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Adaptive Controller and Observer for a
Magnetic Microrobot[1]

Laurent Arcese, Matthieu Fruchard, Antoine Ferreira

Abstract—The present paper discusses the control design of a
magnetically-guided microrobotic system in blood vessel$éo perform
minimally invasive medical procedures. Such microrobots @nsist of a
polymer binded aggregate of nanosized ferromagnetic parties and a
possible payload that can be propelled by the gradient coilsf a magnetic
device. A fine modeling is developed and used to define an optn
trajectory which minimizes the control efforts. We then syrthesize an
adaptive backstepping law that ensures a Lyapunov stable ah fine
tracking despite modeling errors and estimates some key uectain
parameters. As the controller synthesis uses the microrohainmeasured
velocity, the design of a high gain observer is also addresseSimulations
and experiment illustrate the robustness to both noise measement and
some uncertain physiological parameters for &50um radius microrobot
navigating in a fluidic environment.

Index Terms—Magnetic microrobot, nonlinear modeling, adaptive
backstepping, high gain observer, noise and parametric urertainties.

. INTRODUCTION

Minimally invasive medical procedures are currently anivact
research area since related techniques can both reacher@haces
without surgical operation and improve targeting. Theréhgy result
in lessened medical side effects and a better therapeditieaty
and safety. Magnetically-deflected catheters [1], [2], §8lve some
weaknesses induced by conventional catether-based gedsilike
the lack of manoeuvrability and resulting vascular injsri€o as to
both improve accessibility to hard-to-reach body areasraddce the
risk of infection, another approach relies on untetherecronobots.
Recent developments of microelectromechanical systemie nita
possible to fabricate such robots that can be injectedvieti@usly to
accomplish either targeted therapy or biosensing [4]. Yeirdoves
difficult to embed actuators sufficiently powerful to prop&ich
systems in the cardiovascular system, especially when i
against the blood flow. Most of swimming approaches consgtue
rely upon magnetic fields to wirelessly transmit power to natic
robots. This proof-of-concept was first studied using etenagnets
[5], [6] and superconducting magnets [7], [8]. Recently,gmetic
microrobots have received a lot of attention since they &ie &
provide large motion forces and move in low Reynolds numhgddl
Three main propulsion schemes have distinguishing phlyfiatures.
First, helical and beating flagella [9] magnetic biogicaihspired
microrobots are promising for use in open fluidsg. for destroying
kidney stones [10], or for ophtalmic surgery [11], [12]. Sed,
magnetotactic bacteria actuated thanks to embedded faegrostic
magnetosomes has been demonstrated [13]. Finally, beéidgpid
investigated using either experimental setups [10], [[14], [16] or
magnetic resonance imaging devices [17].
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Fig. 1. Free-body diagram of forces acting on a microrobe¢retd by mag-
netic gradient fields in a bIoog vessély,, Fy, Fe;: magnetic, hydrodynamic
drag, and electrostatic forceH/,: microrobot apparent weight.

All these contributions point out the difficulties of coritiog
magnetic microrobots in fluids through magnetic fields aobna
Achieving motion control of such robots necessitates mesai
dynamics modeling and analysis [18], [19]. Despite nomlitees
of the proposed models, related control approaches madhjyan
linear tools of control theory. As example, the controllidpiof the
linearized system around equilibrium is studied in [20}, there is no
controller design. To deal with the nonlinearities of thegmetic field,
the authors in [21] have used decoupling and linear pardragtn to
synthesize an optimal controller that minimizes a quadretist. To
face the same kind of problem, a linear quadratic gaussiatraiter
based on the linearized model has been addressed in [22nRec
a new approach referred to as magnetic resonance navigadion
been proposed to steer and track in real-time endovascudgneatic
devices in deep tissues to target areas of interest [23], R4
it focuses on feasibility studies of the microrobot pullingncept,
developed model is linear and in turn the synthesis of coteres
relies on PID approaches [24], [25]. Both authors reportainifities
and important oscillations around equilibrium. These wesises are
directly related to the use of linear controllers that arewell-suited
for dealing with nonlinear perturbated systems.

