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I. Introduction 

A major issue in automobile, aeronautical, and building industries concerns the need to 

increase or adapt the sound absorption spectrum of metallic foams. However, semi-

phenomenological models used to characterize and predict sound absorbing material performances 

are mainly based on interdependent macroscopic parameters, which do not account explicitly for the 

local geometry of these porous media (i.e., their microstructure). Thus, optimizing sound absorbing 

materials from the manufacturing step remains a difficult task mostly done by trial and error. A 

strict optimization method would firstly rely on our ability to predict the acoustic properties of real 

metallic foam samples from the description of their local geometry. Secondly, it would propose 

process-compatible modifications of their microstructure having predictable impacts on their 

absorption spectrum. Based on fundamental mechanisms governing audible sound waves 

propagation and dissipation through metallic foams, emphasis of this chapter is on linking scales in 

computational acoustics of porous media: how microstructure and macro-scale properties of real 

metal foam samples are related, with engineering guidelines for sound proofing. 

What is the influence of the micro-structural morphology (e. g. aperture size, pore size, 

ligament diameter, ligament shape, etc.) of a metallic foam on its acoustical performance? What can 

be done to the foam’s structure to make it a better absorber? These are many questions that are 

dominating studies of relationships between microstructure and acoustic properties of metallic 

foams. Such questions may be addressed in different manners. 

(1) A common method consists in conducting a lot of laboratory measurements on samples of 

varying microstructural parameters 
1-5

. 

(2) Alternatively, in a search for a theoretical understanding, one may try to better understand the 

mathematical and physical basis of the macroscopic equations governing acoustic dissipation 

phenomena 
6-15

. 

(3) Numerical studies based on simulations can be considered 
16-24

. 
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(4) Semi-empirical approaches that combine numerical predictions of key physical parameters used 

as input data in empirical models can be employed 
25

. 

(5) Lastly, one can consider hybrid numerical approaches combing numerical predictions of key 

physical parameters used as input data in theoretical models 
26-29

. 

Each of these ways of considering these questions has advantages and drawbacks. 

(1) Laboratory measurements are of indisputable value; however, their interpretation may be limited 

to a specific group of morphologies (e.g. open-cell, cracked closed-cell, perforated closed-cell, etc.). 

(2) Theoretical studies at the macroscopic scale lead to robust semi-phenomenological models; but 

they also require measurements of macroscopic parameters, and this may involve great expense. 

(3) Numerical simulations usually attempt to bridge the gap between theory and experiments. They 

are nevertheless typically restrained by either the need to simplify the geometry, physics, or both. 

(4) Semi-empirical approaches suffer from the weakness of empirical models providing poor 

physical insight, and being unable to consider non-already existing microstructural configurations. 

(5) In recent years, a hybrid numerical approach to the study of long-wavelength acoustic waves 

propagation through rigid porous media has gained some popularity. The idea is to numerically 

solve elementary transport equations in a realistic local geometry model, and then to study how key 

physical parameters computed from volume-averaged fields, relate to frequency-dependent acoustic 

properties through approximate but robust semi-phenomonological models. Compared to direct 

numerical approaches, such studies offer the ability to identify the micro geometry features 

governing the macro transport and acoustic properties; they are however limited to micro 

geometries made of idealized periodic unit-cells. 

The classical numerical homogenization approach study the long-wavelength acoustic 

properties of porous media by direct solutions of the linearized Navier-Stokes equation in harmonic 

regime with the local incompressibility condition 
17

 (dynamic viscous problem), and of the 

linearized heat equation in harmonic regime 
13

 (dynamic thermal problem) with appropriate 

boundary conditions. 
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For the case of the dynamic viscous problem, solutions mainly based on finite element 

methods (FEM) have been investigated. Craggs and Hildebrandt 
16

 solved the viscous problem for 

specific cross-sections of uniform pores. Zhou and Sheng 
17

 treated the case of a cylindrical tube 

with sinusoidal modulation of its cross section, three-dimensional (3D) fused-spherical-bed and 

fused-diamond lattices. Chapman and Higdon 
18

 considered the three cubic lattices [simple cubic 

(SC), body-centered cubic (BCC), and face-centered cubic (FCC)] from a very accurate semi-

analytical method, with overlapping or non-overlapping spheres depending on the prescribed 

porosity. Firdaouss et al. 
19

 paid attention to a corrugated pore channel. Finite elements results 

obtained by Firdaouss et al. were subsequently confirmed by Cortis and Smeulders using Schwartz-

Christoffel transformations 
20

. The overall disseminated conclusions related to two-dimensional 

porous media whose internal surface contains sharp-edged wedges were finally summarized in a 

clarifying paper 
21

. Cortis et al. 
22

 also studied the case of bi-dimensional (2D) configurations made 

of a square arrangement of solid cylinders. 

An attempt to grasp the viscous dynamic behavior of more complex microstructures, such as 

a real open-cell aluminum foam sample, has been carried out thanks to a basic 2D hexagonal model 

of solid fibers 
24, 26, 30

. The 2D periodic foam model geometry provided a reliable estimate of the 

dynamic permeability, except in the low frequency range. In the 2D periodic foam model geometry, 

ligaments are always perpendicular to the flow direction, thus artificially decreasing the static 

permeability of the viscous flow. 

For the case of the dynamic thermal problem, another approach has been the application of 

the random-walker simulation method, as proposed by Lafarge 
31

. The principle of the method 

consists in simulating Brownian motion for a large number of the fluid-phase particles, and to link 

their mean square displacements to the thermal conduction properties of the confined fluid. An 

important point of the method is that, once the mean square displacements of a large number of 

particles has been estimated, the dynamic thermal response might be obtained for all frequencies. 

