction was used to give an extract volume of 60 mL. The raw extract was diluted with mobile phase A (10% MeOH, 1% ammonium acetate 0.5 M and 89% water) to a final concentration equivalent to 0.1 g matrix per mL and injected after filtration on 0.2 μ m. The LC separation was achieved on an Acquity UPLC BEH C₁₈ column (1.7 μ m, 2.1 × 100 mm) from Waters (Ireland). A gradient of mobile phase A and mobile phase B (containing 10% water, 1% ammonium acetate 0.5M and 89% of methanol) supplied at 0.45 mL min⁻¹ was applied. Starting from 99.9% of mobile phase A, the mobile phase was linearly increased to 99.9% of mobile phase B in 10 min and maintained during two min. The gradient was then returned to initial conditions in 0.1 min and held there for 2.9 min for stabilization. The mass spectrometer operated in a positive electrospray ionization (ESI) mode and acquired two transitions for each pesticide. Typical optimized ESI voltage settings are presented in Table 2. Argon was used as the collision gas at a setting of 0.35 mL min⁻¹. The dwell time was 10 ms per channel for quantifier ions and 5 ms for second transition.

25 Analysis of ethylenethiourea by LC-MS/MS

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

The method of analysis is described in a paper of Bonnechère *et al.* (Bonnechere et al. 2011). Briefly, ETU was extracted from the homogenized melon (10 g), after thawing of this sample, by a 3:1 mixture of methanol-water. After 0.2 µm filtration, the extract containing 0.333 g matrix per mL was injected in LC-MS/MS (conditions in Table 2) on a Uptisphere 5MM1 mixed-mode chromatographic column (100×2.1 mm, 5μ m) with two different silanes (C8/SCX) bonded on silica (Interchim, Montluçon, France), using an isocratic mobile phase of 0.1% trifluoroacetic acid / methanol (95/5). The injection volume was 5 μ L in full loop and the run time was 2 min.

Analysis of melamine by LC-MS/MS

The method of analysis is described in a paper of Goscinny *et al.* (Goscinny et al. 2011). The extraction of melamine is carried out using an acetonitrile-water-dichloromethane in an acidic environment. After SPE and 0.2 µm filtration, the extract was injected in LC-MS/MS (conditions in Table 2) on a Acquity HILIC column (100×2.1 mm, 1.7μ m) (Waters, Ireland), using an isocratic mobile phase containing 2% ammonium acetate 0.5M, 8% water and 90% of acetonitrile. The injection volume was 1 μ L and the run time was 2 min.

Quantification and quality control

Limits of Quantification (LOQ) were estimated from the lowest calibration level. Based on the signal-to-noise ratio upper or equal to 6, LOQs were at 40 μ g kg⁻¹ for maneb, 2 μ g kg⁻¹ for imazalil, 5 μ g kg⁻¹ for cyromazin, 2 μ g kg⁻¹ for thiamethoxam, and 1 μ g kg⁻¹ for acetamiprid and carbendazim, 50 $\mu g \ kg^{\text{-1}}$ for ETU and 25 $\mu g \ kg^{\text{-1}}$ for melamine. The linearity of the instrument was evaluated with 5 or 6 points in the range of 50-1000 μ g kg⁻¹ (wet weight basis) for ETU, 25-600 μ g kg⁻¹ for melamine, 50-5000 μ g kg⁻¹ for maneb and 10-1000

Food Additives and Contaminants

 μ g kg⁻¹ for the pesticide residues analyzed by LC-MS/MS. In all cases, good linearity was achieved with correlation coefficients > 0.995.

For each batch of analysis, a control (a blank of melon) and a sample were spiked prior to extraction and run. In the control, no pesticide must be found with a concentration greater than the LOQ. If it is not the case that means a contamination and the analysis of the samples must be redone. The spiked sample must have recovery of extraction between 70% and 120% (SANCO/10684/2009) and the concentrations found in this sample were reported on the control chart, which allows following the trend. Recoveries during the analysis of melon were of 95.7% for ETU, 73.2% for maneb, 83.4% for melamine, 87.3% for cyromazin, 87.3% for acetamiprid, 84.0% for carbendazim and 83.4% for imazalil. The calibration was checked using a standard injected at the end of the sequence and could not deviate by more than 20% from the injection of the same standard at the beginning of the sequence.

