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Adaptive Controller and Observer for a
Magnetic Microrobot[1]

Laurent Arcese, Matthieu Fruchard, Antoine Ferreira

Abstract—The present paper discusses the control design of a
magnetically-guided microrobotic system in blood vesselsto perform
minimally invasive medical procedures. Such microrobots consist of a
polymer binded aggregate of nanosized ferromagnetic particles and a
possible payload that can be propelled by the gradient coilsof a magnetic
device. A fine modeling is developed and used to define an optimal
trajectory which minimizes the control efforts. We then synthesize an
adaptive backstepping law that ensures a Lyapunov stable and fine
tracking despite modeling errors and estimates some key uncertain
parameters. As the controller synthesis uses the microrobot unmeasured
velocity, the design of a high gain observer is also addressed. Simulations
and experiment illustrate the robustness to both noise measurement and
some uncertain physiological parameters for a250µm radius microrobot
navigating in a fluidic environment.

Index Terms—Magnetic microrobot, nonlinear modeling, adaptive
backstepping, high gain observer, noise and parametric uncertainties.

I. I NTRODUCTION

Minimally invasive medical procedures are currently an active
research area since related techniques can both reach remote places
without surgical operation and improve targeting. Thereby, they result
in lessened medical side effects and a better therapeutic efficiency
and safety. Magnetically-deflected catheters [1], [2], [3]solve some
weaknesses induced by conventional catether-based techniques, like
the lack of manoeuvrability and resulting vascular injuries. So as to
both improve accessibility to hard-to-reach body areas andreduce the
risk of infection, another approach relies on untethered microrobots.
Recent developments of microelectromechanical systems make it
possible to fabricate such robots that can be injected intravenously to
accomplish either targeted therapy or biosensing [4]. Yet it proves
difficult to embed actuators sufficiently powerful to propelsuch
systems in the cardiovascular system, especially when swimming
against the blood flow. Most of swimming approaches consequently
rely upon magnetic fields to wirelessly transmit power to micro-
robots. This proof-of-concept was first studied using electromagnets
[5], [6] and superconducting magnets [7], [8]. Recently, magnetic
microrobots have received a lot of attention since they are able to
provide large motion forces and move in low Reynolds number fluids.
Three main propulsion schemes have distinguishing physical features.
First, helical and beating flagella [9] magnetic biogicallyinspired
microrobots are promising for use in open fluids,e.g. for destroying
kidney stones [10], or for ophtalmic surgery [11], [12]. Second,
magnetotactic bacteria actuated thanks to embedded ferromagnetic
magnetosomes has been demonstrated [13]. Finally, bead pulling is
investigated using either experimental setups [10], [14],[15], [16] or
magnetic resonance imaging devices [17].
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Fig. 1. Free-body diagram of forces acting on a microrobot steered by mag-
netic gradient fields in a blood vessel.~Fm, ~Fd, ~Fel: magnetic, hydrodynamic
drag, and electrostatic forces,~Wa: microrobot apparent weight.

All these contributions point out the difficulties of controlling
magnetic microrobots in fluids through magnetic fields actuation.
Achieving motion control of such robots necessitates nonlinear
dynamics modeling and analysis [18], [19]. Despite nonlinearities
of the proposed models, related control approaches mainly rely on
linear tools of control theory. As example, the controllability of the
linearized system around equilibrium is studied in [20], but there is no
controller design. To deal with the nonlinearities of the magnetic field,
the authors in [21] have used decoupling and linear parametrization to
synthesize an optimal controller that minimizes a quadratic cost. To
face the same kind of problem, a linear quadratic gaussian controller
based on the linearized model has been addressed in [22]. Recently,
a new approach referred to as magnetic resonance navigationhas
been proposed to steer and track in real-time endovascular magnetic
devices in deep tissues to target areas of interest [23], [24]. As
it focuses on feasibility studies of the microrobot pullingconcept,
developed model is linear and in turn the synthesis of control laws
relies on PID approaches [24], [25]. Both authors report instabilities
and important oscillations around equilibrium. These weaknesses are
directly related to the use of linear controllers that are not well-suited
for dealing with nonlinear perturbated systems.

In this paper, we discuss the control design of a bead pulled
microrobotic nonlinear system to navigate in blood vessels. Section
II recaps the nonlinear modeling of the endovascular robot and the
inherited state space representation. Section III then addresses the
choice of the reference trajectory, and states the robustness issues
the controller has to face with. To this end, we design adaptive
backstepping controllers and high gain observers in Section IV. The
control design, recently developed in [26], ensures the Lyapunov
stability of the trajectory tracking while high gain observers ensure
the estimation error stabilization. Besides, adaptive control laws
enableon-lineestimation of uncertain parameters to which the system
is the most sensitive, thus improving the tracking performances.
Section V is devoted to simulation and experiment results which
illustrate the stability and robustness of the controller-observer pair.
Conclusions are given in the last section.

II. BACKGROUND

The microrobot is a polymer binded aggregate of ferromagnetic
particles immersed in a small artery (Fig. 1). This section recaps the
modeling of the forces that affect the microrobot, addressed in [27].
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Fig. 2. Scheme of a blood vessel with minor bifurcations.