Contrary to finite element analysis, the solution does not need to be computed at each frequency. 
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The random-walker simulation method has been implemented in two and three dimensions for 

computing the trapping constant of a 2D arrangement of overlapping fibers of circular cross-

sections 
32

, and 3D digitalized geometries 
33

. The trapping constant provides the asymptotic low 

frequency behavior of the thermal problem. The first numerical simulations in harmonic regime 

have been achieved for the case of 2D regular and random arrangements of fibers with circular 

cross-sections 
31

, and extended to three-dimensional micro geometries 
34

 with application to an open 

cell aluminum foam sample 
35

. 

 

Other contributions at the pore scale, of industrial interest, and which can be applied in order 

to properly determine both viscous and thermal dissipation phenomena in specific open-cell 

metallic structures are addressed in this section. Wang and Lu 
36

 determined the optimized acoustic 

properties of polygonal ducts through semi-analytical solutions. The optimized cell size found for 

best sound absorbers is on the order of ~ 0.1 mm for practical combinations of sample thickness, 

cavity depth, and porosity. Gasser et al. 
23

 treated the 3D case of face centered cubic nickel hollow 

spheres packings with a view of absorbing sound inside the turboengines of aircraft. A special care 

was given to properly model solder joints. Alternatively, prescribed porosity and correlation 

length(s) have been used for the reconstruction process, or three-dimensional images of the real 

samples 
37

. Lee et al. paid attention to the three-dimensional hexagonal-closed pack structure which 

has not appeared in the acoustic literature previously 
28

; and showed that multi-periodic composite 

structures, defined as periodically-layered media wherein each layer is composed of periodic unit-

cells, could lead to frequency stop-bands 
29

. The sound absorption properties of metallic hollow 

sphere structures were also analyzed experimentally by Pannert et al. 
5
. Very recently, membrane, 

anisotropy, and pore size dispersion effects of real foam samples, mostly open-cell, were 

investigated by the implementation of a 3D polyhedron unit-cell, a truncated octahedron with 

ligaments of circular cross-section shapes and spherical nodes at their intersections 
38

. 
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Contrary to open-cell foams, closed-cell foams are poor sound absorbers. However, they 

generally present a better structural rigidity and a lower production cost than open-cell foams. Two 

main methods can be used for enhancing the sound absorption of closed-cell foams. The first 

method consists of fracturing its cell walls via compression or rolling 
39

. In an effort to model the 

acoustic properties of such a porous medium, it was shown that the fractured foam may be seen as a 

semi-open cell material, i.e., a two-dimensional foam model geometry consisting of infinitely long 

arrays of cracked cells 
40

. The second method consists of hole drilling the closed-cell foam 
41

. These 

two methods follow the same principle, which aims at increasing the viscous effects by enabling a 

relative motion between the two phases of the porous medium. The literature on both methods 

revealed good practical results; however it was limited in the sense that it did not systematically 

quantify the effects of microstructure modifications introduced by compression, rolling or hole 

drilling. Such an attempt was further performed by Chevillotte et al. 
27

. 

Let us also mention that sound absorption characteristics of lotus-type porous magnesium 

and copper plates fabricated by unidirectional solidification were studied experimentally 
42

. For the 

samples under study, it was found that the sound absorption coefficient increased with increasing 

porosity (43 % to 62 %), while it decreased with increasing pore diameter (from 460 ȝm to 660 

ȝm). 

 

This chapter is devoted to the hybrid numerical study of long-wavelengths acoustic waves 

propagation and dissipation through periodically-reconstructed images of rigid porous media. The 

simulations are performed by a finite element method. Since this chapter is also dedicated to non-

specialists, we begin our discussion with a brief review of acoustic wave’s dissipation mechanisms 

in addition to providing some orders of magnitude for typical dissipative pore sizes. We then 

describe the hybrid numerical method through which we simulate the key physical parameters and 

acoustical properties of metallic foams. A study of both an open and a perforated closed-cell 

aluminum foam sample are provided, including a study of how acoustic properties vary as a 
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function of common local geometry features. Our results compare qualitatively well to laboratory 

measurements. They thus serve to validate the application of the hybrid numerical method to 

periodically-reconstructed metallic foams, in addition to providing a detailed study of how acoustic 

properties vary with morphology. 

II. Principles of acoustical energy dissipation through metallic 

foams 

Metallic foams, composed of a metal frame and a connected pore network saturated with air, 

can be used as passive noise control packages to reduce both structure and air-borne sound and 

vibrations. The acoustical energy dissipation through such porous media involves 3 phenomena: 

visco-inertial dissipation, thermal dissipation and structural dissipation. 

The visco-inertial dissipation results from the friction of air particles with the metal frame 

walls while the acoustic waves propagates inside the foam. The thermal dissipation results from the 

thermal exchanges between the air particles and the frame. These two dissipation phenomena thus 

depend mainly on the geometry of the pore network. Obviously the structural dissipation depends 

on the mechanical properties of the material. 

Below are further details of these mechanisms of acoustical energy dissipation. A simple 

physical analysis of these mechanisms will lead to recommendations for producing acoustic 

absorber foams, to be used as standalone sound packages for acoustic correction purposes, or in 

association with heavier partition walls for sound insulation purposes. 

A large amount of literature is available addressing the dissipation mechanisms of the 

acoustic energy in porous materials. Readers are invited to refer to the books by Zwikker and 

Kosten 
43

 or by Allard and Atalla 
44

 for example. 
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A. Mechanisms of acoustical energy dissipation 

Porous materials presenting a single scale of porosity such as glass wool or polyurethane 

foams are constituted by two components called hereafter phases. One phase, the skeleton, is 

composed by the matter from which the porous medium is made of. The second phase is composed 

by the fluid saturating the skeleton: air in acoustics. When such diphasic material is submitted to an 

airborne or a structural vibration, the two phases can interact with each other and can dissipate 

energy. Three types of interactions can occur: visco-inertial, thermal and structural (if the material's 

skeleton is deformable). 