14 Calculation of processing factors

Processing factors (PFs) were calculated for all transformation steps by a ratio between the pesticide residue concentration (mg kg⁻¹) in the processed commodity and the pesticide residue concentration (mg kg⁻¹) in the raw commodity.

19 Results and discussion

Sprayed pesticides were detected at various concentrations. In spite of the high concentration of active substances applied on the raw melon, the concentrations for thiamethoxam, carbendazim and imazalil were rather low. The lowest concentrations in the raw product were observed for thiamethoxam and carbendazim (Table 3). Thiamethoxam was applied at the lowest concentration in this study and carbendazim is the only which was applied once, as early as the opening of the main stem (Table 1).

In this study, the peeling was done with a knife. Table 4 represents all processing factors for the peeling step for the six detected pesticides for both varieties. The peeling removed an important part of the pesticide residues between 62% and 95% for melon Mohican and between 52% and 95% for melon Pancha.

Maneb and cyromazin are contact pesticides and form deposit on the surfaces of leaves and fruits (Table 4). After the peeling step, in spite of an important reduction for the maneb (91% for Mohican and 93% for Pancha), the decrease of cyromazin did not exceed 62% and 52% for Mohican and Pancha respectively. However this smaller reduction could be explained by the higher solubility of cyromazin compared with the other pesticides (Table 4). Compounds applied to the plants (leaves) do not have to cross the symplast to arrive in the xylem contrary to compounds passing by roots. On the other hand, they have to cross the more or less waxy cuticle according to the type of plant and the age. With the age, fractures in the waxy coat form hydrophilic pores allowing the passage of the most hydrophilic molecules as cyromazin (Al-Sayeda 2007). With this particularity, cyromazin could enter in the fruit by the flow of xylem and be found in the flesh. As Krol *et al.* has also confirmed it is possible that pesticide residues are incorporated into plant tissue proportional to the time they remain on biologically active crops in the field. This may even be true of pesticides that are not specifically labelled as systemic (Krol et al. 2000). The other four pesticides (acetamiprid, carbendazim, imazalil and thiamethoxam) are systemic. Nevertheless, acetamiprid and imazalil were strongly reduced by 91% for Mohican, 89% for Pancha and 91% for Mohican and Pancha respectively. The reduction was somewhat less important for the thiamethoxam (67% & 58%) and carbendazim (63% & 47%) (Table 4). The difference of behaviour could be explained by the time of application of these 4 active substances (Table 1). Indeed, carbendazim was the first pesticide applied when the plant of melons had it's 5th flower open on main stem. With this early application, carbendazim could enter in the plant and was

Food Additives and Contaminants

present in it before the apparition of fruit. The others were applied in the latest stage of development when 10% of fruits showed typical fully ripe color (Table 1). Otherwise, thiamethoxam has a good solubility and an octanol-water partition coefficient which allow him at the same time to circulate in the phloem and in the xylem and consequently to be present in the fruit (Table 4). On one hand, more than 90 % of acetamiprid, imazalil and maneb, contact as well systemic pesticides, were removed with this process. On the other hand, ~50% of carbendazim and thiamethoxam (systemic pesticide) and cyromazin (contact pesticide) were eliminated. These 2 types of reduction could not be explained by the systemic character of the pesticides. However, the agricultural practices (time of application) and the water solubility could explain statistically these differences between the pesticides. The octanol-water partition coefficient is also necessary to explain the behaviour of cyromazin. It is a particular case, not shown in the statistical test which is a global approach. Indeed a systemic pesticide applied late on the plants is found with a low concentration in the flesh. Until now, several studies have explained processing factor with the physico-chemical properties but they did not reflect the moments of application on the harvest (Rasmussen et al. 2003, Burchat et al. 1998, Watts et al. 1974, Lee et al. 2009). These results show that it really important to take into account the time of application of active substances for the risk assessment. Indeed as Krol (2000) said, a systemic pesticide applied late could not act as a systemic. For risk assessment, it is also necessary to be aware that the levels of residues in melons depend on the time of application quite as the statistical test reflects it.

