
HAL Id: hal-00811640
https://hal.science/hal-00811640v1

Preprint submitted on 10 Apr 2013 (v1), last revised 8 Nov 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic diffusion for a class of non-convex Hamiltonians
with two degrees of freedom

Abed Bounemoura, Vadim Kaloshin

To cite this version:
Abed Bounemoura, Vadim Kaloshin. Generic diffusion for a class of non-convex Hamiltonians with
two degrees of freedom. 2013. �hal-00811640v1�

https://hal.science/hal-00811640v1
https://hal.archives-ouvertes.fr


Generic diffusion for a class of non-convex

Hamiltonians with two degrees of freedom

Abed Bounemoura ∗ and Vadim Kaloshin †

April 10, 2013

Abstract

In this paper, we study small perturbations of a class of non-convex integrable Hamil-
tonians with two degrees of freedom, and we prove a result of diffusion for an open and
dense set of perturbations, with an optimal time of diffusion which grows linearly with
respect to the inverse of the size of the perturbation.

1 Introduction and statement of the result

1.1 Introduction

In this paper, we consider small perturbations of integrable Hamiltonian systems which are
defined by a Hamiltonian function of the form

H(θ, I) = h(I) + εf(θ, I), (θ, I) ∈ Tn × Rn, 0 ≤ ε < 1,

where n ≥ 2 is an integer and Tn = Rn/Zn. When ε = 0, H = h is integrable in the sense
that the action variables I(t) of all solutions (θ(t), I(t)) of the system associated to h are first
integrals, I(t) = I(0) for all times t ∈ R. The sets I = I0, for I0 ∈ Rn, are thus invariant
tori of dimension n in the phase space Tn×Rn, which moreover carry quasi-periodic motions
with frequency ω(I0) = ∇h(I0), that is θ(t) = θ(0)+ tω(I0) modulo Zn. From now on we will
assume that the small parameter ε is non-zero, in which case the system defined by H can
be considered as an ε-perturbation of the integrable system defined by h.

In the sixties, Arnold conjectured that for a generic h, the following phenomenon should
occur: “for any points I ′ and I ′′ on the connected level hypersurface of h in the action space
there exist orbits connecting an arbitrary small neighbourhood of the torus I = I ′ with an
arbitrary small neighbourhood of the torus I = I ′′, provided that ε is sufficiently small and
that f is generic” (see [Arn94]). This is a strong form of instability. A weaker form of this
conjecture would be to ask for the existence of orbits for which the variation of the actions
is of order one, that is bounded from below independently of ε for all ε sufficiently small.
To support his conjecture, Arnold gave an example in [Arn64] where this weaker form of
instability is satisfied, with n = 2, h convex and f a specific time-periodic perturbation (so
this is equivalent to n = 3, h quasi-convex and f a specific time-independent perturbation).
The phenomenon highlighted in [Arn64] is now known as Arnold diffusion.

∗Institut des Hautes Études Scientifiques (abedbou@gmail.com)
†University of Maryland at College Park (vadim.kaloshin@gmail.com)

1



Obstructions to Arnold diffusion, and to any form of instability in general, are widely
known following the works of Kolmogorov and Arnold on the one hand, and the work of
Nekhoroshev on the other hand. In [Kol54], Kolmogorov proved that for a non-degenerate h
and for all f , the system defined by H still has many invariant tori, provided it is analytic and
ε is small enough. What he showed is that among the set of unperturbed invariant tori, there
is a subset of positive measure (the complement of which has a measure going to zero when
ε goes to zero) who survives any sufficiently small perturbation, the tori being only slighted
deformed. The non-degeneracy assumption on h is that at all points, the determinant of its
Hessian matrix ∇2h(I) is non-zero. Then, under a different non-degeneracy assumption on
h, namely that the determinant of the square matrix

(

∇2h(I) t∇h(I)
∇h(I) 0

)

is non-zero at all points, Arnold proved in [Arn63a], [Arn63b] a similar statement but with a
set of tori inside a fixed level hypersurface. In particular, for n = 2, a level hypersurface is
3-dimensional and the complement of the set of invariant 2-dimensional tori is disconnected,
and each connected component is bounded with a diameter going to zero as ε goes to zero.
As a consequence, it can be proved more precisely that for n = 2 and if h is non-degenerate
in the sense of Arnold, along all solutions we have

|I(t)− I(0)| ≤ c
√
ε, t ∈ R,

for some positive constant c. Therefore we have stability for all solutions and for all time. Now
for any n ≥ 2, and if h is either Kolmogorov or Arnold non-degenerate, we have perpetual
stability only for most solutions, those lying on invariant tori, and Arnold’s example shows
that this cannot be true for all solutions. The consequence of these results is that Arnold
diffusion cannot exist for n = 2 if h is Arnold non-degenerate, and for n ≥ 2 and h Kolmogorov
or Arnold non-degenerate, the unstable solution, if it exists, must live in a set of relatively
small measure. In an other direction, in the seventies Nekhoroshev proved ([Nek77], [Nek79])
that for any n ≥ 2, for a non-degenerate h and for all f , along all solutions we have

|I(t)− I(0)| ≤ c1ε
b, |t| ≤ exp

(

c2ε
−a
)

,

for some positive constant c1, c2, a and b, provided ε is small enough and the system analytic.
So solutions which do not lie on invariant tori are stable not for all time, but during an
interval of time which is exponentially long with respect to some power of the inverse of ε.
The consequence on Arnold diffusion is that the time of diffusion, that is the time it takes
for the action variables to drift independently of ε, is exponentially large. The integrable
systems non-degenerate in the sense of Nekhoroshev, which are called steep, were originally
quite complicated to define, but an equivalent definition was found in [Ily86] and [Nie06]: h is
steep if and only if its restriction to any affine subspace has only isolated critical points. Such
functions can be proved to be generic in a rather strong sense ([Nek73]), and the simplest
(and also steepest) functions are the convex or quasi-convex ones (convex or quasi-convex
functions are those for which the stability exponent a in Nekhoroshev estimates is the best).
Note that convex (respectively quasi-convex) functions are Kolmogorov (respectively Arnold)
non-degenerate.