1. Visco-inertial dissipation mechanisms 

Visco-inertial effects in an acoustical porous material are due to the fact that the pore 

saturating fluid does not move in phase with the skeleton. 

In the low frequency range, the viscous forces dominate the inertial ones. The air flow inside 

the material is described by Darcy law. In the high frequency range, inertial forces dominate the 

viscous ones. A characteristic angular frequency vω  has been introduced 
6-7, 8

 to separate the low 

and high frequency behaviors of visco-inertial effects. For pulsations much smaller than vω  the 

flow is purely viscous, for pulsation much larger than vω  the flow is purely inertial. See Fig. 1 for a 

schematic view of these basic principles on visco-inertial dissipation mechanisms. 

 
vω    

Angular frequency 

Low frequencies: 

viscous regime, 

įv  >>  l 

 High frequencies: 

inertial regime, 

įv  <<  l 

 

 

    

Figure 1. Frequency- dependent visco-inertial dissipation mechanisms 
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2. Thermal dissipation mechanisms 

While a sound wave propagates through a porous medium, it experiences successive 

compressions and dilatations. During these successive state transformations, a thermal wave is 

created. Heat is thus exchanged between the air and the frame. The resulting thermal dissipative 

mechanism follows a similar two-asymptotic-state behavior as the visco-inertial one. Below the 

thermal characteristic angular frequency tω  introduced by Lafarge et al.
13

 the air compressions and 

dilatations are isothermal (heat exchanges exist between the whole fluid phase and the frame). 

Above tω  transformations in the fluid phase can be considered as adiabatic due to the high 

frequency of the acoustic propagation phenomenon: The heat exchange phenomenon takes longer to 

establish than a cycle of the pressure wave. See Fig. 2 for a schematic view of these basic principles 

on thermal dissipation mechanisms. 

 
tω    

Angular frequency 

Low frequencies: 

isothermal regime, 

heat transfer between 

air and frame. 

 High frequencies: 

adiabatic regime, 

heat transfer negligible.

 

 

Figure 2. Frequency- dependent thermal dissipation mechanisms 

3. Structural dissipation mechanisms 

The Biot's theory 
6-7

 states that in a porous frame saturated by a fluid such as an air-saturated 

metal foam, three waves can propagate: 

1. a longitudinal wave in the air, 

2. a longitudinal wave in the frame and, 

3. a shear wave in the frame.  

Structural dissipation may thus occur in the frame of the metal foam. 
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In case of air-borne excitation, Zwikker and Kosten 
43

 introduced an angular frequency decω  for 

which the inertial effects in the frame are equal in magnitude to the viscous effects in the fluid 

phase, Fig. 3. For angular frequencies much larger than decω  the two phases can be considered as 

decoupled, assuming stiffness effects of the material sample frame are negligible compared to 

inertial ones. At such frequencies, the frame cannot be significantly set in motion by the fluid-borne 

wave having a high frequency, as the frame motion takes longer to establish than a cycle of the 

pressure wave in the pore network. 

Zwikker and Kosten expression of decω  shows that this angular frequency depends on the 

pore morphology of the porous medium. decω  is also inversely proportional to the mass density of 

the material. For metal foams, the vibration of the frame can usually be neglected as the numerical 

value of the decoupling angular frequency is in the low part of the audible frequency range. 

Obviously, for structure-borne sound no phase decoupling can be considered. 

 

 
decω    

Angular frequency 

Low frequencies: 

phases are coupled, 

3 waves propagate. 

 High frequencies: 

phases  are decoupled, 

1 wave propagates 

(the fluid-borne one). 

 

 

Figure 3. Frequency- dependent structural dissipation mechanisms 

B. Conditions for a metal foam to be an acoustic absorber 

To summarize the points above, two conditions on the pore network morphology can be stated 

for a metal foam to be an acoustic absorber: 

1. An interconnected pore network for the dissipation mechanisms to occur in the largest 

possible volume. 
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2. Visco-inertial and thermal dissipation effects will significantly affect the sound wave 

propagation when the pores have a size of the same order of magnitude as that of the viscous 

and the thermal boundary layers. 

From the work by Kirchhoff 
45 - 46

 it is known that the boundary layer thickness in a cylindrical tube 

for a plane wave incidence assuming a laminar flow of the air particle, a no-slip condition and no 

temperature jump at the air-frame interface, can be calculated as 0/ 2v fδ η ρ π=  where η  is the 

dynamic viscosity of the air (1.8 × 10
-5

 N.s.m
-2

 at a temperature of 20 
o
C and an atmospheric 

pressure of 101325 Pa), 0ρ  is the mass density of the air at rest (1.2 kg.m
-3

 for the same 

temperature and atmospheric pressure conditions) and f  is the frequency of the incident sound 

wave. 

A quick numerical application leads to a variation of vδ  between  3.5 × 10
-4

 m and 1.1 × 10
-5

 m in 

the audible frequency range: [20 – 20 000] Hz. 

Kirchhoff has also reported the expression of the thermal boundary layer thickness, for the same 

conditions as above: 0/ 2t pC fδ κ ρ π=  where κ  is the thermal conductivity of air and pC  is its 

specific heat at constant pressure. For the same temperature and atmospheric pressure conditions as 

above, the numerical values of these two quantities are respectively 2.6 × 10
-2

  W.m
-1

.K
-1

  and  1.0 

× 10
3
  J.kg

-1
.K

-1
.Again, a quick numerical application leads to a variation of tδ  between 4.1×10

-4
 m 

and 1.3×10
-5

 m in the audible frequency range.From the simple physical analysis above on visco-

inertial and thermal effects, it appears that the second condition for a metal foam to be an acoustic 

absorber, is to present a pore size in the approximate range [10 – 1000] micrometers. 