In this paper, we discuss the control design of a bead pulled
microrobotic nonlinear system to navigate in blood vessgétion
Il recaps the nonlinear modeling of the endovascular robndt the
inherited state space representation. Section Il themeadds the
choice of the reference trajectory, and states the robsstissues
the controller has to face with. To this end, we design adepti
backstepping controllers and high gain observers in Sedtio The
control design, recently developed in [26], ensures thepuypav
stability of the trajectory tracking while high gain obsers ensure
the estimation error stabilization. Besides, adaptivetrcbnlaws
enableon-lineestimation of uncertain parameters to which the system
is the most sensitive, thus improving the tracking perfaroes.
Section V is devoted to simulation and experiment resultéchvh
illustrate the stability and robustness of the controtibserver pair.
Conclusions are given in the last section.

Il. BACKGROUND

The microrobot is a polymer binded aggregate of ferromagnet
particles immersed in a small artery (Fig. 1). This sectiecaps the
modeling of the forces that affect the microrobot, addréseg27].
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C. Contact force

RNy Qutput Blood . . L -
5 ]%) ””” 3) F me‘;e Since the impacts occur within a few milliseconds, and uritler
2.

assumption of no friction during the impact, the contactcéoiis

FC ,,,,,,,,,,,,,,,, e .
i Td } expressed by a modified Hertzian contact law [30] :
2 ‘) . R )
\\\\\\\\\\\\\\\ T T T TS L) F. = —K|§*?H(-6)i :loading :
~ E. = —Fgm’(sf;fgo H(—68)7 : unloading ®)
/ k where H is the Heaviside step function and the unit vector

normal to the wall.Fs,, and ¢,, are the maximum contact force
and deformation, respectivelyy is the permanent deformation and

Isatil ial wall ; A .
e etoamaes p € [1.5,2.5]. The stiffnessK is given in [27].

(amplified deformation) )

< R',,?Cf‘,§ggg't“9 D. Electrostatic force
0>

The electrostatic force between the microrobot and the eait
sidered as an uncharged surface is given by [31]:

2
5 4 H(9) H(=0)\
\E/esslellnwa” Far = dreeg ((7' +9)2 T2 ) " ©
"\\\/ X equiliorium ) i i . i i
£\Is dashed) with ¢ the microrobot charge [32] ardthe medium dielectric density.

lnpﬁi’élood Profile (parabolic profile) As depicted in Fig. 2, the resulting force includes the iattions with

) ) ) ) . the upper and the lower walls.
Fig. 2. Scheme of a blood vessel with minor bifurcations.

E. Magnetic force

The robot translational motion is given by The gradient coils of a magnetic device provide a magneticefo
dv = _, o . - F,, on the microrobot of magnetizatiol:
md—:z 77L+Fd+Wa+Fc+Fel (1) R g
Fo =1 V(M.V)B (1)

where is the translational velocity of the robot of mass In the
present case study, short range interactions (van der \&adlsteric whereB = Bok is the external magnetic field.
forces) and stochastic effects are negligible [27].

F. State Space Representation

A. Hydrodynamic drag force Let z1, x2, (x3, x4) denote respectlvely the microrobot position

The hydrodynamic drag forcg}; exerting on a spherical body of 54 velocity along’ axis (respectively along axis). Assuming that

radiusr in a finite fluid is expressed as: positionsz; and z3 can be measured thanks to an imager, et
_, (@ =)l (1) denote the state measure. Using expressions of forces4{2)(5),
Fa= 2 pf { 3 } ACq T@=anl O] (6), and (7), and adequate projections, system (1) can beewiin

the control-affine form
where ¥ — ¥y denotes the relative velocity of the microrobot with