Reductions of 90% are consistent with previous studies on the peeling of various fruit and
vegetables (Balinova et al. 2006, Boulaid et al. 2005, Chavarri et al. 2005, Kaushik et al.
2009, Lentza-Rizos & Balokas 2001, Rasmusssen et al. 2003, Schattenberg et al. 1996,
Timme & Walz-Tylla 2004, Fernandez-Cruz et al. 2006). It was indeed demonstrated that a
majority of the insecticides or fungicides applied directly to crops undergo very limited
12

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

movement or penetration of the cuticle. However, residues of these materials are confined to
 the outer surfaces where they are amenable to removal by peeling (Holland et al. 1994,
 Timme & Walz-Tylla 2004, Burchat et al. 1998).

In this study, we also investigated the degradation products of cyromazin and maneb, being melamine and ethylenethiourea (ETU), respectively. In the unprocessed melon, these two by-products were not detected (Table 3). In general, ETU is formed in an acidic, heated environment and it is not the case with the peeling (Dubey et al. 1997, Hwang et al. 2003, Kontou et al. 2001, Sottani et al. 2003).

9 If we compare the concentrations applied on the plants and the concentrations found in 10 melon, there is high variability between the active substances under investigation (Table 1). 11 For example, the concentration in maneb applied on plants was more than 50 times higher 12 than the concentration in cyromazin. The concentration retrieved in the melons (Table 3) 13 showed that the concentration in maneb is 1.5 times lower than for cyromazin. However, the 14 correlation of the results of both varieties was good.

Mass balance recoveries were calculated to compare the total mg of each pesticide in the whole commodity to the residue in the flesh and peels after peeling. Measured concentrations available in Table 4 were corrected with the mass of the whole melons, the flesh and peels comminuted to obtain reconstituted samples. Taking account the measured uncertainties, the measured concentration and calculated concentration were close, as shown in Table 5. The Table 6 showed all corrected PFs. These PFs shows some difference between varieties. An explanation could be the difference of size between both varieties. The proportion peels/flesh is more important and engenders variations between the PFs of both varieties for certain pesticides.

Conclusion

During this study, processing factors for peeling of melons were determined for acetamiprid, carbendazim, cyromazin, imazalil, maneb and thiamethoxam. Mechanical peeling, a typical household process, will remove 52 to 91% of the pesticides on the melon. The reduction of the pesticides could not be fully explained by the systemic character of the pesticides. However, the agricultural practices (time of application), the solubility and mode of action (systemic vs. contact pesticide) of the pesticides allowed to make assumptions to explain the difference in processing factors for the studied pesticides.

9 Two degradation products (melamine and ETU) with a higher toxicity than the parent
10 compounds were also studied and were not detected before and after peeling.

12 Acknowledgement

This study was funded by the Belgian Federal Public Service of Health, Food Chain Safety and Environment (contract RT 08/3 PESTRANS). We extend our grateful thanks to Redebel for setting up field trials to obtain commodities, to Martine Deridder and Marie-Anne Van den Bergh for their help during the analysis of the samples.

References

Al-Sayeda H. (2007). Transfert d'un insecticide systémique, l'imidaclopride, chez la tomate: implication du transport phloémien. AND International. 2010. Normes de commercialisation dans le secteur des fruits et légumes. Balinova AM, Mladenova RI, & Shtereva DD. 2006. Effects of processing on pesticide residues in peaches intended for baby food. Food Addit.Contam. 23(9): 895-901. Berrada H, Fernandez M, Ruiz MJ, Molto JC, & Font G. 2010. Surveillance of pesticide residues in fruits from Valencia during twenty months (2004/05). Food Control. 21(1): 36-44. Bonnechere, A., Hanot, V., & Van Loco, J. A rapid and environmental friendly determination of the dithiocarbamates metabolites ethylenethiourea and propylenethiourea in fruit and vegetables by ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 1218(29):4627-4631. Boulaid M, Aguilera A, Camacho F, Soussi M, & Valverde A. 2005. Effect of household processing and unit-to-unit variability of pyrifenox, pyridaben, and tralomethrin residues in tomatoes. J.Agric.Food Chem. 53(10): 4054-4058. Burchat CS, Ripley BD, Leishman PD, Ritcey GM, Kakuda Y, & Stephenson GR. 1998. The distribution of nine pesticides between the juice and pulp of carrots and tomatoes after home processing. Food Addit. and Contam. 15(1): 61-71. Chavarri MJ, Herrera A, & Arino A. 2005. The decrease in pesticides in fruit and vegetables during commercial processing. Int. J. Food Sci. Tech. 40(2): 205-211.