Let us finally mention that efficient transmission losses are generally obtained with 

multilayered systems, where the poroelastic layer acts as a decoupling element. This is obviously 

not the case for metallic foams, which are too rigid to be attractive for this application. 

Consequently, metallic foams for sound insulation should be closed-cell, or used for their sound 

absorption properties. 
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Possible effects of altering the microstructure of a specific foam and the resulting acoustical 

properties to achieve optimal structural acoustic performance in a given application were discussed 

by Lind-Nordgren and Göransson recently 
47

. 

III.  Micro-macro simulation method 

A. Metallic foams� cellular morphology 

Without exhaustivity objective, the intent of this section is to provide a brief overview of the 

diversity of microstructures which can be encountered when dealing with metallic foams and 

acoustic applications, together with possible corresponding periodic unit cell local geometry 

models; Fig. 4. Fig. 4(a) illustrates a 40 ppi Duocel
®

 aluminum cylindrical foam sample mostly 

open cell. The foam sample diameter is 10 mm. The corresponding periodic unit cell foam model 

geometry is a regular truncated octahedra, also called tetrakaidecahedron, having ligaments of 

circular cross-section shapes. The reader is referred to Ref. 34 for a detailed study on this kind of 

foam sample microstructure and local geometry models. In Fig. 4(b), an initially closed cell 

aluminum foam sample is presented, showing cracks at the surface of the pores obtained by 

fracturing the cell walls via rolling. See Ref. 41 for more details about this technique used for 

improving sound absorbing properties of closed cell metallic foams. The related periodic unit cell is 

a simple body-centered cubic system with spheres allowed to interpenetrate in order to model 

interconnected openings. Fig. 4(c) presents a 22.6 mm thickness perforated metallic foam sample. 

Associated local geometry model is a simple cylinder with interconnected polydispersed spheres. 

See Ref. 27 for more information. It is also probably the place to underline the importance of 

collecting information on the fabrication process and related physics for modeling the typical 

cellular morphology of the metallic foam under interest. For an introduction of the different 

manufacturing routes for metallic foams, the reader is for instance referred to Ref. 48. Despite the 

variability of metallic foam’s cellular morphology, a common question to be addressed by engineers 

and researchers interested in metallic foams’ acoustic properties, and more specifically in bottom-
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up approaches for improving their sound absorbing properties, might be formulated as the 

following. What are the local geometry parameters to be introduced in the micro-macro modeling of 

the porous media? i.e., pore size and interconnection distributions, property gradients and 

(an)isotropy. The answer to this question is not unique. But among the advantages to consider an 

idealized periodic unit cell reconstruction approach instead of addressing explicitly the disordered 

nature of porous media, are its effective ability to (i) grasp the main local geometry features having 

a significant impact at the upper scale as well as (ii) suitability for optimization purposes by means 

of a hybrid numerical approach. The work considered in this chapter leads to the determination of a 

periodic unit cell, from which macro-properties are derived. In particular, this method is illustrated 

through the case of a 40 ppi Duocel
®

 aluminum foam sample as depicted in Fig. 4(a), for which an 

extensive literature exists on both microstructure and physical macro-behavior. In this application, 

reconstruction is carried out from the standpoint of the ligament length L and thickness t 

distributions, which have been acquired by means of X-ray computed axial microtomography 
34

. A 

simple isotropic three-dimensional model is considered for the representative idealized periodic unit 

cell, with ligaments of circular cross-section shapes, and spherical nodes at their intersections (of 

diameter d = 1.5 × t typical of lump modeling).  

The open porosity φ  of a porous solid is defined as the fraction of the interconnected pore 

fluid volume fΩ  to the total bulk volume of the porous aggregate Ω , 

 f /φ = Ω Ω . (1) 

The thermal characteristic length ȁ’, which is a generalization of the hydraulic radius, is equal to 

twice the interconnected pore fluid volume fΩ  to pore wet surface ∂Ω  ratio,  

 f' 2 /Λ = Ω ∂Ω . (2) 

The purely geometrical macroscopic properties – open porosity and thermal characteristic length of 

the idealized reconstructed PUC, might then be determined by spatial integration and compared 

with experimental measurements, with a view to validating the proposed idealized PUC prior to 
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first principles computations of transport properties.  It is worth mentioning that the studied thermal 

characteristic length – commonly used in acoustics of porous media – is a parameter closely related 

to the specific surface of the solid porous frame 
49

. 

 Here, we do not use the mean values as input parameters for L and t. Instead, values 

corresponding to the main peaks of the modal distributions are considered (“mean1” in the notations 

of Ref. 34):  L = 1000 ȝm and t = 330 ȝm. 