2
respect to the fluid4 is the body frontal areau; is the blood density, . . _ _ .
3 a dimensionless ratio related to wall effect caused by tresele #=1 = fo(z)+ Z‘f’ u Y =h(z) ®)
occlusion by the microrobot, see e.g. [28], alig( Re, 5) is the drag
coefficient [27]. The non-Newtonian behavior of blood is mdded with vector fields given by:
using [29]. fo = (22, foa(x),ma, foa(x))", ©)
The wall effects result in a parabolic flow profile (see Fig. 2) i = (0,a,0,007, f2=1(0,0,0,a)"
Th Isative blood velocity i deled b fi lbomabf
© pulsative Blood VETOelty 1S modeied by an eitine com where the control input$u:,uz2) = (VB,, VB.) are the magnetic

a time-varying periodic flow with the spatial shapé) € [0, 1], . M : i i
where § is the algebraic distance from the robot surface to tl,%radlents,a T T # 0, and the functiongfo; are given by :

wall. In arterial vasculature, the pulsative behavior alsduces a fo2() = Fun, + Fein, + Fen
. . . . . . Mg elng Ny (10)
periodic deformation of the vessel diamef@(t) synchronized with foa() = Fun. + Fon. + Fen. + Wan
the pulsative blood velocity(¢). .
- - with
1wt 1wt
cne™’, D(t) = dne ) g _3cos(9)[3n, . 2
2 2 e =g | 7 = )+ L - 5
5 ell2
B. Apparent weight + 3ps 17— 7| ]
. . . . . 2 2067 o
The apparent weight, that is the combined action of the weigt Fay Gl = v

the buoyancy, is also acting on the microrobot: r 3¢ sin(¢) [ H(82) H(61) (11)

o elne = 16-2.3 2 2

Wa ZV(P—pf)ff (4) 167272 peeg (7‘—1—52) (7‘—‘,—51)

- . H(—82) — H(—6
where V' is the microrobot volumep = Tmpm + (1 — Tm)ppoly + w]
with p., and ppo1, the magnetic material and polymer densities, and 3K
_ 3/2 3/2 :

m = 42 the ferromagnetic ratio. Feny =3 [‘5” /2 H(=01) = 162/ H(_52)] sin(t))
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(a) Centered pre-planned path.

(b) Optimal trajectory.

either the electrostatic forcg.;, the drag force;, or the magnetic
force ﬁm, affect the estimate of the resultant force acting on the
microrobot.

Figure 4 shows both the force error (inV) and the force error
ratio (in %) for some parametric errors in the rang®0% around
their nominal values. The study is performed assuming aarobot
radiusr = 250um. The center of mass of the microrobot is located
at D/4 from the blood vessel centerline. Figure 4(a) shows the
electrostatic force error induced by uncertainties on thergeq and
on the medium dielectric density. The resulting nonlinear profiles
are related to the fact thaﬁl grows in ¢* and 1/e, respectively.
Both magnetic and drag force errors are drawn on Fig. 4(b), fo
parametric uncertainties on the microrobot magnetizatibrand the
fluid viscosity n;, respectively. Despite the linear dependencﬁbj

in M, this parameter impacts severely the estimated forcee sanc
50% error on the robot magnetization causegaV error on the
force. Although the drag forcé; varies as a non-linear function of
n, the drag force error is quasi-linearly affected in the adered
range. Both figures show that58% error on eitherg, ¢, or n, leads
to aluN error on the estimation of the electrostatic and drag forces
A significant error on one of these parameters can significant
degrade the system performances or make it unstable. Bheref
the dedicated controller should both stabilize the midvotoalong

Fig. 3. Without optimal trajectory, the control effor,, required to track the
reference are beyond the capabilities of actuators. Usirgptimal trajectory,
external forces tend to cancel each other, resulting in silfleatracking.
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a reference trajectory, and ensure robustness to the mositige
parameters uncertainties.

IV. MAIN RESULTS
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(a) Electrostatic force. (b) Magnetic and drag forces.