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

2 fr	ruits and vegetables from Xiamen, China. Food Control. 22(1114-1120)						
Cleave W	fruits and vegetables from Xiamen, China. Food Control. 22(1114-1120.							
5 Clacys V	Claeys WL, Schmit JF, Bragard C, Maghuin-Rogister G, Pussemier L, & Schiffers B. 2011.							
4 E	Exposure of several Belgian consumer groups to pesticide residues through fresh fruit							
5 ai	and vegetable consumption. Food Control. 22(3-4): 508-516.							
6 de Kok.	Developments in GC-MS(/MS) and LC-MS(/MS), Methodology for pe	esticide residue						
7 ai	analysis [Internet]. Rome. Available	from:						
8 <u>h</u>	nttp://workshop.iss.it/DiMuccioV/Testi/Relazioni/adekok.ppt							
9 Dubey	IK Heberer T & Stan HI 1997 Determination of ethylenethic	ourea in food						
j Dubey J								
10 co	commodities by a two-step derivatization method and gas chroma	tography with						
11 e	electron-capture and nitrogen-phosphorus detection. J. Chromatogr. A. 7	765(1): 31-38.						
12 European	n Committee for Standardization. 1998. Final Draft prEN 12396-1, p	prEN 12396-2,						
13 p.	orEN 12396-3; Non-fatty foods - Determination of dithiocarbamate	e and thiuram						
14 d	lisulfide residues.							
15 FASFC.	2007. Controls of pesticide residues in food Belgium 2006. Brussels (B	Belgium)						
16 FASFC.	2008. Controls of pesticide residues in food Belgium 2007. Brussels (B	Belgium)						
17 Fernande	ez-Cruz ML, Grimalt S, Villarroya M, Lopez FJ, Llanos S, & Garc	ia-Baudin JM.						
18 2	2006. Residue levels of captan and trichlorfon in field-treated kaki fru	uits, individual						
19 v	versus composite samples, and after household processing. Food Addit	t. and Contam.						
20 2	23(6): 591-600.							

2 <u>http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567</u>	sis of
	sis of
3 Goscinny S, Hanot V, Halbardier J-F, Michelet J-Y, & Van Loco J. 2011. Rapid analy	
4 melamine residue in milk, milk products, bakery goods and flour by ultra-perform	nance
5 liquid chromatography/tandem mass spectrometry: From food crisis to accredit	ation.
6 Food Control. 22(226-230).	
7 Granby K, Andersen JH, & Christensen HB. 2004. Analysis of pesticides in fruit, vege	tables
8 and cereals using methanolic extraction and detection by liquid chromatogr	aphy-
9 tandem mass spectrometry. Analytica Chimica Acta. 520(1-2): 165-176.	
10 Holland PT, Hamilton D, Ohlin B, & Skidmore MW. 1994. Effects of storage and proce	essing
11 on pesticide residues in plant products. Pure Appl. Chem. 66(2): 335-356.	
12 Hwang ES, Cash JN, & Zabik MJ. 2003. Determination of degradation product	and
13 pathways of mancozeb and ethylenethiourea (ETU) in solutions due to ozon	e and
14 chlorine dioxide treatments. J.Agric.Food Chem. 51(5): 1341-1346.	
15 Kaushik G, Satya S, & Naik SN. 2009. Food processing a tool to pesticide residue dissip	pation
16 - A review. Food Res.Int. 42(26-40.	
17 Keikotlhaile BM, Spanoghe P, & Steurbaut W. 2010. Effects of food processing on pes	ticide
18 residues in fruits and vegetables: A meta-analysis approach. Food Chem.To	xicol.
19 48(1): 1-6.	
20 Keinath AP, Holmes GJ, Everts KL, Egel DS, & Langston J. 2007. Evaluation	on of
21 combinations of chlorothalonil with azoxystrobin, harpin, and disease forecastin	ng for
17	