B. Hybrid numerical approach 

1. First principles calculations of transport properties 

Previous studies 
14, 50

 have shown how the long-wavelengths acoustic properties of rigid-

frame porous media can be numerically determined by solving the local equations governing the 

asymptotic frequency-dependent visco-thermal dissipation phenomena in a periodic unit cell with 

adequate boundary conditions. In the following, it is assumed that Ȝ >> D, where Ȝ is the 

wavelength of an incident acoustic plane wave. This means that for characteristic lengths on the 

order of D ~ 0.5 mm, this assumption is valid for frequencies reaching up to a few tens of kHz. The 

asymptotic macroscopic properties of sound absorbing materials are computed from the numerical 

solutions of: 

(1) the low Reynolds number viscous flow equations (the static viscous permeability 0k , and the 

static viscous tortuosity 0α ); 

(2) the non-viscous flow or inertial equations (the high-frequency tortuosity α∞ , and Johnson’s 

velocity weighted length’s parameter Λ ); 

(3) the equations for thermal conduction (the static thermal permeability 0 'k , and the static thermal 

tortuosity 0 'α ). 
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a) Viscous flow 

At low frequencies or in a static regime, when 0ω → , viscous effects dominate, and the 

slow fluid motion in steady state regime created in the fluid phase fΩ  of a periodic porous medium 

having a unit cell Ω , is the solution of the following boundary value problem defined on Ω  by 
51

: 

 η − ∇ = −v p GΔ ,     in fΩ , (3) 

 =∇ v 0. ,     in fΩ , (4) 

 =v 0 ,     on ∂Ω , (5) 

 v  and p  are Ω -periodic, (6) 

where = ∇ mG p  is a macroscopic pressure gradient acting as a source term, η  is the viscosity of the 

fluid, and ∂Ω  is the fluid-solid interface. This is a steady Stokes problem for periodic structures, 

where v  is the Ω -periodic velocity, p  is the Ω -periodic part of the pressure fields in the pore 

verifying =p 0 , and the symbol  indicates a fluid-phase average. It can be shown that the 

components iv  of the local velocity field are given by 

 

*

0ij

i jv
k

Gη= − . (7) 

The components of the static viscous permeability tensor are then given by 15, 52  

 
*

0 0ij ijk = kφ . (8) 

And the components of the tortuosity tensor are obtained from 

 
* * * *

0 0 0 0 0 ij pi pj ii jjk k k kα = , (9) 

wherein the Einstein summation notation on p is implicit. In the present work, the symmetry 

properties of the microstructure under consideration imply that the second order tensors k0 and α0 

are isotropic. Thus 0 0ij ijk k δ=  and 0 0ij ijα α δ= , where ijδ  is the Kronecker symbol. 
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b) Inertial flow 

At the opposite frequency range, when ω is large enough, the viscous boundary layer 

becomes negligible and the fluid tends to behave as a perfect one, having no viscosity except in a 

boundary layer. In these conditions, the perfect incompressible fluid formally behaves according to 

the problem of electric conduction 
21, 53, 54, i.e. : 

 = −∇ +E eϕ ,     in fΩ , (10) 

 0∇ ⋅ =E ,     in fΩ , (11) 

 0⋅ =E n ,     on ∂Ω , (12) 

 ϕ  is Ω -periodic, (13) 

where e  is a given macroscopic electric field, E  the solution of the boundary problem having 

ϕ−∇  as a fluctuating part, and n  is unit normal vector to the boundary of the pore region.  

Then, the components ij∞α  of the high frequency tortuosity tensor can be obtained from 
14

 

 i ij je Eα∞= . (14) 

In the case of isotropy, the components of the tensor ∞α  reduce to the diagonal form ij ijα α δ∞ ∞= . 

In this case, the tortuosity can also be obtained from the computation of the mean square value of 

the local velocity through: 

 

2

2
α∞ = E

E
. (15) 

As for the low frequency tortuosity, an extended formula can be used for anisotropic porous media. 

Having solved the cell conduction problem, the viscous characteristic length Λ  can also be 

determined (for an isotropic medium) 
6
 

 

2

2
2

dV

dS

Ω
∂Ω

Λ = ∫∫
E

E
. (16) 
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c) Thermal effect 

When a vibration occurs, the pressure fluctuation induces a temperature fluctuation inside 

the fluid, due to the constitutive equation of a thermally conducting fluid. If one considers the solid 

frame as a thermostat, it can be shown that the mean excess temperature in the air τ  is 

proportional to the mean time derivative of the pressure /∂ ∂p t . This thermal effect is described 

by ( )0 '/ /τ κ= ∂ ∂k p t , where τ  is the macroscopic excess temperature in air, κ  is the 

coefficient of thermal conduction, and 0 'k is a constant. The constant 0 'k  is often referred to as the 

“static thermal permeability”. As the usual permeability, it has the dimensions of area and was 

named by Lafarge et al. 
13

. It is related to the “trapping constant” Γ  of the frame by 0 ' 1/= Γk
  54

. In 

the context of diffusion-controlled reactions, it was demonstrated by Rubinstein and Torquato 
55

 

that the trapping constant is related to the mean value of a “scaled concentration field” ( )ru  by 

 1/Γ = u , (17) 

where ( )ru  solves 

 ǻ = -1u ,     in fΩ , (18) 

 = 0u ,     on ∂Ω . (19) 

It is worthwhile noticing that Δu is dimensionless. Therefore, u and k’0 have the dimension of area.  

Similar to the tortuosity factors obtained from viscous and inertial boundary value problems, a 

“static thermal tortuosity” is given by :  

 

2

0 2
'α = u

u
. (20) 
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2. Estimates of the frequency dependent visco-inertial and 

thermal responses 

The acoustic response of foams depends on the dynamic viscous permeability and the 

“dynamic thermal permeability”. Both of these parameters could be obtained from dynamic FEM 

computations as in Ref. 23. The approach presented here relies on the fact that the finite element 

computations presented previously are easy to implement, and provide the asymptotic behavior for 

both dynamic “permeabilities”. This asymptotic behavior constitutes the input data for the models 

which are used for predicting the full frequency range of the dynamic “permeabilities”. Therefore 

the hybrid approach employed in our study makes use of the asymptotic parameters of the porous 

medium obtained by finite elements. Then, it will be possible to provide the dynamic permeabilities 

and to compare these values to experimental ones.  In a first step, the three different models which 

are used to build the dynamic permeabilities from asymptotic parameters are briefly recalled. 

Johnson et al. 
8
 and, later, Pride et al. 