We now synthesize an adaptive backstepping control lawt, tha
Fig. 4. F,,, Fy, F., forces estimation error due to parametric uncertaintied-yapunov stabilizes the system (8) along the referencedtajy
and alsoon-line estimates some parameters in order to improve the
robustness and the quality of the tracking. Since the itdeigontrol
where indexese, z, n denote projections o and k, and normal- law requires the unmeasured robot velocity, a high gainmestr is
ization with respect to mass: and ¢ are used to project the mobile also developed. We first state on the controllability andeokebility
frame and relative velocity, respectively (Fig. 2). of the system (8).

I1l. PROBLEM STATEMENT A. Prerequisites

Prior to address system (8) control issues, we first define Paoposition 1 Let X,.; = [X,(t), X, (t), X, (t)] denote any con-
reference trajectory that minimizes the control efforténc® the tinuous and bounded reference trajectory. The sysi@nis locally
robot modeling involves many physical and physiologicabpaeters controllable along the reference trajectory.
affected by uncertainties, we also provide a sensitivitglysis so as
to identify the ones that deserve an-line estimation to improve the
robustness to parametric errors.

Proof: To state a result on the controllability of system (8),
we linearize it along the reference trajectory. From (8), ol¢ain a
continuous linear time-variant system :

A. Reference Trajectory z = A(t)x(t) + B(t)u(t) (12)
An optimal trajectory is deduced from the force balance, stoa
minimize the control efforts (see Fig. 3(a) and 3(b)). Fiestchor All) = Ofo(x)
points are defined in the vicinity of a pre-planned centeraith.pAt o o | ; (13)
these points, the interaction force equipoises other eateiorces, Bt) = [fif2]. -
resulting in an optimal ratio of the motive magnetic forceeov
external ones. A clasé? B-spline then joins these points. AIongset dB; .
this optimal trajectory, the required control inputs assldemanding Bo = B(t), Bis1 = A(t)Bi — —~ Vi€ N. (14)
than alongside the \{essel cent_erllne, for the magneticefshould The system (12) is controllable [33] alongX,.; since
no more compete with the entirety of external forces. Se¢ f@7 dim [Bo B ... = 4 with
more details. N
0 O a 0
B. Sensitivity study (Bo Br] = g 8 ad foz/ 5(3)562| X,o; @0fo2/0maly
L. . . . a
The model (11) exhibits numerous physiological and physea 0 a a@fo4/8a:2|xmf a8f04/8a:4|xmf

rameters. A comprehensive study has been conducted tordie¢cthe
predominant parameters in the moded,, the ones that substantially Since the linearized system (12) is controllable alakg.s, the
modify the estimated force in case of parametric uncer&snfThis nonlinear system (8) is locally controllable along the sdragctory
study shows how and to what extent parametric errors impgcti[34]. [ ]
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Proposition 2 The systen{8) is observable.

Proof: The observability matrix0 = (9L}h(z)/dz;), 0 <
i <1, 1 <j <4, where Lyh(z) denotes theth Lie derivative
of the outputh(x) of the system (8) along the vector fielt] is a
permutation matrix, hence the result. [ ]

B. Control

C. Observer

The control laws (17) and (19) require both the microrobcitan
and velocity. The former is measured by the imaging devitesreas
the latter is not, which justifies the necessity of an obger8ace
the vector fields are locally Lipschitz continuous, we prapdigh
gain observers [37].