The robot translational motion is given by

m
d~v

dt
= ~Fm + ~Fd + ~Wa + ~Fc + ~Fel (1)

where~v is the translational velocity of the robot of massm. In the
present case study, short range interactions (van der Waalsand steric
forces) and stochastic effects are negligible [27].

A. Hydrodynamic drag force

The hydrodynamic drag force~Fd exerting on a spherical body of
radiusr in a finite fluid is expressed as:

~Fd = −
1

2
ρf

[
‖(~v − ~vf )‖

β

]2

ACd
(~v − ~vf )

‖(~v − ~vf )‖
(2)

where~v − ~vf denotes the relative velocity of the microrobot with
respect to the fluid,A is the body frontal area,ρf is the blood density,
β a dimensionless ratio related to wall effect caused by the vessel
occlusion by the microrobot, see e.g. [28], andCd(Re, β) is the drag
coefficient [27]. The non-Newtonian behavior of blood is addressed
using [29].

The wall effects result in a parabolic flow profile (see Fig. 2).
The pulsative blood velocity is modeled by an affine combination of
a time-varying periodic flow with the spatial shapep(δ) ∈ [0, 1],
where δ is the algebraic distance from the robot surface to the
wall. In arterial vasculature, the pulsative behavior alsoinduces a
periodic deformation of the vessel diameterD(t) synchronized with
the pulsative blood velocityvf (t).

vf (t) = p(δ)

∞∑

n=−∞

cne
iwt, D(t) =

∞∑

n=−∞

dne
iwt (3)

B. Apparent weight

The apparent weight, that is the combined action of the weight and
the buoyancy, is also acting on the microrobot:

~Wa = V (ρ− ρf )~g (4)

where V is the microrobot volume,ρ = τmρm + (1 − τm)ρpoly
with ρm andρpoly the magnetic material and polymer densities, and
τm = Vm

V
the ferromagnetic ratio.

C. Contact force

Since the impacts occur within a few milliseconds, and underthe
assumption of no friction during the impact, the contact force is
expressed by a modified Hertzian contact law [30] :

{
~Fc = −K|δ|3/2H(−δ)~n : loading
~Fc = −Fδm

∣∣∣ δ−δ0
δm−δ0

∣∣∣
p

H(−δ)~n : unloading
(5)

where H is the Heaviside step function and~n the unit vector
normal to the wall.Fδm and δm are the maximum contact force
and deformation, respectively.δ0 is the permanent deformation and
p ∈ [1.5, 2.5]. The stiffnessK is given in [27].

D. Electrostatic force

The electrostatic force between the microrobot and the wallcon-
sidered as an uncharged surface is given by [31]:

~Fel =
q2

4πǫǫ0

( H(δ)

(r + δ)2
+
H(−δ)

r2

)
~n (6)

with q the microrobot charge [32] andǫ the medium dielectric density.
As depicted in Fig. 2, the resulting force includes the interactions with
the upper and the lower walls.

E. Magnetic force

The gradient coils of a magnetic device provide a magnetic force
~Fm on the microrobot of magnetization~M :

~Fm = τmV ( ~M.∇) ~B (7)

where ~B = B0
~k is the external magnetic field.

F. State Space Representation

Let x1, x2, (x3, x4) denote respectively the microrobot position
and velocity along~ı axis (respectively along~k axis). Assuming that
positionsx1 and x3 can be measured thanks to an imager, lety
denote the state measure. Using expressions of forces (2), (4), (5),
(6), and (7), and adequate projections, system (1) can be written in
the control-affine form

ẋ = f(x, u) = f0(x) +

2∑

i=1

fi(x)ui, y = h(x) (8)

with vector fields given by:
{
f0 = (x2, f02(x), x4, f04(x))

T ,
f1 = (0, a, 0, 0)T , f2 = (0, 0, 0, a)T

(9)

where the control inputs(u1, u2) = (∇Bx,∇Bz) are the magnetic
gradients,a = τmM

ρ
6= 0, and the functionsf0i are given by :

{
f02(.) = Fdnx + Felnx + Fcnx

f04(.) = Fdnz + Felnz + Fcnz +Wan
(10)

with




Fdnx
=
3 cos(φ)

2rβρ

[
3η

r
‖~v − ~vf‖+

ρf

10β
‖~v − ~vf‖

2

+
3ρf

2β

‖~v − ~vf‖
2

1 +
√

2ρf r

βη
‖~v − ~vf‖




Felnx
=

3q2 sin(ψ)

16π2r3ρǫǫ0

[
H(δ2)

(r + δ2)2
−

H(δ1)

(r + δ1)2

+
H(−δ2)−H(−δ1)

r2

]

Fcnx =
3K

4πr3ρ

[
|δ1|

3/2 H(−δ1)− |δ2|
3/2H(−δ2)

]
sin(ψ)

(11)
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Fig. 3. Without optimal trajectory, the control efforts~Fm required to track the
reference are beyond the capabilities of actuators. Using an optimal trajectory,
external forces tend to cancel each other, resulting in a feasible tracking.
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Fig. 4. ~Fm, ~Fd, ~Fel forces estimation error due to parametric uncertainties.

where indexesx, z, n denote projections on~ı and~k, and normal-
ization with respect to mass.ψ andφ are used to project the mobile
frame and relative velocity, respectively (Fig. 2).