11
 considered the problem of the response of a simple 

fluid moving through a rigid porous medium and subjected to a time harmonic pressure variation 

across the sample. In such systems they constructed simple models of the relevant response 

functions, the effective dynamic viscous permeability ( )k ω#  or effective dynamic tortuosity ( )α ω# . 

The main ingredient to build these models is to account for the causality principle, and therefore for 

the Kramers-Kronig relations between real and imaginary parts of the frequency–dependent 

permeability. The parameters in these models are those which correctly match the frequency 

dependence of the first one or two leading terms of the exact results for the high- and low- 

frequency viscous and inertial behaviors.  

Champoux and Allard 
10

 and thereafter Lafarge et al. 
13, 14, 50

, in adopting these ideas to 

thermally conducting fluids in porous media, derived similar relations for the frequency dependence 

of the so-called effective “dynamic thermal permeability” ( )'k ω#  or effective dynamic 

compressibility ( )β ω# , which varies from the isothermal to the adiabatic value when frequency 
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increases. The models for effective dynamic permeabilities were shown to agree with those 

calculated directly or independently measured. An important feature of this theory is that all of the 

parameters in the models can be calculated independently, most of them being, in addition, directly 

measurable in non acoustical experimental situations. In this regard, these models are very attractive 

because they avoid computing the solution of the full frequency range values of the effective 

permeabilities/susceptibilities. These models are recalled in Sec.III.B.3. They are based on simple 

analytic expressions in terms of well defined high- and low- frequency transport parameters which 

can be determined from first principles calculations [Sec. 1].  

Such a hybrid approach was extensively used by Perrot, Chevillotte and Panneton in order to 

examine micro-/macro relations linking local geometry parameters to sound absorption properties 

for a two-dimensional hexagonal structure of solid fibers 
24

. This method was recently completed by 

the use of easily obtained parameter (porosity φ  and static viscous permeability 0k ) of real foam 

samples, and by utilizing three-dimensional numerical computations 
38

.  

As explicated, spatial integration provides the purely geometrical macroscopic parameters – the 

open porosity φ  and the thermal characteristic length 'Λ ; and the five remaining input parameters 

for the models, 0α , α∞ , Λ , 0 'k , and 0 'α  can be obtained by means of first-principles calculations 

by appropriate field-averaging in the PUC (Fig. 4(a)). 

Finally, the predictions of the three models for the effective dynamic permeabilities described in 

Sec.III.B.3 may be considered. In summary, the Johnson-Champoux-Allard” [JCA] model uses 5 

parameters (φ , 0k , α∞ , Λ , 'Λ ), Johnson-Champoux-Allard-Lafarge” model [JCAL] uses in 

addition 
'

0k , and Johnson-Champoux-Allard-Pride-Lafarge” [JCAPL] model uses the full set of 

parameters (φ , 0k , 
'

0k , α∞ , Λ , 'Λ , 0α , and 
'

0α ). 

3. Models for motionless skeleton materials 

To describe the macro-scale acoustic properties of rigid-frame air-saturated porous media, 

also called “equivalent fluid” by some authors, the knowledge of two complex response factors are 
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required. The dynamic tortuosity ( )ijα ω#  is defined by analogy with the response of an ideal (non-

viscous) fluid for which ijα  is real-valued and frequency independent, 

 ( )0

j

ij j
t

ρ α ω ∂ = −∂
v

G# . (21) 

( ) ( ) 0/ij ijα ω ρ ω ρ=# #  is related to the dynamic viscous permeability by ( ) ( )/ij iji kα ω νφ ω ω= ## . In 

these expressions, ( )ijρ ω#  is the effective density of air in the pores, 0ρ  is the density of air at rest, 

and 0/ν η ρ=  is the air kinematic viscosity. 

Similarly, a compressibility effect is also observed at macro-scale in the acoustic response of 

a thermo-conducting fluid filled porous media, where a second convenient response factor is the 

normalized dynamic compressibility ( )β ω#  which varies from the isothermal to the adiabatic value 

when frequency increases, 

 
( ) p

aK t

β ω ∂ = − ⋅∂ v
# ∇ . (22) 

Here, ( ) ( )/aK Kβ ω ω=# #  is directly related to the dynamic (scalar) thermal permeability 
13

 by 

means of the relation ( ) ( ) ( )1 ' 'i kβ ω γ γ ω ω ν φ= − − ## . In these equations, ( )K ω#  is the effective 

dynamic bulk modulus of air in the pores, 0aK Pγ=  is the air adiabatic bulk modulus, 0P  the 

atmospheric pressure, p v/C Cγ =  is the specific heat ratio at constant temperature, 0 p' / Cν κ ρ= , 

and pC  and vC  are the specific heat capacity at constant pressure and volume. 

With a locally plane interface, having no fractal character, the long-wavelength frequency 

dependence of the visco-thermal response factors ( )ijα ω#  and ( )β ω#  have to respect definite and 

relatively universal behaviors, namely causality through the Kramers-Kronig relation 
8, 54, 56

 similar 

to models used for relaxation phenomena in dielectric properties. The equivalent dynamic tortuosity 

of the material and the equivalent dynamic compressibility of the material are ( ) ( ) /eq ij ijα ω α ω φ=# #  

and ( ) ( )eqβ ω φβ ω=# # . 
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Simple analytic admissible functions for the fluid phase effective properties for isotropic 

porous media respecting the causality conditions are 

 ( ) ( ) ( ) ( ) ( ) 1
1 1

1 ,                1 1 ' '
'

f f
i i

α ω α ϖ β ω γ γ ϖϖ ϖ
−

∞
⎡ ⎤ ⎡ ⎤= − = − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦## , (23) 

where f and 'f are form functions defined by  

 ( ) ( )2 2

'
1 1 ,               ' ' 1 ' ' 1 '