So the results of Kolmorogov, Arnold and Nekhoroshev restrict the possibility of diffusion,
both in space and in time, at least provided the corresponding non-degeneracy assumptions
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are met. Following the original insight of Arnold in [Arn64], much study have been devoted to
perturbations of a special class of Hamiltonian systems, which are called “a priori” unstable,
where these restrictions are much less stringent. We won’t try to give a precise definition of
“a priori” unstable systems, but these systems are integrable in the larger sense of symplectic
geometry (they have n first integrals in involution and independent almost everywhere) but
display hyperbolic features (typically they have a normally hyperbolic invariant manifold),
and by opposition, the systems we are considering are called “a priori” stable. These simpler
“a priori” unstable systems are now well-understood, and many results confirm that instability
occurs for a generic perturbation, see for instance [Tre04], [CY04], [DdlLS06], [GR07], [Ber08],
[DH09], [CY09], and [GR09].

The situation for “a priori” stable systems is much more complicated. In [Mat04] (see
also [Mat12] for a recent corrected version), Mather announced a proof of Arnold conjec-
ture in a special case, that is a strong form of Arnold diffusion for a generic time-dependent
perturbation of a convex integrable Hamiltonian with n = 2 (and also for a generic time-
independent perturbation of a quasi-convex integrable Hamiltonian with n = 3) based on his
variational techniques. Mather never gave a complete proof of the announced results, but his
work and unpublished preprints played a fundamental role in the subsequent developments.
First, Bernard, Kaloshin and Zhang in [BKZ11] proved a weaker form of Arnold conjecture,
still with the convexity requirement but for an arbitrary number of degrees of freedom. Then,
Kaloshin and Zhang in [KZ12] proved the strong form of Arnold conjecture, for n = 2, h con-
vex and f time-periodic. Similar results were independently obtained by Cheng ([Che12]) and
announced by Marco ([Mar12a], [Mar12b]). The central and common point in all these works,
which was not present in the work of Mather, is the use of normally hyperbolic invariant man-
ifolds as a “skeleton” for the unstable orbits. On the other hand, most of these works do rely
strongly on Mather’s variational techniques, once the normally hyperbolic invariant manifolds
have been constructed. It has to be noted that these variational techniques, and to a lesser
extent, the existence of normally hyperbolic cylinders, use in an essential way the convexity
assumption, so that none of these works apply to non-convex integrable Hamiltonians. It can
be said that a typical non-degenerate integrable system (in the sense of Kolmogorov, Arnold
or Nekhoroshev) is non-convex nor quasi-convex, but for these systems, essentially nothing
is known: for the simplest integrable Hamiltonians h which are non-convex nor quasi-convex
but steep and non-degenerate (in the sense of Kolmogorov for n ≥ 2 or Arnold for n ≥ 3), it
is not even known how to construct a single f such that H = h+εf has unstable orbits. This
is a bit paradoxical from the point of view of Nekhoroshev estimates, as the time of diffusion
for perturbations of steep non-convex integrable Hamiltonians should be smaller and hence
diffusion should be easier to observe.

Yet for some non-convex non-steep integrable Hamiltonians, the construction of examples
is much easier and has been known for a long time. A prototype of such an integrable
Hamiltonian with two degrees of freedom, which can be found in [Nek77] (but a completely
analogous example, in a slightly different setting, was already considered in [Mos60]), is given
by h(I1, I2) =

1
2 (I

2
1 − I22 ): letting f(θ1, θ2) = (2π)−1 sin(2π(θ1 − θ2)), the system H = h+ εf

admits the unstable solution I(t) = (−εt, εt), θ(t) = −1
2(εt

2, εt2). This Hamiltonian h is
obviously non-convex, but it is also non-steep since the restriction of h to the lines {I1±I2 = 0}
is constant so this restriction has only critical points, which are thus non-isolated. Also it
is degenerate in the sense of Arnold, so diffusion can and do already occur for n = 2, even
though it is non degenerate in the sense of Kolmogorov so that it admits many invariant tori
(circles). Moreover, the time of diffusion in this example is the smallest possible, as it is linear
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with respect to the inverse of ε.
The example above is rather specific, as f does not depend on the action variables, but

more importantly, it depends only on a specific combination of the angular variables. The
purpose of this paper is to investigate the question whether such a phenomenon remains true
for a generic perturbation. We will show in Theorem 1.1, §1.2, that we have diffusion for a
class of non-convex non-steep Hamiltonians h with two degrees of freedom, which includes
the example h(I1, I2) = 1

2(I
2
1 − I22 ) as a particular case, and for an open and dense set of

perturbations, with a time of diffusion which is linear with respect to the inverse of ε. The
conditions defining this class of integrable Hamiltonians h is the existence of a line with
rational slope such that h is constant along this line (which means that the gradient of the
restriction of h to this line vanishes), but its gradient ∇h is not identically zero along this
line (these are the assumptions (A.1) and (A.2) in §1.2). For integrable Hamiltonians which
are compatible with “fast” diffusion (that is, with a time of diffusion which is linear with
respect to the inverse of ε) for some perturbation, we expect these conditions to be quite
sharp. The set of admissible perturbations is very easily described: we only required that
some “averaged” perturbation is a non-constant function. Moreover, we only require h to be
C4 and f to be C3. As for the proof, it is in fact rather simple. The only ingredient is a
normal form, in the spirit of [BKZ11], which is valid on a domain in the action space whose
size is independent of ε, even though, unlike [BKZ11] where the normal form is used for an
other purpose (namely to construct a normally hyperbolic invariant cylinder which is then
used to locate an unstable orbit), we need a slightly stronger statement in order to derive the
existence of an unstable orbit directly from the normal form.