Proposition 5 Let I denote any compact subset of a neighborhood

The model exhibits many parameters that are unknown or ynighf (X», X-), andi/ the compact set of admissible control inputs. Then
variable. An adaptive nonlinear control law [35], [36] bdsen a V(X,Z)(0) € K, V(X, Z)(0) € R", V6(0), there exists.o > 1 such

backstepping approach is now developed to guarantee thiditgtan
spite of parametric errors, using control Lyapunov funeig¢CLF).
As shown in section IlI-B, the most sensitive parametersidre;, ¢

ande. However, the adaptive backstepping approach only adesess

estimation of linear parameters, likkf, —or linear up to some

change of coordinates, likg® /c— of the model. We here address

two cases: the estimation of linear parameters in the deitor field
fo, and in the control vector fields. We first propose the follayvi
change of variables so as to have a triangular system:
X = (z1,23), Z = (v2,24),Y = X,u = (u1,u2)  (15)
To deal with the unknown parametér = é we set the new
system from (8) and (15):

(X = Z
(8){ 7 = F(X,2)+p(X)0+ au (16)

WheI'EF(; = (f()z — Felnz,f04 — Felnz) and Fon = (po(X)a.

that VL > Lo,

{ X =Z+LGi(X -Y) 1)

Z=F(X,Z,0,u)+L*Ga(X - Y)
with F' = F§ + @00 + au (resp. F = Fy + ¢bu) and Fa globally
Lipschitz extension of’, is a high gain observer for syste(d5)

(16) (resp. systenfl5)-(18)) on KC, with G and G2 defined from the
Hurwitz matrix H,,

_ (G I» - _(gan O .
H“_<G2 0> with Gl_<0 g¢2>’1_1’2 (22)

Proof: The proof is given in Appendix C. [ ]

V. SIMULATIONS AND EXPERIMENTAL RESULTS
A. Simulations Settings

Simulations are performed by taking into account the litiotes
of the actuators. In order not to exceed the capacity of thgnetic
device, the control inputs are time-scaled @agt) = wu(t)/k(t)

Proposition 3 Under assumptions of Proposition 1, the adaptivein k(t) = max1,u(t)/usa]. Our studies assume the presence

backstepping control law
u=a"'[=(k1 + k2)(Z = Xp) = (1 + kika)(X = X;)
- F(X,2) - po(X)0+ X,
0="pd[Z — X, + k1(X — X,.)]

an

stabilizes systerfl6) along anyC® reference trajectory for any initial
estimated(0), with k1, k2 > 0 the controller gains, and” a positive-
definite matrix gain.

Proof: The proof is given in Appendix A. [ ]
To address robustness to an unknown linear parameter in

of minor bifurcations (see Figure 2). The developed coldrahust
be sufficiently robust to compensate this effect consideseda
disturbance. The velocity profile in a major bifurcation tsidsed
in [27]. The robot navigates in a small artery of nominal déen
D = 3mm. The pulsatile parameters of both blood flow and arterial
diameter in (3) are settop = 1, ¢c1 = ¢-1 = 0.575, do = D,
di = d-1 = D/QO, and Vi € Z\{—LO7 1},01' =d; = 0.
The performances and the stability of the controller witbpect to
noise measurement, parameters variations and unceztagte now
illustrated by simulations, whose nominal parameters avengin
thable I.

control vector fields,e.g. the most sensitive one, magnetization

0 = M > 0, we set the following system from (8):

w”{X o o (18)

p
Z = Fy(X,Z)+¢0u ,Fo = (foz, foa)

Proposition 4 Under assumptions of Proposition 1, the adaptive

backstepping control law

(00) V(X — (k1 + ko) (Z — X,) — Fo

o — (14 kika) (X — X,)] (19)
6 = P.Tpu"[Z—-X, +k(X—X,)])

stabilizes systerfi8) along anyC® reference trajectory for any initial
estimateé(o) > €, with e > 0 any known lower bound ofy k1, k2 >

0 the controller gains,I" a positive-definite matrix gain, and the
projection operator

P.(ug) = o {0, if0 =eandug <0

. (20)
1, otherwise

Proof: The proof is given in Appendix B. [ ]

Fig. 5. Experimental setup overview: (837um radius robot, (b) magnetic
actuator (three inner orthogonal Maxwell coils and one ouielmholtz
coil) from Aeon Scientific www.aeon-scientific.com, (c) wspace, (d) video
microscope TIMM400.
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Fig. 6. From left to right: Simulation 1 (measurement nqi&inulation 2 20% error onFY;), Simulation 3 20% error onF,,), and Experimental results.
(a)-(d) Reference (cyan dash line) and simulated/ real ¢o#id line) trajectories, and tracking norm error. (e)-@jinulated and estimated velocities along
andk axes and velocity estimation norm error. (h) Position estiom error and velocity error between reference and obseiy-(I) Control input : magnetic

field gradients on-axis (blue dash line) and obraxis (red solid line).