2 2 '

M M
f P P i f P P i

P P
ϖ ϖ ϖ ϖ= − + + = − + + , (24) 

and ϖ  and 'ϖ  are dimensionless viscous and thermal angular frequencies given by the following 

expressions, 

 0 0 '
,               '

'

k kαω ωϖ ϖν φ ν φ∞= = . (25) 

The quantities M , 'M , P  and 'P  are dimensionless shape factors, 

 ( )
'

0 0

2 2 '

00

8 8 '
,               ' ,                ,                '

' 4 1
4 1

k k M M
M M P P

α
αα

α
∞

∞

= = = =Λ φ Λ φ ⎛ ⎞ −−⎜ ⎟⎝ ⎠
. (26) 

• For ' ' 1M P P= = = , 
' 2

0 ' 8k = φΛ ), the dynamic visco-inertial and thermal response 

functions reduce to 5 parameters ( φ , 0k , α∞ , Λ , 'Λ ) named throughout the paper as 

“Johnson-Champoux-Allard” [JCA] model. 

• When the requirement 
' 2

0 ' 8k = φΛ  is not fulfilled, 
'

0k  must be explicitly taken into account, 

this is the 6 parameters “Johnson-Champoux-Allard-Lafarge” [JCAL] model, where 'M  

may differ from unity. 

• A complete model relies on 8 parameters ( φ , 0k , 
'

0k , α∞ , Λ , 'Λ , 0α , and 
'

0α ) and 

correctly matches the frequency dependence of the first two leading terms of the exact result 

for both high and low frequencies. This is the refined “Johnson-Champoux-Allard-Pride-

Lafarge” [JCAPL] model.  

Looking for plane waves solutions varying as exp[ ( )]i t qxω − # , Eqs. (21) and (22) yield the  
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equivalent dynamic wave number ( )eqq ω#  of the material and equivalent characteristic 

impedance ( ) eqZ ω#  of the material 

 ( ) ( ) ( )( )
11

22
0

0,          
eq

eq eq eq eq a

a eq

q Z K
K

α ωρω α ω β ω ρβ ω
⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

## ### # . (27) 

Thus, ( )eqα ω#  and ( )eqβ ω#  provide all pertinent information on the propagation and dissipation 

phenomena in the equivalent homogeneous material. Assuming an absorbing porous layer of 

thickness Ls that is backed by a rigid wall, the normal incidence sound absorption coefficient is  

 

2

1
1

1

sn
n

sn

Z
A

Z

−= − +
#
# , (28) 

with the normalized surface impedance of the porous medium defined as 

  ( )
0 0

coth
eq

sn eq s

Z
Z iq L

c
= ρ

#
# # , (29) 

where c0 is the sound speed in air. 

IV.  Results and discussion 

A. Experimental validations 

Transport parameters and normal incidence sound absorbing behavior were derived on the 

basis of an idealized reconstructed PUC as described through Sec. III A with the computational 

method presented in Sec. III B. See Tab. I and Fig. 5 for the corresponding numerical results, and 

their experimental counterparts, as obtained by the techniques and methods exhaustively described 

below. These results validate our approach. Also shown is a typical perforated closed-cell metallic 

foam sound absorption spectrum, Fig. 6. See Ref. 27 for a detailed presentation of these results. 

Note that, contrary to open cell foam samples, perforated closed cell metallic foam samples as well 

as perforated plates present selective (as opposed to large frequency bands) sound absorption 



 - 24 -

spectrums. A subsequent step consists in numerical experiments to provide insight about 

microstructure effects on acoustical macro-behavior.  

The absorption performances of acoustical materials are usually measured in diffuse sound 

field according to ISO 354 (Acoustics – Measurement of sound absorption in a reverberation room). 

However, due to the small sample size of metallic foams usually available their sound absorption 

properties are usually measured for plane waves at normal incidence according to ISO 10534 

(Determination of sound absorption coefficient and impedance in impedance tubes). Either method 

1 or 2 of this latter standard test can be used. 

Measurement of the sound absorption in normal incidence using an impedance tube 
57

 (cf. Fig. 7) 

can also be advantageous to carry out the estimations of 4 parameters introduced previously 
58, 59

: 

the high-frequency limit of the tortuosity, the viscous and thermal characteristic lengths and the 

static thermal permeability. 

The two remaining parameters of the JCAL model can be directly measured: (i) the static 

permeability was obtained by means of accurate measurements of differential pressures across serial 

mounted calibrated and unknown flow resistances, with a controlled steady and non-pulsating 

laminar volumetric air flow as described by Stinson and Daigle 
60

 and recommended in the 

corresponding standard ISO 9053 (method A) or ASTM C522 (cf. Fig. 8); (ii) and the open-porosity 

using methods such as those described by Champoux et al. 
10

 based on a previous work by Beranek 

61
 (cf. Fig. 9), Leclaire et al.

62
, or Panneton et al. 

63, 64
. 

A direct measurement of the high frequency limit of the tortuosity α∞  has been presented by Brown 

53
. The method based on the measurement of the electrical conductivity of the porous material 

requires the material's frame to be saturated with a conducting fluid and can only be applied to 

materials for which the frame is composed with a dielectric material (i.e. it does not conduct 

electricity). As an alternative to direct measurement or estimation from impedance tube 

measurements, ultrasonic methods also exist. Allard et al. 
65

 have proposed a method to estimate 

α∞  from the increase of flight time and the damping of an ultrasonic pulse, when a material sample 
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is placed in between two ultrasonic transducers. From this work and in particular works by Johnson 

et al. 
66

 and Nagy 
67

, Leclaire et al. 
68

 have proposed a method to estimate α∞ , Λ , 'Λ  using 

ultrasonic transmission measurements with the same porous material frame saturated successively 

with two different gases (usually air and helium). Recently, Groby et al. 
69

 have adapted the works 

by Panneton and Olny 
58

 and Olny and Panneton 
59

 to estimate the four 4 last parameters of the 

JCAL model in the ultrasound domain from measurements of the transmitted and the reflected 

coefficients. 