To conclude, let us note that the statement of Theorem 1.1 gives a diffusion in a weak
sense, that is the action variables drift independently of ε for all ε sufficiently small, but we
cannot find an orbit which connects arbitrary neighbourhoods in the space of action. Also,
for the moment, it is restricted to two degrees of freedom, which is the minimal number of
degrees of freedom for which instability can occur for Arnold degenerate integrable systems.
The normal form we used is in fact valid for any number of degrees of freedom, but in
general it appears too weak to derive the result directly from it, and therefore we expect
that additional restrictions on the set of admissible perturbations has to be imposed for more
degrees of freedom. We plan to come back to these issues in a subsequent work.

1.2 Main result

Let us now state precisely the main result of the paper. Given R > 0, let BR be the closed ball
of R2 of radius R with respect to the supremum norm | . |, that is BR = {(I1, I2) ∈ R2 | |I1| ≤
R, |I2| ≤ R}. Our integrable Hamiltonian h will be a function h : BR → R of class C4, which
satisfy the following two conditions:

(A.1) There exist a vector k = (k1, k2) ∈ Z2 \ {0} and a constant a ∈ R such that if
L = {(I1, I2) ∈ R2 | k1I1 + k2I2 + a = 0}, then the restriction of h to the line L is constant.

(A.2) There exists a point I∗ ∈ L ∩BR∗ , for some 0 ≤ R∗ < R, such that ∇h(I∗) 6= 0.

Note that the condition (A.1) obviously rules out convex functions, but it also rules out
steep functions. Indeed, (A.1) is equivalent to the assertion that the gradient of h|L vanishes
identically on L∩BR, hence the function h|L has a set of critical points which contains L∩BR

and hence is non-isolated. As for the condition (A.2), it is a non-degeneracy assumption, as

4



we want to avoid that the gradient of h vanishes identically in the interior of L ∩ BR. The
condition (A.1) is crucial, whereas (A.2) is somehow just technical, as we believe it can be
removed in general. Following the terminology of [Bou12b], functions which do satisfy (A.1)
are functions which are not rationally steep.

Given a small parameter 0 < ε < 1, our perturbation εf will be a “generic” function
εf : T2×BR → R which is “small” for the C3 topology. For an integer r ≥ 2, let Cr(T2×BR)
the space of Cr function f : T2 ×BR → R, which is Banach space with respect to the norm

|f |Cr(T2×BR) = sup
j∈N4, |j|≤r

(

sup
(θ,I)∈Tn×BR

|∂jf(θ, I)|
)

where we have used the standard multi-index notation. We extend the definition of the Cr-
norm for vector-valued functions F = (f1, . . . , fm) : T2 × BR → Rm, for an arbitrary integer
m ≥ 1, by setting

|F |Cr(T2×BR,Rm) = sup
1≤i≤m

|fi|Cr(T2×BR).

Let us denote by Cr
1(T

2×BR) the unit ball of C
r(T2×BR) with respect to this norm, that is

Cr
1(T

2 ×BR) = {f ∈ Cr(T2 ×BR) | |f |Cr(T2×BR) ≤ 1}.

Our perturbation εf will be such that f belongs to an open and dense subset F∗
k of C3

1(T
2 ×

BR), depending on the vector k defined in (A.1) and the point I∗ defined in (A.2). For a
given function f ∈ C3

1 (T
2 ×BR), we define f∗

k ∈ C3
1 (T

2) by

f∗
k (θ) =

∫ 1

0
f(θ + tk, I∗)dt,

then F∗
k is defined by

F∗
k = {f ∈ C3

1 (T
2 ×BR) | ∃ θ∗ ∈ T2, ∂θf

∗
k (θ

∗) 6= 0}.

In words, F∗
k is the subset of functions f ∈ C3

1 (T
2 × BR) such that f∗

k is a non-constant
function: this is obviously an open and dense subset of C3

1 (T
2 × BR). Note that f∗

k is a
function on T2, but by definition it is constant on the orbits of the linear flow of frequency
k, hence it can be considered as being defined on the space of orbits (the leaf space) of this
flow, which is diffeomorphic to T.

We can finally state our main result.

Theorem 1.1. Let H = h+ εf be defined on T2×BR, with h ∈ C4
1 (BR) satisfying (A.1) and

(A.2) and f ∈ F∗
k . Then there exists a positive constant C, depending only on h, and positive

constants ε0 and δ depending also on f , such that for any 0 < ε ≤ ε0, the Hamiltonian system

defined by H has a solution (θ(t), I(t)) such that

|I(τ)− I(0)| ≥ Cδ2, τ = δε−1.

It is a statement of diffusion for the action variables, in the sense that they have a variation
which is bounded from below independently of ε, for all ε small enough. It has to be noted
that the time of diffusion τ = δε−1 is essentially optimal in the sense that for all f ∈
C2(T2 ×BR) ∩C1

1 (T
2 ×BR), for all ε > 0 and for all 0 < δ ≤ 1, we have

|I(τ)− I0| ≤ δ
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for all solutions of H = h+ εf . In particular, for the solution given by Theorem 1.1, one has
the inequalities

Cδ2 ≤ |I(τ) − I0| ≤ δ.