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

1	control of downy mildew and gummy stem blight on melon. Crop Protection. 26(2):
2	83-88.
3	Kontou S, Tsipi D, Oreopoulou V, & Tzia C. 2001. Determination of ETU in tomatoes and
4	tomato products by HPLC-PDA. Evaluation of cleanup procedures. J.Agric.Food
5	Chem. 49(3): 1090-1097.
6	Krol WJ, Arsenault TL, Harry M, & Incorvia Mattina MJ. 2000a. Reduction of Pesticide
7	Residues on Produce by Rinsing. J.Agric.Food Chem. 48(10): 4666-4670.
8	Lee MG & Jung D. 2009. Processing factors and removal ratios of select pesticides in hot
9	pepper leaves by a successive process of washing, blanching, and drying. Food Sci.
10	Biotechnol. 18(5): 1078-1082.
11	Lentza-Rizos C & Balokas A. 2001a. Residue levels of chlorpropham in individual tubers and
12	composite samples of post-harvest treated potatoes. J.Agric.Food Chem. 49: 710-714.
13	Lewis DJ, Thorpe SA, & Reynolds SL. 1996. The carry-through of residues of thiabendazole,
14	tecnazene and chlorpropham from potatoes following manufacture into potato crisps
15	and jacket potato crisps. Food Addit. Contam. 13(2): 221-229.
16	Ling Y, Wang H, Yong W, Zhang F, Sun L, Yang ML, Wu YN, & Chu XG. 2011. The
17	effects of washing and cooking on chlorpyrifos and its toxic metabolites in vegetables.
18	Food Control. 22(1): 54-58.
19	Randhawa MA, Anjum FM, Asi MR, Butt MS, Ahmed A, & Randhawa MS. 2007. Removal
20	of endosulfan residues from vegetables by household processing. J. Sci. Ind. Res.
21	66(10): 849-852.
	18

3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
∠ I 20
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
22
30
37
38
39
40
41
<u>4</u> 2
12
40
44
45
46
47
48
49
50
50 51
51
52
53
54
55
56
57
52
50
59
60

Rasmusssen RR, Poulsen ME, & Hansen HC. 2003. Distribution of multiple pesticide
 residues in apple segments after home processing. Food Addit.Contam. 20(11): 1044 1063.

SANCO/10684/2009. Method validation and quality control procedures for pesticide residues
analysis in food and feed [Internet]. 2009.
<u>http://ec.europa.eu/food/plant/protection/resources/qualcontrol_en.pdf</u>

- Schattenberg HJ, Geno PW, Hsu JP, Fry WG, & Parker RP. 1996. Effect of household
 preparation on levels of pesticide residues in produce. J. AOAC Int. 79(6): 1447-1453.
- 9 Sottani C, Bettinelli M, Fiorentino ML, & Minoia C. 2003. Analytical method for the 10 quantitative determination of urinary ethylenethiourea liquid by 11 ionization chromatography/electrospray tandem mass spectrometry. Rapid 12 Commun.Mass Spectrom. 17(20): 2253-2259.

Timme G & Walz-Tylla B (2004). Effects of food preparation and processing on pesticide residues in commodities of plant origin. In Denis Hamilton & Stephen Crossley (Ed.), *Pesticides residues in food and drinking water: human exposure and risks* (pp. 12116 148). John Wiley & Sons.

Tong-Xian L. 2004. Toxicity and efficacy of spiromesifen, a tetronic acid insecticide, against sweetpotato whitefly (homoptera: aleyrodidae) on melons and collards. Crop Protection. 23(6): 505-513.

Watts RR, Storherr RW, & Onley JH. 1974. Effects of cooking on ethylenebisdithiocarbamate
degradation to ethylenethiourea. B. Environ. Contam. Tox. 12(2): 224-226.

2 3	1	Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, & Xu Y. 2011. Biocontrol of Fusarium
4 5 6	2	wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl. Soil Ecol.
7 8	3	47(1): 67-75.
9 10	4	
11 12	5	
13 14	6	
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 28		
39 40		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52		

<text>

Figure 1: Flow diagram of processing steps and sampling for one variety of melon. 90x60mm (300 x 300 DPI)

Table 1: Pesticides with their product name, rate of application and the crop stage at the moment of application