III. PROBLEM STATEMENT

Prior to address system (8) control issues, we first define a
reference trajectory that minimizes the control efforts. Since the
robot modeling involves many physical and physiological parameters
affected by uncertainties, we also provide a sensitivity analysis so as
to identify the ones that deserve anon-lineestimation to improve the
robustness to parametric errors.

A. Reference Trajectory

An optimal trajectory is deduced from the force balance, so as to
minimize the control efforts (see Fig. 3(a) and 3(b)). First, anchor
points are defined in the vicinity of a pre-planned centered path. At
these points, the interaction force equipoises other external forces,
resulting in an optimal ratio of the motive magnetic force over
external ones. A classC2 B-spline then joins these points. Along
this optimal trajectory, the required control inputs are less demanding
than alongside the vessel centerline, for the magnetic force should
no more compete with the entirety of external forces. See [27] for
more details.

B. Sensitivity study

The model (11) exhibits numerous physiological and physical pa-
rameters. A comprehensive study has been conducted to determine the
predominant parameters in the model,i.e., the ones that substantially
modify the estimated force in case of parametric uncertainties. This
study shows how and to what extent parametric errors impacting

either the electrostatic force~Fel, the drag force~Fd, or the magnetic
force ~Fm, affect the estimate of the resultant force acting on the
microrobot.

Figure 4 shows both the force error (inµN ) and the force error
ratio (in %) for some parametric errors in the range±50% around
their nominal values. The study is performed assuming a microrobot
radiusr = 250µm. The center of mass of the microrobot is located
at D/4 from the blood vessel centerline. Figure 4(a) shows the
electrostatic force error induced by uncertainties on the chargeq and
on the medium dielectric densityε. The resulting nonlinear profiles
are related to the fact that~Fel grows in q2 and 1/ε, respectively.
Both magnetic and drag force errors are drawn on Fig. 4(b), for
parametric uncertainties on the microrobot magnetizationM and the
fluid viscosityη, respectively. Despite the linear dependency of~Fm

in M , this parameter impacts severely the estimated force, since a
50% error on the robot magnetization causes a2µN error on the
force. Although the drag force~Fd varies as a non-linear function of
η, the drag force error is quasi-linearly affected in the considered
range. Both figures show that a50% error on eitherq, ε, or η, leads
to a1µN error on the estimation of the electrostatic and drag forces.

A significant error on one of these parameters can significantly
degrade the system performances or make it unstable. Therefore,
the dedicated controller should both stabilize the microrobot along
a reference trajectory, and ensure robustness to the most sensitive
parameters uncertainties.

IV. M AIN RESULTS

We now synthesize an adaptive backstepping control law, that
Lyapunov stabilizes the system (8) along the reference trajectory
and alsoon-line estimates some parameters in order to improve the
robustness and the quality of the tracking. Since the inherited control
law requires the unmeasured robot velocity, a high gain estimator is
also developed. We first state on the controllability and observability
of the system (8).

A. Prerequisites

Proposition 1 Let Xref = [Xr(t), Ẋr(t), Ẍr(t)] denote any con-
tinuous and bounded reference trajectory. The system(8) is locally
controllable along the reference trajectory.

Proof: To state a result on the controllability of system (8),
we linearize it along the reference trajectory. From (8), weobtain a
continuous linear time-variant system :

ẋ = A(t)x(t) +B(t)u(t) (12)

with 



A(t) =
∂f0(x)

∂x

∣∣∣∣
Xref

B(t) = [f1 f2] .

(13)

Set
B0 = B(t), Bi+1 = A(t)Bi −

dBi

dt
∀i ∈ N. (14)

The system (12) is controllable [33] alongXref since
dim [B0 B1 . . .] = 4 with

[B0 B1] =




0 0 a 0
a 0 a∂f02/∂x2|Xref

a∂f02/∂x4|Xref

0 0 0 a
0 a a∂f04/∂x2|Xref

a∂f04/∂x4|Xref


 .

Since the linearized system (12) is controllable alongXref , the
nonlinear system (8) is locally controllable along the sametrajectory
[34].
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Proposition 2 The system(8) is observable.

Proof: The observability matrixO =
(
∂Li

fh(x)/∂xj

)
, 0 ≤

i ≤ 1, 1 ≤ j ≤ 4, whereLi
fh(x) denotes theith Lie derivative

of the outputh(x) of the system (8) along the vector fieldf , is a
permutation matrix, hence the result.

B. Control

The model exhibits many parameters that are unknown or highly
variable. An adaptive nonlinear control law [35], [36] based on a
backstepping approach is now developed to guarantee the stability in
spite of parametric errors, using control Lyapunov functions (CLF).
As shown in section III-B, the most sensitive parameters areM , η, q
and ε. However, the adaptive backstepping approach only addresses
estimation of linear parameters, likeM , —or linear up to some
change of coordinates, likeq2/ε— of the model. We here address
two cases: the estimation of linear parameters in the drift vector field
f0, and in the control vector fields. We first propose the following
change of variables so as to have a triangular system:

X = (x1, x3), Z = (x2, x4), Y = X,u = (u1, u2) (15)

To deal with the unknown parameterθ = q2

ε
, we set the new

system from (8) and (15):

(S ′)

{
Ẋ = Z

Ż = F ′
0(X,Z) + ϕ0(X)θ + au

(16)

whereF ′
0 = (f02 − Felnx , f04 − Felnz ) andFeln = ϕ0(X)θ.