Concerning the dependence of the constants involved, the dependence on h is only through
R, the vector k and the constant a that appeared in (C.1), the norm of ∇h(I∗) and R∗ that
appeared in (C.2), while the dependence on f is only through the absolute value of ∂θf

∗
k (θ

∗).
We refer to Theorem 2.1 in §2.1 for a more concrete and precise statement.

Let us now discus some particular cases of functions h satisfying (A.1) and (A.2), and
therefore for which one has diffusion for a generic perturbation. As we will explain later,
we can always assume without loss of generality that a = 0 in (A.1), and upon adding an
irrelevant additive constant, we can assume that the restriction of h to L is identically zero.

For a linear Hamiltonian h(I) = ω · I, it follows that (A.1) and (A.2) are satisfied if and
only if ω is resonant, that is l · ω = 0 for some l ∈ Z2 \ {0}, and ω is non-zero. On the other
hand, if ω is non-resonant, it follows from [Bou12b] that the statement of Theorem 1.1 cannot
be true for any sufficiently small perturbation, since for all sufficiently small perturbation, one
has stability for an interval of time which is strictly larger than [−τ, τ ] with τ as above. In
particular, if ω is Diophantine, one has stability for an interval of time which is exponentially
long with respect to ε−1, up to an exponent depending only on the Diophantine exponent of
ω.

Now for a quadratic Hamiltonian h(I) = AI · I where A is a 2 by 2 symmetric matrix,
(A.1) and (A.2) are satisfied if and only if there exists a vector l ∈ Z2 \{0} such that Al · l = 0
and Al 6= 0. Assuming that A is diagonal, its eigenvalues have to be of different sign, and
writing h(I) = α2

1I2 − α2
2I

2
2 , (A.1) and (A.2) are satisfied if and only if α1 6= 0, α2 6= 0 and

α2/α1 ∈ Q. The example described in the introduction corresponds to α1 = α2 = 1. On
the other hand, one knows that if α2/α1 is irrational, the statement of Theorem 2.1 cannot
be true for any sufficiently small perturbation for the same reason as above: for instance, if
α2/α1 is a Diophantine number, the quadratic Hamiltonian falls into the class of Diophantine
steep functions introduced in [Nie07] and it follows from results in [Nie07] or [BN12] that such
Hamiltonians are stable for an exponentially long interval of time.

Note that in these two special cases, the condition (A.2), which amounts to ω 6= 0 in the
first case and Al 6= 0 in the second case, can be easily removed.

We already explained that the time of diffusion τ is in some sense optimal, regardless
of the integrable Hamiltonian h. Now we believe that if we fix the time of diffusion, the
condition (A.1) on the integrable Hamiltonian h is also in some sense optimal, as if h does
not satisfy this assumption, one can have diffusion but with a time strictly greater than τ .
This is indeed the case for linear or quadratic integrable Hamiltonians as we described above,
and the general case is conjectured in [Bou12b].

2 Proof of Theorem 1.1

In §2.1, we will perform some preliminary transformations to reduce Theorem 1.1 to an
equivalent but more concrete statement, which is Theorem 2.1. Theorem 2.1 will be proved
in §2.3, based on a normal form result which is stated and proved in §2.2.
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2.1 Preliminary reductions

Let us first give more concrete formulations of the conditions (A.1) and (A.2).
First we may assume that the line L in (A.1) passes through the origin, that is L =

{(I1, I2) ∈ R2 | k1I1 + k2I2 = 0}: indeed, we can always find a translation of the action
variables T : R2 → R2 such that T sends {(I1, I2) ∈ R2 | k1I1 + k2I2 = 0} to {(I1, I2) ∈
R2 | k1I1 + k2I2 + a = 0}, and since the map ΦT (θ, I) = (θ, T I) is symplectic, the statement
holds true for H if and only if it holds true for H ◦ΦT , up to constants depending on a.

Then we can suppose that the components of the vector k = (k1, k2) ∈ Z2 \ {0} are
relatively prime, since changing k by k/p, where p is the greatest common divisor of k1 and
k2, does not change the definition of L. Hence we may assume that in fact k = e2 = (0, 1),
that is L = {(I1, I2) ∈ R2 | I2 = 0}: indeed we can always find a matrix M ∈ GL2(Z)
such that its second row is k, hence Me2 = k and tM−1 sends {(I1, I2) ∈ R2 | I2 = 0} to
{(I1, I2) ∈ R2 | k1I1 + k2I2 = 0}. The map ΦM(θ, I) = (Mθ,tM−1I) is well-defined since
MT2 = T2, and it is symplectic, so the statement holds true for H if and only if it holds true
for H ◦ ΦM , up to constants depending on k.

Note that the symplectic transformations ΦT and ΦM do change the domain BR in the
space of actions, but to simplify the notations, we will assume that the latter is fixed.

Now for all I = (I1, I2) ∈ BR, let us write

∇h(I) = ω(I) = (ω1(I), ω2(I)) = (ω1(I1, I2), ω2(I1, I2)) ∈ R2.

The condition (A.1) is that h is constant on L = {(I1, I2) ∈ R2 | I2 = 0}, which is obviously
equivalent to ∂I1h(I1, 0) = ω1(I1, 0) = 0 for all I1 such that |I1| ≤ R. The condition (A.2) is
that there exists I∗1 and 0 ≤ R∗ < R with |I∗1 | ≤ R∗ such that ω2(I

∗) = ω2(I
∗
1 , 0) = ω∗ 6= 0.

Changing H to −H if necessary and reversing the time accordingly, we may assume that
ω∗ > 0.

We can eventually formulate simplified conditions, that we call (B.1) and (B.2):

(B.1) For all I1 such that |I1| ≤ R, we have ω1(I1, 0) = 0.