Pesticides	Product Name	Active ingredient (g ha ⁻¹)	Application date	Crop Stage (BBCH ^a)	Number of days before harvest	MRL (mg/kg)
Acetamiprid	Gazelle SP	105	9/08/2010	BBCH 83 = 30% of fruits show typical fully ripe colour (FTRC)	10	0.01*
		98	16/08/2010	BBCH 87 = 70% FTRC	3	
Carbendazim	Punch SE	319	5/07/2010	BBCH $65 = 5$ th flower open on main stem	45	0.1*
Cyromazine	Trigard 100 SL	58	2/08/2010	BBCH 81 = 10% FTRC	17	0.3
		63	9/08/2010	BBCH 83 = 30% FTRC	10	
		59	16/08/2010	BBCH 87 = 70% FTRC	3	
Imazalil	Fungaflor EC	97	2/08/2010	BBCH 81 = 10% FTRC	17	2
		105	9/08/2010	BBCH 83 = 30% FTRC	10	
		98	16/08/2010	BBCH 87 = 70% FTRC	3	
Maneb	Trimangol 75 WG	1950	2/08/2010	BBCH 81 = 10% FTRC	17	1
		2108	9/08/2010	BBCH 83 = 30% FTRC	10	
		1971	16/08/2010	BBCH 87 = 70% FTRC	3	
Thiamethoxam	Actara 25 WG	5	2/08/2010	BBCH 81 = 10% FTRC	17	0.2
		5	9/08/2010	BBCH 83 = 30% FTRC	10	
		5	16/08/2010	BBCH 87 = 70% FTRC	3	
			19/08/2010	BBCH 89 = fully ripe: fruit have typical fully ripe colour	HARVEST	

^a The BBCH-scale is a system for a uniform coding of phenologically similar growth stages of all mono- and dicotyledonous plant species.

* Indicates lower limit of analytical determination (Reg. (EU) No 600/2010)

Italics characters indicate that these substances are not authorized on melon in Belgium

 Table 2

 MS detection and selected ion for multi-residues analysis by LC-MS/MS. Quantifier daughter ions are in bold.

Extractor (V)	4							
RF Lens (V)	0.2							
Cone Gas Flow	50							
(L/Hr)								
Desolvation Gas	800							
Flow (L/Hr)								
Selected Ion	Parents	Daughter	Capillary	Source	Desolvation	Cone	Collision	Retention
	(m/z)	(m/z)	(kV)	Temperature (°C)	Temperature (°C)	(V)	(V)	(min)
Curomazin	167.01	84.9	0.6	130	400	28	16	1 53
Cyroniazin	107.01	60.3	0.0	150	400	20	18	1.55
	292.3	211.0				19	12	
Thiamethoxam		180.9	0.6	130	400		24	2.49
	294.3	211.0				19	12	
Acetaminrid	223.0	125.8	0.6	130	400	26	21	3 65
Acctainipilio	225.0	89.9	0.0	150	400		35	5.05
Carbendazim	192.1	160.1	0.6	130	400	25	18	3 92
Carbendazini	172.1	132.1	0.0	150	400	25	30	5.72
Oxfendazole	316.0	159.0	0.6	130	400	34	28	5.35
T 111		159.0	0.6	100	100	20	20	0.67
Imazalii	297.1	69.1	0.6	130	400	30	20	8.67
ETH	102.0	44.3	0.2	120	450	21	15	0.01
EIU	102.9	85.9	0.5	150	430	51	15	0.91
ETU D4	106.0	45.1	0.2	120	450	21	15	0.00
LIU D4	100.9	48.2	0.5	150	430	51	15	0.89
Melamine	126.0	84.8	0.8	150	400	12	22	0.01
	120.9	67.8	0.0	150	400	42	17	0.91

Table 3

Concentrations (mg kg⁻¹) of pesticides and degradation products for the two melon varieties after peeling step. Mean values (\pm SD, n = 2) of two melon batches are depicted.

Variety 1: Mohican

Destisides	LOQ	Raw	Flesh	Peels Mean values (± SD)	
Pesticides	(mg/kg)	Mean values (± SD)	Mean values (± SD)		
Acetamiprid	0.001	0.042 (± 0.00057)	0.0039 (± 0.00007)	0.081 (± 0.0087)	
Carbendazim	0.001	0.0014 (± 0.00049)	< LOQ	0.0042 (± 0.0018)	
Cyromazin	0.005	0.078 (± 0.0022)	0.029 (± 0.0031)	0.110 (± 0.0024)	
Imazalil	0.002	0.0092 (± 0.00085)	< LOQ	0.017 (± 0.0039)	
Maneb	0.040	0.48 (± 0.075)	0.043 (± 0.032)	0.82 (± 0.086)	
Thiamethoxam	0.002	0.0045 (± 0.0000)	< LOQ	0.0074 (± 0.0003)	
ETU	0.050	< LOQ	< LOQ	< LOQ	
Melamine	0.025	< LOQ	< LOQ	< LOQ	

Variety 2: Pancha

Table 4: Mean values (\pm SD, n = 2) of processing factors (PF) for peeling step for six pesticides in two varieties of melons.