Proposition 3 Under assumptions of Proposition 1, the adaptive
backstepping control law





u=a−1[−(k1 + k2)(Z − Ẋr)− (1 + k1k2)(X −Xr)

− F ′
0(X,Z)− ϕ0(X)θ̂ + Ẍr]

˙̂
θ=ΓϕT

0 [Z − Ẋr + k1(X −Xr)]

(17)

stabilizes system(16) along anyC0 reference trajectory for any initial
estimateθ̂(0), with k1, k2 > 0 the controller gains, andΓ a positive-
definite matrix gain.

Proof: The proof is given in Appendix A.
To address robustness to an unknown linear parameter in the

control vector fields,e.g. the most sensitive one, magnetization
θ =M > 0, we set the following system from (8):

(S ′′)

{
Ẋ = Z , ϕ = τm

ρ

Ż = F0(X,Z) + ϕθu , F0 = (f02, f04)
(18)

Proposition 4 Under assumptions of Proposition 1, the adaptive
backstepping control law





u = (ϕθ̂)−1[Ẍr − (k1 + k2)(Z − Ẋr)− F0

− (1 + k1k2)(X −Xr)]
˙̂
θ = Pǫ(Γϕu

T [Z − Ẋr + k1(X −Xr)])

(19)

stabilizes system(18) along anyC0 reference trajectory for any initial
estimatêθ(0) ≥ ǫ, with ǫ > 0 any known lower bound onθ, k1, k2 >
0 the controller gains,Γ a positive-definite matrix gain, and the
projection operator

Pǫ(uθ) = uθ

{
0, if θ̂ = ǫ and uθ < 0

1, otherwise
(20)

Proof: The proof is given in Appendix B.

C. Observer

The control laws (17) and (19) require both the microrobot position
and velocity. The former is measured by the imaging device, whereas
the latter is not, which justifies the necessity of an observer. Since
the vector fields are locally Lipschitz continuous, we propose high
gain observers [37].

Proposition 5 Let K denote any compact subset of a neighborhood
of (Xr, Ẋr), andU the compact set of admissible control inputs. Then
∀(X,Z)(0) ∈ K, ∀(X̂, Ẑ)(0) ∈ R

4, ∀θ̂(0), there existsL0 > 1 such
that ∀L > L0,

{
˙̂
X = Ẑ + LG1(X̂ − Y )
˙̂
Z = F̃ (X̂, Ẑ, θ̂, u) + L2G2(X̂ − Y )

(21)

with F = F ′
0 + ϕ0θ + au (resp.F = F0 + ϕθu) and F̃ a globally

Lipschitz extension ofF , is a high gain observer for system(15)-
(16) (resp. system(15)-(18)) on K, withG1 andG2 defined from the
Hurwitz matrixHu

Hu =

(
G1 I2
G2 0

)
with Gi =

(
gi1 0
0 gi2

)
, i = 1, 2 (22)

Proof: The proof is given in Appendix C.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

A. Simulations Settings

Simulations are performed by taking into account the limitations
of the actuators. In order not to exceed the capacity of the magnetic
device, the control inputs are time-scaled asua(t) = u(t)/k(t)
with k(t) = max[1, u(t)/usat]. Our studies assume the presence
of minor bifurcations (see Figure 2). The developed controller must
be sufficiently robust to compensate this effect consideredas a
disturbance. The velocity profile in a major bifurcation is studied
in [27]. The robot navigates in a small artery of nominal diameter
D = 3mm. The pulsatile parameters of both blood flow and arterial
diameter in (3) are set toc0 = 1, c1 = c−1 = 0.575, d0 = D,
d1 = d−1 = D/20, and ∀i ∈ Z\{−1, 0, 1}, ci = di = 0.
The performances and the stability of the controller with respect to
noise measurement, parameters variations and uncertainties are now
illustrated by simulations, whose nominal parameters are given in
Table I.

Fig. 5. Experimental setup overview: (a)257µm radius robot, (b) magnetic
actuator (three inner orthogonal Maxwell coils and one outer Helmholtz
coil) from Aeon Scientific www.aeon-scientific.com, (c) workspace, (d) video
microscope TIMM400.
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(e) Simulation 1: Observer.
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(f) Simulation 2: Observer.
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(g) Simulation 3: Observer.
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(h) Experiment: Observer.
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(i) Simulation 1: control input.
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(j) Simulation 2: control input.
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(k) Simulation 3: control input.
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(l) Experiment: control input.

Fig. 6. From left to right: Simulation 1 (measurement noise), Simulation 2 (20% error onFel), Simulation 3 (20% error onFm), and Experimental results.
(a)-(d) Reference (cyan dash line) and simulated/ real (redsolid line) trajectories, and tracking norm error. (e)-(g)Simulated and estimated velocities along~ı
and~k axes and velocity estimation norm error. (h) Position estimation error and velocity error between reference and observer. (i)-(l) Control input : magnetic
field gradients on~ı-axis (blue dash line) and on~k-axis (red solid line).