(B.2) There exists I∗1 and 0 ≤ R∗ < R with |I∗1 | ≤ R∗ such that ω2(I
∗) = ω2(I

∗
1 , 0) =

ω∗ > 0.

Then the definition of F∗
e2 also simplifies: one easily check that for f ∈ C3

1 (T
2 ×BR), we

have f∗
e2 ∈ C3

1 (T) where

f∗
e2(θ1) =

∫

T

f(θ1, θ2, I
∗)dθ2

so that f ∈ F∗
e2 if and only if there exists θ∗1 ∈ T for which ∂θ1f

∗
e2(θ

∗
1) 6= 0. For simplicity, we

write f∗
e2 = f∗ and F∗

e2 = F∗, and for f ∈ F∗, we denote by λ a lower bound on the absolute
value of ∂θ1f

∗(θ∗1).
From the previous discussion, it follows that Theorem 1.1 is implied by the following

statement.

Theorem 2.1. Let H = h + εf be defined on T2 × BR, with h ∈ C4
1 (BR) satisfying (B.1)

and (B.2) and f ∈ F∗. Then there exists a positive constant C, depending only on R, R∗ and

ω∗, and a positive constant ε0 depending also on λ, such that for any 0 < ε ≤ ε0, if we set

δ = λ(4C)−1, the Hamiltonian system defined by H has a solution (θ(t), I(t)) such that

|I1(τ)− I1(0)| ≥ Cδ2, τ = δε−1.
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2.2 A normal form

The main ingredient of the proof of Theorem 2.1 will be a normal form on a domain in the
space of action whose size, in the direction given by the first action variables I1, is independent
of ε. Let us define

ρ = min {(R−R∗)/2, ω∗/4}
and the domain D∗

ρ by

D∗
ρ = {(I1, I2) ∈ R2 | |I1 − I∗1 | ≤ ρ, I2 = 0}.

Let us furthermore define κ = 4/ω∗ and consider the κε-neighbourhood D∗
ρ(κε) of the domain

D∗
ρ, defined by

D∗
ρ(κε) = {I ∈ R2 | d(I,D∗

ρ) ≤ κε} = {(I1, I2) ∈ R2 | |I1 − I∗1 | ≤ ρ+ κε, |I2| ≤ κε}

where the distance is the one induced by the supremum norm on R2. Eventually, we define
D∗

ρ(κε) = T2 ×D∗
ρ(κε).

In the statement and proof of the proposition below, to avoid cumbersome notations,
when convenient we will use a dot · in replacement of any constant depending only on R, R∗

and ω∗, that is for any two quantities u and v, an expression u<· v means that there exists a
constant c depending only on R, R∗ and ω∗ such that u ≤ cv.

Proposition 2.2. Let H = h+ εf be defined on T2 ×BR, with h ∈ C4
1 (BR) satisfying (B.1)

and (B.2) and f ∈ F∗. Assume that κε ≤ ρ. Then there exists a symplectic embedding

Φ : D∗
ρ(κε/2) → D∗

ρ(κε) of class C2 such that

H ◦ Φ = h+ εf̄ + εf ′, f̄(θ1, I) =

∫

T

f(θ1, θ2, I)dθ2

and, if Φ = (Φθ,ΦI), we have the following estimates

|ΦI − Id|C0(D∗
ρ(κε/2),R

2) ≤ κε/2, |∂θf ′|C0(D∗
ρ(κε/2),R

2)<· ε, |∂If ′|C0(D∗
ρ(κε/2),R

2)<· 1.

The proof of this proposition uses some elementary estimates which are recalled in the
Appendix A.

Proof. First of all, note that since κε ≤ ρ, by definition of ρ the domain D∗
ρ(κε) is included

in BR. For a function χ : D∗
ρ(κε) → R of class C3 to be chosen below, the transformation

Φ in the statement will be obtained as the time-one map of the Hamiltonian flow generated
by εχ. Let Xεχ be the Hamiltonian vector field generated by εχ, and Xt

εχ the time-t map.
Assuming that Xt

εχ is well-defined on D∗
ρ(κε/2) for |t| ≤ 1, let Φ = X1

εχ. Using the relation

d

dt

(

K ◦Xt
εχ

)

= ε{K,χ} ◦Xt
εχ

for an arbitrary function K, and writing

H ◦ Φ = h ◦ Φ+ εf ◦Φ
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we can apply Taylor’s formula to the right-hand side of the above equality, at order two for
the first term and at order one for the second term, to get

H ◦Φ = h+ ε{h, χ} + ε2
∫ 1

0
(1− t){{h, χ}, χ} ◦Xt

εχ + εf + ε2
∫ 1

0
{f, χ} ◦Xt

εχ

= h+ ε({h, χ} + f) + ε2
∫ 1

0
{(1− t){h, χ} + f, χ} ◦Xt

εχ

= h+ εf̄ + ε({h, χ} + f − f̄) + ε2
∫ 1

0
{(1− t){h, χ} + f, χ} ◦Xt

εχ (1)

where f̄ is the function defined in the statement. It would be natural to choose χ to solve the
equation {h, χ} + g = 0 where g = f − f̄ , which can be written as {χ, h} = g, but to avoid
the use of Fourier expansions and hence regularity issues, we will only solve this equation
approximatively.