Pesticides	PF peeli	ng (± SD)	Action mode	log-octanol- water- partitioning coefficients	Water solubility at 20 °C (mg/L)
	Mohican	Pancha			
Acetamiprid	0.091 (±0.002)	0.11 (± 0.040)	Systemic	0.8	2950
Carbendazim	$0.37 (\pm 0.14)$	0.43 (± 0.08)	Systemic	1.48	8
Cyromazin	0.38 (± 0.04)	0.48 (± 0.08)	Non systemic	0.069	13000
Imazalil	0.11 (± 0.010)	0.093 (± 0.001)	Systemic	3.82	22.4
Maneb	0.088 (± 0.068)	0.073 (± 0.007)	Non systemic	-0.45	178
Thiamethoxam	0.33 (± 0.16)	0.42 (± 0.20)	Systemic	-0.13	4100

http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

Table 5: Active substances (mg) accounting for mass balance of pesticides and degradation products for the two melon varieties after peeling step. Mean values (\pm SD, n = 2) of two melon batches are depicted.

Variety 1: Mohie	can			
Pesticides	Raw (measured)	Flesh	Peels	Raw (calculated)
1 esticides	Mean values (± SD)	Mean values (± SD)	Mean values (± SD)	Mean values (± SD)
Acetamiprid	0.75 (± 0.058)	0.037 (± 0.0001)	0.57 (± 0.084)	0.60 (± 0.084)
Carbendazim	0.024 (± 0.0073)	0.048 (± 0.0001)	0.029 (± 0.014)	0.034 (± 0.014)
Cyromazine	1.38 (± 0.049)	0.281 (± 0.026)	0.77 (± 0.014)	1.05 (± 0.04)
Imazalil	0.16 (± 0.026)	$0.010 (\pm 0.0001)$	0.12 (± 0.032)	0.13 (± 0.032)
Maneb	8.60 (± 1.88)	0.41 (± 0.31)	5.78 (± 0.84)	6.19 (±1.15)
Thiamethoxam	0.080 (± 0.0051)	0.010 (± 0.013)	0.052 (± 0.0001)	$0.061 (\pm 0.013)$
ETU	< LOQ	< LOQ	< LOQ	< LOQ
Mélamine	< LOQ	< LOQ	< LOQ	< LOQ
Variety 2: Panch	na			
Pesticides	Raw	Flesh	Peels	Raw (calculated)
	Mean values (± SD)	Mean values (± SD)	Mean values (± SD)	Mean values (± SD)
Acetamiprid	0.86 (± 0.0016)	0.065 (± 0.025)	0.59 (± 0.077)	0.653 (± 0.10)
Carbendazim	0.022 (± 0.0052)	0.0063 (± 0.0002)	0.024 (± 0.0019)	0.030 (± 0.0021)
Cyromazine	$1.50 (\pm 0.15)$	0.49 (± 0.050)	0.59 (± 0.067)	1.086 (± 0.12)
Imazalil	$0.20 (\pm 0.015)$	0.013 (± 0.0004)	$0.12 (\pm 0.037)$	0.13 (± 0.037)
Maneb	10.17 (± 0.31)	0.50 (± 0.017)	6.46 (± 1.21)	6.97 (±1.23)
Thiamethoxam	0.067 (± 0.0012)	0.019 (± 0.0095)	$0.051 (\pm 0.0066)$	$0.070 (\pm 0.016)$
ETU	< LOQ	< LOQ	< LOQ	< LOQ
Mélamine	< LOQ	< LOQ	< LOQ	< LOQ

Table 6: Mean values (\pm SD, n = 2) with mass balance of processing factors (PF) for peeling step for six pesticides in two varieties of melons.

Destisides	PF peeling (± SD)	
resticides	Mohican	Pancha
Acetamiprid	0.049 (± 0.0038)	0.075 (± 0.030)
Carbendazim	0.20 (± 0.062)	0.29 (± 0.072)
Cyromazine	0.20 (± 0.020)	0.33 (± 0.046)
Imazalil	0.058 (± 0.0091)	0.063 (± 0.0051)
Maneb	0.048 (± 0.038)	0.050 (± 0.0023)
Thiamethoxam	0.12 (± 0.16)	0.29 (± 0.14)