B. Numerical experiments: Microstructure effects on acoustical 

macro-behavior 

Two main cellular morphology parameters were found to dominate the effects on acoustical 

macro-behavior of rigid porous media 
24, 26, 27, 30

. It is worth mentioning that conclusions found by 

these authors on the basis of a simple two-dimensional lattice of hexagonal solid fibers 
24, 26, 30

, were 

confirmed for other kinds of metallic foams apparently very different 
27 

such as the closed cell 

perforated metallic foam sample system as illustrated by Fig. 4(c). These conclusions might thus be 

considered as general acoustical micro-macro relationships. They report the existence of an 

emerging knowledge in which key local geometry features, having a significant impact on the long-

wavelength acoustical macro-behavior of motionless porous media in general and metallic foams in 

particular, might be isolated from the standpoint of idealized periodic unit cells. 

The throat size, which might be defined as the smallest aperture in a regular array of 

interconnected pores, appears as being the most important local geometry parameters in terms of 

acoustical macro-behavior. For instance, the throat size is the distance between two solid inclusions 

if one considers a regular array of solid fibers; it becomes the diameter of perforations when one 

deals with a perforated closed cell metallic foam sample. Numerical experiments have shown that 

the throat size directly controls the static viscous permeability 0k
 
(or the resistivity σ , since 

/0k η σ= ) of the porous media and, as a consequence, the overall level of sound absorption 
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(mainly by viscous dissipation mechanisms). In other words, if the aperture by which the 

compressional sound wave is allowed to penetrate is too small, reflection occurs and the sound 

wave can neither propagate, nor dissipate. By contrast, if the aperture is too large, the viscous 

boundary layer interacts only with a small fraction of the possible surface by which viscous 

interactions develop. In between there must exist an optimal opening zone, which was already 

known by Kirchhoff for pores of cylindrical cross-section shapes (Sec. II A 1), and might be 

estimated by the proposed approach for real metallic foam samples. 

The second microstructural parameter revealed from numerical experiments as having a 

significant and direct impact on the acoustical macro-behavior is the pore size. For instance, twice 

the inter-fiber distance in case of a hexagonal lattice of solid fibers (2l in the notations of Fig. 1 in 

Ref. 26); the characteristic bubble size when one considers perforated closed cell metallic foams (a 

in the notations of Fig. 2 in Ref. 27). Pore size effect can be interpreted in terms of sound absorption 

modulation of the main peak: the overall sound absorption level is essentially unchanged by the 

pore size at constant throat size, whereas the frequency at which maximum absorption occurs might 

be advantageously modified according to the knowledge of a noise source spectrum. This is another 

fruitful property for sound absorbers design. The phenomenological reasons behind this micro-

macro pore-size/modulation-spectrum linkage might be described in terms of tortuosity: pore size 

increases with the infinite tortuosity factor α∞ , which tends to lower the frequency of the sound 

absorption peak. 

V. Further remarks on the evaluation of acoustic properties of 

metal foams 

To summarize, we have presented a general approach for linking scales in acoustics of 

porous media in which the acoustic properties computation of various three-dimensional metallic 

foam microstructures can be considered in a unified framework. Comparison with experiments 

yields very good agreements. This paves the road for a systematic microstructure optimization of 
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real sound absorbing materials. The transport and acoustic properties dependence of the local 

geometry model to membrane, anisotropy, and polydispersity effects will be published elsewhere. 
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Table I Comparison between computed, measured, and characterized macroscopic parameters 

for a Duocel
®

 40 ppi aluminum foam sample. 

Method  (-)φ  '  (mm)Λ  ( )0k 2m  (-)0α  (µm)Λ  (-)∞α  ( )0k ' 2m  'α0  
Computations 0.91 2.05 10.34×10-8 1.42 1.17 1.07 19.92×10-8 1.21 

Measurements a, b 0.91   10.39×10-8      

 (± 0.01)  (±1.23×10-8)      

Characterization c, d  2.01  NA 0.99 1.07 NA NA 

  (± 0.43)   (± 0.06) (± 0.01)   
a
References 63-64. 

b
Reference 60. 

c
Reference 59. 

d
Reference 58. 
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Figure 4. Illustration of the diversity of microstructures which can be encountered when dealing 

with metallic foams together with possible corresponding periodic unit cell local 

geometry models: (a) open cell, (b) fractured, and (c) perforated closed cell aluminum 

foam samples. 
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Figure 5. Comparison between computed and measured normal incidence, plane waves, sound 

absorbing behavior of a 40 ppi Duocel
®

 aluminum foam sample. Thickness, 48 mm. 
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Figure 6.  Normal incidence sound absorption coefficient of a real perforated closed-cell aluminum 

foam.  Measurements (dotted line) compared to numerical computations with (dashed 

line) and without (solid line) a perforated facing plate. 
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Figure 7. Picture of a 1 meter-long impedance tube which can be used (i) to measure the sound 

absorption properties of metal foams for plane waves at normal incidence and (ii) to 

estimate 4 parameters of the JCAL model. 
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Figure 8. Scheme of the experimental setup used for the measurement of the static air flow 

resistivity. 
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Figure 9. Scheme of the porosity measurement apparatus after Beranek 
61

 and Champoux et al. 
10

. 

Porosity is measured from the pressure increase when reducing a reference volume 

containing the sample using Boyle-Mariotte law. 