Let us define the projection Π : D∗
ρ(κε) → D∗

ρ(κε)∩{I2 = 0} = D∗
ρ+κε, and for I ∈ D∗

ρ(κε),

we write Π(I) = Ĩ. For any I = (I1, I2) ∈ D∗
ρ(κε), we obviously have

|Ĩ − I| ≤ κε (2)

and ω(Ĩ) = (ω1(I1, 0), ω2(I1, 0)) = (0, ω2(I1, 0)) by (B.1). Moreover, for any I = (I1, I2) ∈
D∗

ρ(κε), |I1 − I∗1 | ≤ ρ+ κε ≤ 2ρ and as |h|C4

1
(BR) ≤ 1, we have

|ω2(I1, 0)− ω2(I
∗
1 , 0)| ≤ 2ρ ≤ ω∗/2

by definition of ρ. Since ω2(I
∗
1 , 0) = ω∗ > 0 by (B.2), it follows that ω2(I1, 0) ≥ ω∗/2 for any

I = (I1, I2) ∈ D∗
ρ(κε). Now observe that the equation {χ, h} = g can be written again as

ω(I).∂θχ(θ, I) = g(θ, I), (θ, I) ∈ D∗
ρ(κε). (3)

Instead of solving this equation, we will solve the equation

ω(Ĩ).∂θχ(θ, I) = g(θ, I), (θ, I) ∈ D∗
ρ(κε) (4)

which can be written again as

ω2(I1, 0)∂θ2χ(θ, I) = g(θ, I), (θ, I) ∈ D∗
ρ(κε) (5)

since ω(Ĩ) = (0, ω2(I1, 0)). We claim that the equation (5) is solved by

χ(θ, I) =
1

ω2(I1, 0)

∫ 1

0
g(θ + te2, I)tdt. (6)

where e2 = (0, 1). First recall that g = f − f̄ and therefore
∫ 1

0
g(θ + te2, I)dt =

∫ 1

0
f(θ + te2, I)dt−

∫ 1

0
f̄(θ + te2, I)dt = f̄(θ1, I)− f̄(θ1, I) = 0.

Then we compute

ω2(I1, 0)∂θ2χ(θ, I) = ∂θ2

(
∫ 1

0
g(θ + te2, I)tdt

)

=

∫ 1

0
∂θ2g(θ + te2, I)tdt

=

∫ 1

0

(

d

dt
g(θ + te2, I)

)

tdt = g(θ + te2, I)t
∣

∣

∣

1

0
−
∫ 1

0
g(θ + te2, I)dt

= g(θ + e2, I) = g(θ, I)

9



where we have used the chain rule and an integration in the second line.
Now h ∈ C4

1 (BR), f ∈ C3
1 (T

2 × BR) and ω2(I1, 0) ≥ ω∗/2 for any I = (I1, I2) ∈ D∗
ρ(κε):

it follows from (6) and Leibniz formula (inequality (18) of Appendix A) that χ is of class C3

and
|χ|C3(D∗

ρ(κε))
<· 1 (7)

whereas
|∂j

θχ|C0(D∗
ρ(κε),R

2) ≤ 2/ω∗ = κ/2 (8)

for any j ∈ N2, |j| ≤ 2. So in particular, from (7) and (8), the function εχ ∈ C3(T2 × BR)
satisfies

|εχ|C2(D(κε))<· ε, |∂θεχ|C0(D(κε),R2) ≤ κε/2,

hence we can apply Lemma A.1 of Appendix A: for all |t| ≤ 1, Xt
εχ : D(κε/2) → D(κε) is a

well-defined symplectic embedding of class C2, and if we write Xt
εχ = (Φt

θ,Φ
t
I), we have the

estimates

|Φt
I − Id|C0(D(κε/2),R2) ≤ κε/2, |Xt

εχ − Id|C1(D(κε/2),R4)<· ε, |Xt
εχ|C1(D(κε/2),R4)<· 1. (9)

In particular, the first estimate gives

|ΦI − Id|C0(D∗
ρ(κε/2),R

2) ≤ κε/2.

Now let us define R1 by R1(θ, I) = (ω(I)− ω(Ĩ)) · ∂θχ(θ, I) for (θ, I) ∈ D∗
ρ(κε) and

f ′ = R1 +R2, R2 = ε

∫ 1

0
{(1− t){h, χ} + f, χ} ◦Xt

εχ

It follows from the equalities (1), (3) and (4) that

H ◦ Φ = h+ εf̄ + εf ′

so it remains only to estimate the partial derivatives of f ′. The estimates

|∂θR1|C0(D∗
ρ(κε/2),R

2)<· ε, |∂IR1|C0(D∗
ρ(κε/2),R

2)<· 1

follow easily from (2), (7) and (8). Then we have

|R2|C1(D∗
ρ(κε/2))

<· ε|{(1 − t){h, χ} + f, χ}|C1(D∗
ρ(κε))

|Xt
εχ|C1(D(κε/2),R4)

<· ε|{{h, χ} + f, χ}|C1(D∗
ρ(κε))

<· ε|{h, χ} + f |C2(D∗
ρ(κε))

|χ|C2(D∗
ρ(κε))

<· ε
(

|{h, χ}|C2(D∗
ρ(κε))

+ |f |C2(D∗
ρ(κε))

)

<· ε
(

|h|C3(D∗
ρ(κε))

|χ|C3(D∗
ρ(κε))

+ |f |C2(D∗
ρ(κε))

)

<· ε

where we have used the last part of (9), the fact that h ∈ C4
1 (BR) and f ∈ C3

1 (T
2 ×BR), the

estimate (7) and the inequality (19) of Appendix A several times. This implies that

|∂θR2|C0(D∗
ρ(κε/2),R

2)<· ε, |∂IR2|C0(D∗
ρ(κε/2),R

2)<· ε

and since f ′ = R1 +R2, we eventually obtain

|∂θf ′|C0(D∗
ρ(κε/2),R

2)<· ε, |∂If ′|C0(D∗
ρ(κε/2),R

2)<· 1
which concludes the proof.
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2.3 Proof of Theorem 2.1

The proof of Theorem 2.1 is now a consequence of our normal form Proposition 2.2. Since the
latter is defined on a domain which is independent of ε in the I1-direction, it will be possible
to prove the statement of Theorem 2.1 for the normal form H ◦ Φ by analyzing directly the
equation of motions, and using the fact that Φ is close to the identity, we will prove that the
statement remains true for H.

