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Abstract—There is an extensive literature dedicated to the exact deterministic dictionaries corresponding to a spike dechution

recovery of a given subset by Orthogonal Matching Pursuit (P)
and Basis Pursuit (BP). We consider Tropp’s exact recovery andition
(ERC) [1] for OMP and the null-space property [2] for BP. Under
these conditions, any sparse representation indexed by theubset can
be recovered. We address the bad recovery issue.e, the opposite
extreme situation where the subset cannot be recoverddr any amplitude
values. We elaborate the bad recovery conditions (BRC) reodly sketched
in [3]. The BRC dedicated to BP is a direct consequence of theufi-
space property. It does not depend on the amplitudes, but oplon the
sign pattern. For OMP, this is not the case, and the BRC condibn
is not directly related to the ERC. The BRC conditions are teted for
deterministic dictionaries corresponding to low pass filteing operators.
We stress that the BRC of OMP may be frequently met for suppors of
low cardinality.

I. CONTEXT

problem from low pass filtered data. Our goal is to understand
whether the BRCs may be frequently met for some typical swer
problems involving ill-conditioned or correlated dictemies.

Il. SPARSE DECONVOLUTION WITH A LOW PASS FILTER

We consider the sparse spike train deconvolution probilers:
h x x with a low pass impulse response filthr Exact recovery
studies show that the ERC condition is usually not satisfieléss
there is some minimal spacing between two consecutive Spikech
is related to the cutoff frequency of the filtér[6, 7].

We address the opposite case where consecutive spikes rgre ve
close and show that the BRC of OMP is frequently met. Spedifica
we carry out a closed form calculation showing the inabilitfy

Among the pioneering recovery analyses of OMP, the ERC coMP to recover two very close spikes. We further extend this

dition proposed by Tropp [1] is a key tool. Indeed, it is notyo
a sufficient but also a necessary condition for the exactvesgoof

n Study by addressing the continuous case as the limit dsaase

where the sampling step tends towards 0. We observe thatRi@&: B

a given support using OMP. On the one hand, the ERC is a worSIMP condition is always fulfilled when the sampling stgp isaim
case condition applicable to any sparse representati@xéutby the €nough, and that the selected wrong atoms can be predictectfie
given support. On the other hand, when the ERC is not mete thdfnowledge of the impulse response.

exists a sparse representation for which OMP is guarantesdléct
a wrong atom during the first iteration. Our bad recovery ysisl
differs from the necessary part of the exact recovery aisalyghile

a necessary exact recovery condition guaranteesstinag k-sparse
representation cannot be recovered, bad recovery consligosure

The non-reachability of certain vectors usifg minimization
for ill-conditioned inverse problems has been pointed aoutthe
recent literature, and adaptations of BP algorithms weopgsed
to track these sparse representations [8]. We further shaivthe
bad recovery condition of BP may be met for spike deconvotuti

thatany k-sparse representation will not be recovered. This behavig®Pending on the support size and the cut-off frequencytr@gnto

is also referred to as the “non-reachability” of a subset T3le main
motivation in studying non-reachable subsets is to shattpeigurrent
knowledge regarding the subsets that are not systemstreaibvered
using OMP and BP.

the OMP behavior, guaranteed bad recovery using BP onlgsreln
the cut-off frequency oh and essentially depends on the size of the
support@, but not on the distance between the nonzero spikes.
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