TABLE I
SIMULATIONS DATA

Blood density ρf 1060 [kg.m−3]
Magnetic material density ρm 7500 [kg.m−3]

Microrobot radius r 250 [µm]
Young’s modulus Ep, Ew 109, 106 [Pa]
Poisson’s ratios σp, σw 0.27, 0.2
Polymer density ρpoly 1500 [kg.m−3]

Ferromagnetic ratio τm 0.8
Magnetization M 1.23 106 [A.m−1]

Blood dielectric density ε 70 [C2.N−1.m−2]
Initial conditions X0, Z0 (0, 0.0013)T , (0, 0.05)T

X̂0, Ẑ0 (0, 0)T , (0, 0)T

Inputs saturations usat 80 [mT.m−1]
Controller gains k1, k2 7, 14
Observer gains L 5

g11, g21 −6,−13
g12, g22 −12,−4

B. Experimental Setup

The experimental setup used to provide magnetic gradient inputs,
shown on Fig. 5, has been developped by Aeon Scientific www.aeon-
scientific.com. It consists of one Helmholtz coil and three Maxwell
coils to deliver any 3D magnetic gradient input in the workspace. In
this experiment, actuators saturation is set tousat = 300mT.m−1.
A CCD video microscope TIMM400 measures the robot position
within a 40µm resolution. The robot is a257µm radius NdFeB
N35 ball immersed in a glycerine-water solution, with a remanent
magnetizationM = 0.93 106A.m−1 and τm = 1. Control and
imaging are real-time computed with a50ms sampling time.

C. Results

In the first simulation, we assume that the robot position is
measured within an accuracy of100µm –consistent with the best
medical imagers resolution– modeled by a white gaussian noise on
the position output. The high gain is low, since it has to fulfill
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(b) Simulation 3.

Fig. 7. On-line estimation of the unknown parameters.

a tradeoff between stability and robustness to noise. Uncertainties
on the most sensitive parameters of the model are then considered:
simulation 2 is performed assuming an overall20% error on the
nominal blood dielectric and maximum allowable charge, while
simulation 3 shows the impact of a20% error on the nominal
magnetization value.

All simulations demonstrate the stability of the controller-observer
pair. At the beginning of the first simulation (Fig. 6(a), 6(e) and
6(i)), the observer has not yet converged. Meanwhile, the microrobot
collides with the blood vessel wall, forcing the control inputs to reach
the saturation. This collision strongly degrades the convergence of the
observer and the estimation error increases. The contact force propels
the microrobot in the center of the blood vessel where the drag force
is the highest. Fromt = 0.1s, the observer reconstructs correctly
the state and has a filtering effect (estimation error around30µm).
Yet, the microrobot is swept away by the blood flow and has to turn
back to converge toward the reference trajectory. The control inputs
reach again the saturation because of the important drag force acting
on the robot at the vessel centerline. The sensitivity to noise of the
control inputs aroundt = 0.5s and t = 2.5s is explained by the
predominance of interaction force with respect to the hydrodynamic
force (diastolic phase). Indeed, the interaction force only depends on
the position measured while the hydrodynamic drag mainly depends
on the velocity.

In the second and third simulations, the parametric errors affect
neither the stability of the closed-loop system (Fig. 6(b) and 6(c)),
nor the convergence of the observer (Fig. 6(f) and 6(g)). Nevertheless,
at the beginning, the transient phase is critical since the control inputs
reach the saturation (Fig. 6(j) and 6(k)), the estimated parameters are
not updated (Fig. 7(a) and 7(b)), the observers have not yet converged
and the microrobot collides the wall. When the control inputs are
no longer saturated, the estimated parameters are updated,and the
observer converges. In the second simulation, one can notice that
the tracking is degraded aroundt = 1s for two reasons. First, the
over-estimated parameter has not yet converged and the microrobot
deviates toward the center of the vessel. Secondly, the hydrodynamic
force acting on the microrobot is high (systolic phase) and the
control inputs reach the saturation. In both simulations and after the
estimated parameters have converged, the controller ensures a perfect
stabilization of the microrobot along the reference trajectory.

The experiment now illustrates the robustness to both noiseand
parametric error. The tracking initial error with respect to the ref-
erence is very important both in position and velocity (see Fig.
6(d)).The observer error is also important since observer is initialized
at the center of the circle (Fig. 6(h)). Besides, levitationis activated
only after a few seconds, which explains the initial saturation on the
control inputs on Fig. 6(l). These important initial errorscombined
with the actuator saturation induce a quite long transient phase (15s).
Note that the velocity estimation error on Fig. 6(h) seems toconverge

slowly but it is misleading artifact: since the real robot velocity is
not accessible, the same goes for the velocity estimation error, and
we can only plot the velocity error between the observer and the
reference. The tracking is then ensured with an average error around
100µm (see the zoom on Fig. 6(d)).