Proof of Theorem 2.1. Recall that we are considering H = h+ εf defined on T2 × BR, with
h ∈ C4

1 (BR) satisfying (B.1) and (B.2) and f ∈ F∗, so we can apply Proposition 2.2: assuming
κε ≤ ρ, there exist positive constants C1 and C2 depending only on R, R∗ and ω∗ and a
symplectic embedding Φ : D∗

ρ(κε/2) → D∗
ρ(κε) of class C

2 such that

H ◦Φ = h+ εf̄ + εf ′, f̄(θ1, I) =

∫

T

f(θ1, θ2, I)dθ2.

Moreover, if Φ = (Φθ,ΦI), we have the following estimates

|ΦI − Id|C0(D∗
ρ(κε/2),R

2) ≤ κε/2, (10)

and
|∂θf ′|C0(D∗

ρ(κε/2),R
2) ≤ C1ε, |∂If ′|C0(D∗

ρ(κε/2),R
2) ≤ C2 (11)

where ρ, κ, D∗
ρ(κε) ⊆ BR and D∗

ρ(κε) ⊆ T2 ×BR have been defined in §2.2.
Let us consider the Hamiltonian H̃ = H ◦ Φ defined on D∗

ρ(κε/2), and we shall write

Φ(θ̃, Ĩ) = (θ, I). Let I∗ = (I∗1 , 0) be given by (B.2), and θ∗1 such that

|∂θ̃1f
∗(θ∗1)| = |∂θ̃1 f̄(θ

∗
1, I

∗)| ≥ λ. (12)

Note that necessarily λ ≤ 1 since f ∈ C3
1 (T

2 ×BR). We consider a solution (θ̃(t), Ĩ(t)) of the
system defined by H̃ with an initial condition (θ̃(0), Ĩ(0)) such that Ĩ(0) = I∗, θ̃1(0) = θ∗1 and
θ̃2(0) ∈ T arbitrary: we have the equations























d
dt Ĩ1(t) = −ε∂θ̃1 f̄(θ̃1(t), Ĩ(t))− ε∂θ̃1f

′(θ̃(t), Ĩ(t)),
d
dt Ĩ2(t) = −ε∂θ̃2f

′(θ̃(t), Ĩ(t)),
d
dt θ̃1(t) = ω1(I(t)) + ε∂Ĩ1 f̄(θ̃1(t), Ĩ(t)) + ε∂Ĩ1f

′(θ̃(t), Ĩ(t)),
d
dt θ̃2(t) = ω2(I(t)) + ε∂Ĩ2 f̄(θ̃1(t), Ĩ(t)) + ε∂Ĩ2f

′(θ̃(t), Ĩ(t)),

(13)

since f̄ is independent of the second angular variables. For a positive constant δ to be chosen
later in terms of λ, we let τ = δε−1. From the second equation of (13) and the first estimate
of (11), we get

|Ĩ2(t)− Ĩ2(0)| = |Ĩ2(t)| ≤ C1εδ, |t| ≤ τ,

which makes sense provided that |Ĩ2(t) − Ĩ2(0)| ≤ κε/2 for |t| ≤ τ , and this is satisfied if
C1δ ≤ κ/2, that is δ ≤ κ(2C1)

−1. Now for |t| ≤ τ , recalling that ω1(Ĩ1(t), Ĩ2(0)) = 0 and
h ∈ C4

1 (BR), we have

|ω1(Ĩ(t))| = |ω1(Ĩ1(t), Ĩ2(t))| = |ω1(Ĩ1(t), Ĩ2(t))− ω1(Ĩ1(t), Ĩ2(0))| ≤ |Ĩ2(t)− Ĩ2(0)| ≤ C1εδ.
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Therefore, from the third equation of (13), the second estimate of (11) and the fact that
f̄ ∈ C3

1 (T×BR), we have

∣

∣

∣

∣

d

dt
θ̃1(t)

∣

∣

∣

∣

≤ C1εδ + ε+ C2ε = (C1δ + 1 + C2)ε ≤ Cε, |t| ≤ τ

with C = C1 + 1 + C2, provided δ ≤ 1. This implies that

|θ̃1(t)− θ∗1| = |θ̃1(t)− θ̃1(0)| ≤ Cδ, |t| ≤ τ. (14)

Moreover, recall that |Ĩ2(t) − Ĩ2(0)| ≤ C1εδ ≤ Cδ for |t| ≤ τ by the definition of C and
since ε ≤ 1, and from the first equation of (13), the first estimate of (11) and the fact that
f̄ ∈ C3

1 (T×BR), we also have

|Ĩ1(t)− I∗1 | = |Ĩ1(t)− Ĩ1(0)| ≤ δ + C1εδ, |t| ≤ τ,

which makes sense if δ ≤ κ(2C1)
−1 as this implies that |Ĩ1(t)− I∗1 | ≤ δ + κε/2. In particular

|Ĩ1(t)− I∗1 | = |Ĩ1(t)− Ĩ1(0)| ≤ Cδ, |t| ≤ τ,

by the definition of C and since ε ≤ 1 and therefore

|Ĩ(t)− I∗| = |Ĩ(t)− Ĩ(0)| ≤ Cδ, |t| ≤ τ. (15)