TABLE |
SIMULATIONS DATA
Blood density Py 1060 [kg.m~—3
Magnetic material densityl  pm, 7500 [kg.m~3
Microrobot radius r 250 [um]
Young’s modulus Ep, By 107, 105 [Pa]
Poisson’s ratios Op, Ow 0.27, 0.2
Polymer density Ppoly 1500 [kg.m ™3]
Ferromagnetic ratio Tm 0.8
Magnetization M 1.23 105 [A.m™ 1]
Blood dielectric density € 70 [C2.N-T.m—7]
Initial conditions Xo,Zo | (0,0.0013)7T,(0,0.05)T
Xo, Zo 0,007,(0,0)T
Inputs saturations Usat 80 [mT.m~1]
Controller gains k1, ko 7,14
Observer gains L 5
911, 921 —6,—-13
912, g22 —12,-4

B. Experimental Setup

The experimental setup used to provide magnetic gradignttsn
shown on Fig. 5, has been developped by Aeon Scientific wvon-ae
scientific.com. It consists of one Helmholtz coil and threexwell
coils to deliver any 3D magnetic gradient input in the wodep In
this experiment, actuators saturation is set:te; = 300m7.m~'.

A CCD video microscope TIMM400 measures the robot position
within a 40pum resolution. The robot is &57um radius NdFeB
N35 ball immersed in a glycerine-water solution, with a reert
magnetizationM = 0.93 10°A.m~! and 7., = 1. Control and
imaging are real-time computed with58ms sampling time.

C. Results

In the first simulation, we assume that the robot position is
measured within an accuracy @00um —consistent with the best
medical imagers resolution— modeled by a white gaussiasenon
the position output. The high gain is low, since it has to Hulfi
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Fig. 7. On-line estimation of the unknown parameters.

a tradeoff between stability and robustness to noise. Usioges

on the most sensitive parameters of the model are then @yasid
simulation 2 is performed assuming an overa@0% error on the

nominal blood dielectric and maximum allowable charge, lgvhi
simulation 3 shows the impact of &20% error on the nominal
magnetization value.

All simulations demonstrate the stability of the contrpiidserver
pair. At the beginning of the first simulation (Fig. 6(a), p@nd
6(i)), the observer has not yet converged. Meanwhile, tr@arobot
collides with the blood vessel wall, forcing the control i to reach
the saturation. This collision strongly degrades the cagamce of the
observer and the estimation error increases. The contae fwopels
the microrobot in the center of the blood vessel where thg tirece

is the highest. Fromt = 0.1s, the observer reconstructs correctly

the state and has a filtering effect (estimation error arokOydn).

Yet, the microrobot is swept away by the blood flow and has tto tu

back to converge toward the reference trajectory. The obirtputs
reach again the saturation because of the important drag fmting
on the robot at the vessel centerline. The sensitivity teeaif the
control inputs around = 0.5s and¢ = 2.5s is explained by the
predominance of interaction force with respect to the hggnamic
force (diastolic phase). Indeed, the interaction forcey adpends on
the position measured while the hydrodynamic drag mainpedds
on the velocity.