VI. D ISCUSSION AND CONCLUSION

This paper provides a preliminary study that demonstrates the
proof-of-concept of an innovative method to perform medical tasks
by navigating in the cardiovascular system using magnetic devices.
To perform this task, a precise nonlinear model is presentedfor a
magnetically-guided microrobot in blood vessels; this model takes
into account the non-Newtonian behavior of blood, electrostatic
and contact forces. An optimal trajectory is then derived from this
precise model, so as to minimize the control efforts, and a sensitivity
study is achieved to identify the predominant parameters. After
demonstrating the controllability and observability of the system, we
then synthesize a Lyapunov stabilizing control law for the nonlinear
model using an adaptive backstepping control approach, coupled with
a high gain observer so as to rebuild the unmeasured velocities
needed to implement the controller. To validate this approach and
the stability of the controller-observer pair, the first simulation illus-
trates the robustness to output noise. Since the modeling describes
both physical and physiological forces, it is also affectedby many
biological parameters uncertainties. To robustify the tracking with
respect to these uncertainties, an adaptive backstepping law has been
developed and its relevancy and efficiency is illustrated inthe two last
simulations, where are considered important modeling errors on two
significant parameters that affect the dynamics. Experimental results
then corroborate the controller and observer efficiency androbustness.

The aim of this controller is twofold. First, it ensures the Lyapunov
stability of the trajectory tracking. Second, this controller performs
an on-line estimation of some key parameters. This sensitivity to
matched uncertainties is a challenging issue: if biological parameters
are very variable among patients, the pumping blood is also very
difficult to estimate (amplitude, mean value and frequency). If some
parameters can be estimated using an adaptive backstepping, it will
not be as simple for parameters like the blood viscosity. In fact, drag
force is a non linear function of viscosity, thus breaking classical
adaptive approaches assumptions. This problem remains open.
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APPENDIX A
PROOF OFPROPOSITION3

Using the change of variables (15), we give a constructive proof
of the Lyapunov stabilizing controller in two steps.

First let {
X̃ = X −Xr

Z̃ = Z − Ẋr − α
(A.23)

denote the position and velocity error, respectively.α is a stabilizing
function. A CLF candidate is:

V1 =
1

2
X̃T X̃ +

1

2
(θ̂ − θ)TΓ−1(θ̂ − θ) ≥ 0 (A.24)

DifferentiatingV1 along (16) leads to:

V̇1 = X̃T (Z̃ + α) + (θ̂ − θ)TΓ−1 ˙̂θ (A.25)
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Settingα = −k1X̃, we obtain:

V̇1 = −k1X̃
T X̃ + X̃T Z̃ + (θ̂ − θ)TΓ−1 ˙̂θ (A.26)

The second term̃XT Z̃ will be cancelled at the next step. One can
notice from the previous expressions that:

˙̃X = Ẋ − Ẋr = Z̃ + α = Z̃ − k1X̃ (A.27)

Second, from (A.23) and (A.27), we have:

˙̃Z = F ′

0 + ϕθ + au︸ ︷︷ ︸
Ż

− Ẍr+k1(Z̃ − k1X̃)︸ ︷︷ ︸
−α̇

(A.28)

In this step, the CLF is given by:

V2 = V1 +
1

2
Z̃T Z̃ ≥ 0 (A.29)

The derivative ofV2 along system (16) is expressed as:

V̇2 = V̇1 + Z̃T [F ′
0 + ϕθ + au+ k1Z̃ − k21X̃ − Ẍr ]

˙̃V = −k1X̃
T X̃ + Z̃T [(1− k21)X̃ + k1Z̃ − Ẍr + F0

+ϕθ̂ + au] + (θ̂ − θ)TΓ−1(
˙̂
θ − ΓϕT Z̃)

(A.30)
To cancel the last term in (A.30), we set:

˙̂
θ = ΓϕT Z̃ (A.31)

and to ensurėV2 is negative semi-definite, we set:

(1− k21)X̃ + k1Z̃ − Ẍr + F ′

0 + ϕθ̂ + au = −k2Z̃ (A.32)

Using (A.27), (A.31), (A.32), and Barbalat’s lemma, we hence get
the result. Note that̂θ is consequently bounded.

APPENDIX B
PROOF OFPROPOSITION4

Using the same CLF than in the previous proof, we get




u =(ϕθ̂)−1[Ẍr − (k1 + k2)(Z − Ẋr)− F0

− (1 + k1k2)(X −Xr)]

˙̂
θ =ΓϕuT [Z − Ẋr + k1(X −Xr)]

(A.33a)

(A.33b)

Since the control law (A.33a) requires thatθ̂ 6= 0, we modify

the update law ˙̂
θ = uθ to guarantee that̂θ ≥ ǫ > 0 using the

projector (20). We thus have to check that the derivative of CLF
V2(t) given by (A.29) is still negative semi-definite when̂θ = ǫ and
uθ = ΓϕuT Z̃ < 0. In this case, (20) leads to a frozen update, i.e.,
˙̂
θ = 0. Differentiating (A.29) and using (A.33a), we obtain

V̇2 = −k1X̃
T X̃ − k2Z̃

T Z̃ + (ǫ− θ)TΓ−1(−uθ) (A.34)

Sinceθ ≥ ǫ, Γ is positive definite, anduθ < 0, the last term in (A.34)
is negative, which in turn implies thaṫV2 is negative semi-definite.