Using the fact that f̄ ∈ C3
1 (T×BR), from (14) and (15) we obtain

|∂θ̃1 f̄(θ̃1(t), Ĩ(t))− ∂θ̃1 f̄(θ
∗
1, I

∗)| ≤ Cδ, |t| ≤ τ. (16)

We eventually choose δ = λ(4C)−1, and hence τ = λ(4C)−1ε−1. We have to make sure that
δ ≤ 1 and δ ≤ κ(2C1)

−1. The first requirement is obviously satisfied since C ≥ 1 and λ ≤ 1.
For the second, note that ω∗ ≤ 1 since h ∈ C4

1 (BR), so κ ≥ 1 hence λ ≤ 1 ≤ 2κ and this
implies that δ ≤ κ(2C1)

−1 as C ≥ C1. Now from (12), (16) and the definition of δ, we have
for all |t| ≤ τ ,

|∂θ̃1 f̄(θ̃1(t), Ĩ(t))| ≥ |∂θ̃1 f̄(θ
∗
1, I

∗)| − |∂θ̃1 f̄(θ̃1(t), Ĩ(t))− ∂θ̃1 f̄(θ
∗
1, I

∗)| ≥ λ− Cδ ≥ 3λ/4.

Moreover, if we assume that ε ≤ (4C1)
−1λ, then from the first estimate of (11), we have

|∂θ̃1f
′(θ̃(t), Ĩ(t))| ≤ C1ε ≤ λ/4, |t| ≤ τ,

and this gives, as before,

|∂θ̃1 f̄(θ̃1(t), Ĩ(t)) + ∂θ̃1f
′(θ̃(t), Ĩ(t))| ≥ 3λ/4− λ/4 = λ/2, |t| ≤ τ.

Now from the first equation of (13), we obtain

∣

∣

∣

∣

d

dt
Ĩ1(t)

∣

∣

∣

∣

≥ ελ/2, |t| ≤ τ,

which eventually gives
|Ĩ1(τ)− Ĩ1(0)| ≥ τελ/2 = λ2(8C)−1.
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Coming back to the original Hamiltonian, Φ(θ̃(t), Ĩ(t)) = (θ(t), I(t)) is a solution of the
Hamiltonian H, and from the estimate (10), we have

|Ĩ1(t)− I1(t)| ≤ κε/2

as long as Ĩ(t) ∈ D∗
ρ(κε/2), so in particular

|Ĩ1(0)− I1(0)| ≤ κε/2, |Ĩ1(τ)− I1(τ)| ≤ κε/2.

Assuming that ε ≤ λ2(16Cκ)−1, this gives

|I1(τ)−I1(0)| ≥ |Ĩ1(τ)−I1(t)|−|Ĩ1(τ)−I1(τ)|−|Ĩ1(0)−I1(0)| ≥ λ2(8C)−1−κε ≥ λ2(16C)−1.

Summing up, if we define

ε0 = min{ρκ−1, λ(4C1)
−1, λ2(16Cκ)−1}

then for ε ≤ ε0, if δ = λ(4C)−1 and τ = δε−1, the Hamiltonian H has a solution (θ(t), I(t))
for which

|I1(τ)− I1(0)| ≥ λ2(16C)−1 = Cδ2.

This was the statement to prove.

A Technical estimates

Let D be a bounded domain in R2 of diameter 2ρ, and for 0 < ε < 1 and a positive constant
κ, consider the domains D(κε) = {I ∈ R2 | d(I,D) ≤ κε} and D(κε) = T2 ×D(κε).

Let us begin by recalling some elementary estimates. First if f ∈ Cr(D(κε)) for r ≥ 2,
then for j ∈ N4, |j| ≤ r, ∂lf ∈ Cr−|j|(D(κε)) and obviously

|∂lf |Cr−|j|(D(κε)) ≤ |f |Cr(D(κε)). (17)

In particular, this implies that if f ∈ Cr(D(κε)), then its Hamiltonian vector field Xf is of
class Cr−1 and

|Xf |Cr−1(D(κε),R4) ≤ |f |Cr(D(κε)).

Then, given two functions f, g ∈ Cr(D(κε)), the product fg belongs to Cr(D(κε)) and by the
Leibniz formula

|fg|Cr(D(κε)) ≤ c(r)|f |Cr(D(κε))|g|Cr(D(κε)). (18)

for some constant depending only on r. By (17) and (18), the Poisson Bracket {f, g} belongs
to Cr−1(D(κε)) and

|{f, g}|Cr−1(D(κε)) ≤ c(r)|f |Cr(D(κε))|g|Cr(D(κε)). (19)

for another constant c(r) depending only on r.
We shall also need the following lemma, which follows easily from Faa di Bruno’s formula

(see for instance [AR67]) and classical results on the existence and regularity of solutions of
differential equations.
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Lemma A.1. Let f ∈ C3(D(κε)), and assume that

|f |C2(D(ε)) ≤ Cε, |∂θf |C0(D(ε),R2) ≤ κε/2,

for some positive constant C. Then, for all |t| ≤ 1, Xt
f : D(κε/2) → D(κε) is a well-defined

symplectic embedding of class C2, and if we write Xt
f = (Φt

θ,Φ
t
I), we have the estimates

|Φt
I − Id|C0(D(κε/2),R2) ≤ κε/2, |Xt

f − Id|C1(D(κε/2),R4) ≤ C1ε, |Xt
f |C1(D(κε/2),R4) ≤ C2

for some constant C1, C2 depending only on C, ρ and κ.

Note that the constants C1 and C2 depend only on C and on the diameter of D(κε), but
since ε < 1, the latter is bounded by 2(ρ+ κ) where ρ is the diameter of D.

The proof of the above lemma is a simple adaptation of Lemma 3.15 in [DH09], see also
Lemma A.1 in [Bou12a].
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