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Abstract—There is an extensive literature dedicated to the exact
recovery of a given subset by Orthogonal Matching Pursuit (OMP)
and Basis Pursuit (BP). We consider Tropp’s exact recovery condition
(ERC) [1] for OMP and the null-space property [2] for BP. Under
these conditions, any sparse representation indexed by thesubset can
be recovered. We address the bad recovery issue,i.e., the opposite
extreme situation where the subset cannot be recoveredfor any amplitude
values. We elaborate the bad recovery conditions (BRC) recently sketched
in [3]. The BRC dedicated to BP is a direct consequence of the null-
space property. It does not depend on the amplitudes, but only on the
sign pattern. For OMP, this is not the case, and the BRC condition
is not directly related to the ERC. The BRC conditions are tested for
deterministic dictionaries corresponding to low pass filtering operators.
We stress that the BRC of OMP may be frequently met for supports of
low cardinality.

I. CONTEXT

Among the pioneering recovery analyses of OMP, the ERC con-
dition proposed by Tropp [1] is a key tool. Indeed, it is not only
a sufficient but also a necessary condition for the exact recovery of
a given support using OMP. On the one hand, the ERC is a worst-
case condition applicable to any sparse representation indexed by the
given support. On the other hand, when the ERC is not met, there
exists a sparse representation for which OMP is guaranteed to select
a wrong atom during the first iteration. Our bad recovery analysis
differs from the necessary part of the exact recovery analysis: while
a necessary exact recovery condition guarantees thatsome k-sparse
representation cannot be recovered, bad recovery conditions ensure
that any k-sparse representation will not be recovered. This behavior
is also referred to as the “non-reachability” of a subset [3]. The main
motivation in studying non-reachable subsets is to sharpenthe current
knowledge regarding the subsets that are not systematically recovered
using OMP and BP.

The starting point of our bad recovery analysis of OMP is the
“partial” exact recovery analysis whenq < k iterations have already
been performed andq true atoms have been selected. In [3], we
have extended Tropp’s ERC (corresponding toq = 0) to a weaker
exact recovery condition at theq-th iteration. This also led us to
design a sufficient bad recovery condition (BRC-OMP) at iteration
q = k−1 [3, Th. 7]. Under this condition, a wrong atom selection is
guaranteed to occur at thek-th iteration when the firstk−1 iterations
have all succeeded to select true atoms.

Independently, we elaborated a sufficient and worst case necessary
bad recovery condition for basis pursuit (BRC-BP), defined as the
intersection of as many bad conditions as possibilities forthe “sign
pattern”, i.e., the signs of the nonzero amplitudes in thek-sparse
representation [3, Prop. 2]. This result is closely connected to the
null-space property [2]. It is also consistent with the exact recovery
analysis of BP for a given sign pattern, because this analysis does
not depend on the amplitude values [4, 5].

In [3], both BRCs were illustrated on simple toy examples and
for random dictionaries. Here, we elaborate their applicability for

deterministic dictionaries corresponding to a spike deconvolution
problem from low pass filtered data. Our goal is to understand
whether the BRCs may be frequently met for some typical inverse
problems involving ill-conditioned or correlated dictionaries.

II. SPARSE DECONVOLUTION WITH A LOW PASS FILTER

We consider the sparse spike train deconvolution problemy =

h ∗ x with a low pass impulse response filterh. Exact recovery
studies show that the ERC condition is usually not satisfied unless
there is some minimal spacing between two consecutive spikes, which
is related to the cutoff frequency of the filterh [6, 7].

We address the opposite case where consecutive spikes are very
close and show that the BRC of OMP is frequently met. Specifically,
we carry out a closed form calculation showing the inabilityof
OMP to recover two very close spikes. We further extend this
study by addressing the continuous case as the limit discrete case
where the sampling step tends towards 0. We observe that the BRC-
OMP condition is always fulfilled when the sampling step is small
enough, and that the selected wrong atoms can be predicted from the
knowledge of the impulse response.

The non-reachability of certain vectors usingℓ1 minimization
for ill-conditioned inverse problems has been pointed out in the
recent literature, and adaptations of BP algorithms were proposed
to track these sparse representations [8]. We further show that the
bad recovery condition of BP may be met for spike deconvolution
depending on the support size and the cut-off frequency. Contrary to
the OMP behavior, guaranteed bad recovery using BP only relies on
the cut-off frequency ofh and essentially depends on the size of the
supportQ, but not on the distance between the nonzero spikes.
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