APPENDIX C
PROOF OFPROPOSITION5

Vector fields (9)-(11) are defined using compositions of norms with
Lipschitz continuous orC1 functions. SinceC1 functions are locally
Lipschitz and using the triangle inequality, it is not difficult to show
that the drift vector fieldf0 is locally Lipschitz on any compact set
K. As u and θ̂ are bounded,F is hence locally Lipschitz in the
state variables on any compact setK, and consequently admits akK-
Lipschitz extensioñF in the state variables onR4 for somekK ≥ 0.

Let e = (ex, ez) with components
{
ex = 1

L
(X̂ −X)

ez = 1

L2 (Ẑ − Z)
(A.35)

for someL ≥ 1 whose choice is discussed later. Since by definition
F̃ |K = F , system (15)-(16) or (15)-(18) coupled with (21) gives:

ė = LHue+ FL(X̂, Ẑ, θ̂, u)− FL(X,Z, θ̂, u), (A.36)

with Hu given by (22), and mappingFL = (0, 1

L2 F̃ ). SinceHu

is Hurwitz, there exists a matrixP symmetric positive definite such
that:

Ht
uP + PHu = −I4 (A.37)

We choose a candidate Lyapunov function

V (t) = etPe ≤ λ‖e‖2 (A.38)

with λ > 0 denoting the higher eigenvalue ofP . Differentiating
(A.38) and using (A.37) gives:

V̇ = −L‖e‖2 + 2etP (FL(X̂, Ẑ, θ̂, u)− FL(X,Z, θ̂, u)) (A.39)

From thekK-Lipschitz continuity ofF̃ in the state variables, we
have

‖F̃ (X̂, Ẑ, θ̂, u)− F̃ (X,Z, θ̂, u)‖ ≤ kKL
2‖e‖. (A.40)

Using alsoL ≥ 1, we can bound the Lyapunov derivative (A.39):

V̇ ≤ −(L− 2‖P‖kK)‖e‖
2 ≤ −(L− 2‖P‖kK)

V

λ
(A.41)

Let L0 = 2‖P‖kK. It follows from (A.41) that,∀L > L0, (21) is a
globally asymptotic observer of (15)-(16) or (15)-(18) on the compact
K.

REFERENCES

[1] F. Creighton, Control of magnetomotive actuators for an implanted
object in brain and phantom materials. University of Virginia, 1996.

[2] D. Meeker, E. Maslen, R. Ritter, and F. Creighton, “Optimal realization
of arbitrary forces in a magnetic stereotaxis system,”IEEE Trans. Magn.,
vol. 32, no. 2, pp. 320–328, 1996.

[3] Y. Eyssa, “Apparatus and method for controlling movement of an
object through a medium using a magnetic field,” Patent US 6 842 324,
01 11, 2005. [Online]. Available: http://es.patents.com/us-6842324.html

[4] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for min-
imally invasive medecine,”Annual Review of Biomedical Engineering,
vol. 12, pp. 55–85, April 2010.

[5] G. T. Gillies, R. C. Ritter, W. C. Broaddus, M. S. Grady, M.A. Howard,
and R. G. McNeil, “Magnetic manipulation instrumentation for medical
physics research,”Review of Scientific Instruments, vol. 65, no. 3, 1994.

[6] T. Honda, K. I. Arai, and K. Ishiyama, “Micro swimming mechanisms
propelled by external magnetic fields,”IEEE Trans. Magn., vol. 32, no. 5,
1996.

[7] E. G. Quate, K. G. Wika, M. A. Lawson, G. T. Gillies, R. C. Ritter,
M. S. Grady, and M. A. Howard, “Goniometric motion controller for
the superconducting coil in a magnetic stereoaxis system,”IEEE Trans.
Biomed. Eng., vol. 38, no. 9, pp. 899–905, 1991.

[8] S.-I. Takeda, F. Mishima, S. Fujimoto, Y. Izumi, and S. Nishijima,
“Development of magnetically targeted drug delivery system using su-
perconducting magnet,”Journal of Magnetism and Magnetic Materials,
2006.

[9] R. Dreyfus, J. Beaudry, M. L. Roper, M. Fermigier, H. A. Stone, and
J. Bibette, “Microscopic artificial swimmers,”Nature, vol. 437, pp. 862–
865, October 2005.

[10] J. Edd, S. Payen, B. Rubinsky, M. L. Stoller, and M. Sitti, “Biomimetic
propulsion for a swimming surgical microrobot,”Proc. IEEE IROS, pp.
2583–2588, 2003.

[11] K. B. Yelin, K. Vollmers, and B. J. Nelson, “Modeling andcontrol of
untethered biomicrorobots in a fuidic environment using electromagnetic
fields,” Int. J. of Robot. Research, vol. 25, no. 5-6, pp. 527–536, 2006.

[12] L. Zhang, J. J. Abbott, L. X. Dong, B. E. Kratochvil, D. J.Bell, and B. J.
Nelson, “Artificial bacterial flagella: Fabrication and magnetic control,”
Applied Physics Letters, vol. 94, no. 6, 2009.