In the second and third simulations, the parametric errffecta
neither the stability of the closed-loop system (Fig. 6(b} &(c)),
nor the convergence of the observer (Fig. 6(f) and 6(g)) ekiéeless,
at the beginning, the transient phase is critical since éimérol inputs
reach the saturation (Fig. 6(j) and 6(k)), the estimatedupaters are
not updated (Fig. 7(a) and 7(b)), the observers have notoystecged
and the microrobot collides the wall. When the control ispate
no longer saturated, the estimated parameters are upcatddhe
observer converges. In the second simulation, one canenttiat
the tracking is degraded arourtd= 1s for two reasons. First, the
over-estimated parameter has not yet converged and thenatat
deviates toward the center of the vessel. Secondly, theodydamic
force acting on the microrobot is high (systolic phase) ahd t
control inputs reach the saturation. In both simulationd after the
estimated parameters have converged, the controllerenauperfect
stabilization of the microrobot along the reference trimac

The experiment now illustrates the robustness to both nask
parametric error. The tracking initial error with respectthe ref-
erence is very important both in position and velocity (seg. F
6(d)).The observer error is also important since obsesvanitialized
at the center of the circle (Fig. 6(h)). Besides, levitatioractivated
only after a few seconds, which explains the initial saiorabn the
control inputs on Fig. 6(l). These important initial errarsmbined
with the actuator saturation induce a quite long transiéasp (5s).
Note that the velocity estimation error on Fig. 6(h) seemsoioverge

slowly but it is misleading artifact: since the real robotogity is
not accessible, the same goes for the velocity estimatimor, eand
we can only plot the velocity error between the observer dmad
reference. The tracking is then ensured with an average @roond
100pm (see the zoom on Fig. 6(d)).

VI. DISCUSSION AND CONCLUSION

This paper provides a preliminary study that demonstrabes
proof-of-concept of an innovative method to perform medteaks
by navigating in the cardiovascular system using magnetidces.
To perform this task, a precise nonlinear model is presefded
magnetically-guided microrobot in blood vessels; this eloghkes
into account the non-Newtonian behavior of blood, elettis
and contact forces. An optimal trajectory is then deriveahrthis
precise model, so as to minimize the control efforts, andnaiteity
study is achieved to identify the predominant parametererA
demonstrating the controllability and observability o thystem, we
then synthesize a Lyapunov stabilizing control law for tlealmear
model using an adaptive backstepping control approachpledwvith
a high gain observer so as to rebuild the unmeasured velsci
needed to implement the controller. To validate this apgoand
the stability of the controller-observer pair, the first slation illus-
trates the robustness to output noise. Since the modelisgrides
both physical and physiological forces, it is also affeckgdmany
biological parameters uncertainties. To robustify thekitag with
respect to these uncertainties, an adaptive backsteppwnbds been
developed and its relevancy and efficiency is illustrateghétwo last
simulations, where are considered important modelingrema two
significant parameters that affect the dynamics. Experiateasults
then corroborate the controller and observer efficiencyrabhdstness.

The aim of this controller is twofold. First, it ensures thgpunov
stability of the trajectory tracking. Second, this coneplperforms
an on-line estimation of some key parameters. This sensitivity
matched uncertainties is a challenging issue: if bioldgiesiameters
are very variable among patients, the pumping blood is a&y v
difficult to estimate (amplitude, mean value and frequenty3ome
parameters can be estimated using an adaptive backstetpinit)
not be as simple for parameters like the blood viscosityabt,fdrag
force is a non linear function of viscosity, thus breakingssical
adaptive approaches assumptions. This problem remains ope
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APPENDIXA
PROOF OFPROPOSITION3

Using the change of variables (15), we give a constructiaofor
of the Lyapunov stabilizing controller in two steps.
X -X,

First let
X =
Z = Z-X,—«a

denote the position and velocity error, respectivelys a stabilizing
function. A CLF candidate is:

(A.23)

Vi — %X’TX' + %(é — o) TN G-6) >0 (A.24)
Differentiating V1 along (16) leads to:
Vi=X"(Z+a)+(6-0)TT'9 (A.25)

—

—

ti

to
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Settinga: = —k1 X, we obtain: for someL > 1 whose choice is discussed later. Since by definition

F|x = F, system (15)-(16) or (15)-(18) coupled with (21) gives:

(A.26)
. (A.36)
The second ternX * Z will be cancelled at the next step. One can _
notice from the previous expressions that: with H,, given by (22), and mappindgz = (0, ﬁF). Since H,,
is Hurwitz, there exists a matri® symmetric positive definite such

Vie XTX 4+ XTZ+(0-0)7T %% A -
é¢=LHye+ Fr(X,Z,0,u) — FrL.(X, Z,0,u),

X=X-X,=Z4a=72-kX A27) that
Second, from (A.23) and (A.27), we have: H,P+PH, = -1 (A.37)
2 = F} 4+ o0 + au — X'r"‘kl(z . k:lX) (A.28) We choose a candidate Lyapunov function
N—_———— N—————
Z —a V(t) = e'Pe < Aje|)? (A.38)

In this step, the CLF is given by:

with A > 0 denoting the higher eigenvalue d@f. Differentiating

Vo= Vi 4 %ZTZ >0 (A.29) (A.38) and using (A.37) gives:
o 2 t Ay _ A
The derivative ofl; along system (16) is expressed as: V= —Lle|l” +2e P(FL(X’Z’G’U)N Fr(X,2,0,u)) (A.39)
Vo = Wi+ ZT[F(; F bt autkZ — KX — Xr'] haI\:/(reom thekx-Lipschitz continuity of F' in the state variables, we

= —kXTX+ZT 0 -)X+kZ-X+F

o0 + au] + (6 — 0)TT1 (0 —TT 2)
(A.30)

To cancel the last term in (A.30), we set:
6 =Tu"7 (A.31)

and to ensurd’; is negative semi-definite, we set:

|F(X,Z,6,u) — F(X,Z,0,u)| <kcL?|e. (A.40)

Using alsoL > 1, we can bound the Lyapunov derivative (A.39):

v

V < —(L 2| Pllke)le]|* < —(L - 201Pllkc) -~ (A4D)

Let Lo = 2||P||ki. It follows from (A.41) thatVL > Lo, (21) is a

globally asymptotic observer of (15)-(16) or (15)-(18) be tompact

A—kD)X+kiZ - X+ Fy+ 90 +au=—ksZ  (A32) K.

Using (A.27), (A.31), (A.32), and Barbalat's lemma, we herget
the result. Note tha# is consequently bounded.
[1]
APPENDIXB
PROOF OFPROPOSITION4 2]

Using the same CLF than in the previous proof, we get
. .. . [3]
w=(pd) X, — (k1 + k2)(Z — X)) — Fy (A.33a)
0 =Tpu"[Z — X, + k1 (X — X,)] (A.33b)

Since the control law (A.33a) requires thét;é 0, we modify (5]
the update lawd = uy to guarantee thal > ¢ > 0 using the
projector (20). We thus have to check that the derivative bF C [6]
Va(t) given by (A.29) is still negative semi-definite whén= ¢ and
up = I'ouT Z < 0. In this case, (20) leads to a frozen update, i.e.m
6=0. Differentiating (A.29) and using (A.33a), we obtain

Vo=—k1 X" X —kaZ" Z + (e — 0)"T ! (—uyp) (A.34)

8
Sincef > ¢, I is positive definite, and,y < 0, the last term in (A.34) 8]

is negative, which in turn implies that, is negative semi-definite.
APPENDIXC [°]
PROOF OFPROPOSITIONS

Vector fields (9)-(11) are defined using compositions of reowith (10]
Lipschitz continuous o€! functions. SinceZ® functions are locally
Lipschitz and using the triangle inequality, it is not diffitto show 17
that the drift vector fieldf, is locally Lipschitz on any compact set
K. As u and § are boundedF is hence locally Lipschitz in the
state variables on any compact &gtand consequently admitsha -
Lipschitz extensiornF in the state variables oR* for somekx > 0.

Let e = (es, e-) with components [13]

{ e = (X -X)
e: = H(Z-2)

[12]

=

(A.35)

l\)|H
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