[13] S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, and P. Pouponneau,
“Flagellated magnetotactic bacteria as controlled mri-trackable propul-
sion and steering systems for medical nanorobots operatingin the human
microvasculature,”Int. J. of Robot. Research, vol. 28, pp. 571–582, 2009.

ha
l-0

08
11

64
2,

 v
er

si
on

 1
 - 

10
 A

pr
 2

01
3



[14] J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L.X. Dong,
I. K. Kaliakatsos, and B. J. Nelson, “How should microrobotsswim?”
Int. J. of Robot. Research, vol. 28, pp. 1434–1447, 2009.

[15] H. Choi, J. Choi, S. Jeong, C. Yu, J. O. Park, and S. Park, “Two-
dimensional locomotion of a microrobot with a novel stationary electro-
magnetic actuation system,”Smart Material and Structures, vol. 18, p.
115017, 2009.

[16] S. Floyd, C. Pawashe, and M. Sitti, “Two-dimensional contact and non-
contact micromanipulation in liquid using untethered mobile magnetic
microrobot,” IEEE Trans. Robot., vol. 25, no. 6, pp. 303–308, 2009.

[17] J.-B. Mathieu, G. Beaudoin, and S. Martel, “Method of propulsion of
a ferromagnetic core in the cardiovascular system through magnetic
gradients generated by an mri system,”IEEE Trans. Biomed. Eng.,
vol. 53, no. 2, pp. 292–299, 2006.

[18] J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson,
“Modeling magnetic torque and force for controlled manipulation of
soft-magnetic bodies,”IEEE Trans. Robot., vol. 23, no. 6, 2007.

[19] C. Pawashe, S. Floyd, and M. Sitti, “Modeling and experimental char-
acterization of an untethered magnetic micro-robot,”Int. J. of Robot.
Research, vol. 28, no. 8, pp. 1077–1094, 2009.

[20] S. Bhat, J.Guez, T. P. Kurzweg, A. Guez, and G. Friedman,“Controlla-
bility of magnetic manipulation of a few microparticles in fluid,” IEEE
Trans. Magn., vol. 43, pp. 2427–2429, 2007.

[21] R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B.Shapiro,
“Planar steering of a single ferrofluid drop by optimal minimum power
dynamic feedback control of four electromagnets at a distance,” Journal
of Magnetism and Magnetic Materials, vol. 323, pp. 885–896, 2011.

[22] M. Mehrtash and M. B. Khamesee, “Design and implementation of
lqg/ltr controller for a magnetic telemanipulation system-performance
evaluation and energy saving,”Microsystem Technology, pp. 1–9, 2011.

[23] S. Martel, J.-B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan,
S. Tamaz, P. Pouponneau, H. Yahia, G. Beaudoin, G. Soulez, and
M. Mankiewicz, “Automatic navigation of an untethered device in the
artery of a living animal using a conventional clinical magnetic resonance
imaging system,”Applied Physics Letters, vol. 90(11), 2007.

[24] S. Tamaz, R. Gourdeau, A. Chanu, J.-B. Mathieu, and S. Martel,
“Real-time mri-based control of a ferromagnetic core for endovascular
navigation,” IEEE Trans. Biomed. Eng., vol. 55, no. 7, 2008.

[25] H. Choi, J. Choi, K. Cha, L. Quin, J. Li, J. O. Park, S. Park, and B. Kim,
“Position stabilization of microrobot using pressure signal in pulsating
flow of blood vessel,”Proc. IEEE Sensors, vol. 18, pp. 723–726, 2010.

[26] L. Arcese, M. Fruchard, F. Beyeler, A. Ferreira, and B. J. Nelson,
“Adaptive backstepping and mems force sensor for an mri-guided
microrobot in the vasculature,”Proc. IEEE ICRA, pp. 4121–4126, 2011.

[27] L. Arcese, M. Fruchard, and A. Ferreira, “Endovascularmagnetically-
guided robots: navigation modeling and optimization,”IEEE Trans.
Biomed. Eng., vol. 59(4), pp. 977–987, 2012.

[28] R. Kehlenbeck and R. D. Felice, “Empirical relationships for the
terminal settling velocity of spheres in cylindrical columns,” Chemical
Engineering Technology, vol. 21, pp. 303–308, 1999.

[29] A. R. Pries, T. W. Secomb, and P. Gaehtgens, “Biophysical aspects
of blood flow in the microvasculature,”Cardiovascular Research, vol.
32(4), pp. 654–667, 1996.

[30] I. Choi and C. Lim, “Low-velocity impact analysis of composite lam-
inates using linearized contact law,”Composite Structures, vol. 66, pp.
125–132, 2004.

[31] D. Hays, “Electrostatic adhesion of non-uniformly charged dielectric
spheres,”Institute of Physics Conference Series, vol. 118, pp. 223–228,
1991.

[32] ——, Role of Electrostatics in Adhesion, in Fundamentals of Adhesion,
L.-H. Lee, Ed. Plenum Press, 1991.

[33] L. M. Silverman and H. E. Meadows, “Controllability andobservability
in time-variable linear systems,”SIAM J. on Cont. and Opt., vol. 5, pp.
64–73, 1967.

[34] A. Isidori, Nonlinear control systems. Springer-Verlag London, 1995.
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