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Fast-moving finite and infinite trains of solitons

for nonlinear Schrödinger equations

Stefan Le Coz,∗ Dong Li,† Tai-Peng Tsai‡

Abstract

We study infinite soliton trains solutions of nonlinear Schrödinger equations (NLS),
i.e. solutions behaving at large time as the sum of infinitely many solitary waves.
Assuming the composing solitons have sufficiently large relative speeds, we prove the
existence and uniqueness of such a soliton train. We also give a new construction
of multi-solitons (i.e. finite trains) and prove uniqueness in an exponentially small
neighborhood, and we consider the case of solutions composed of several solitons and
kinks (i.e. solutions with a non-zero background at infinity).

Keywords: soliton train, multi-soliton, multi-kink, nonlinear Schrödinger equations.

2010 Mathematics Subject Classification: 35Q55(35C08,35Q51).

1 Introduction

We consider the following nonlinear Schrödinger equation (NLS):

i∂tu+∆u = −g(|u|2)u =: −f(u), (1.1)

where u = u(t, x) is a complex-valued function on R× R
d, d ≥ 1.

The purpose of this paper is to construct special families of solutions to the energy-
subcritical NLS (1.1). We will look for infinite soliton trains, multi-solitons and multi-kinks
solutions.

Recall that it is generically expected that global solutions to nonlinear dispersive equa-
tions like NLS eventually decompose at large time as a sum of solitons plus a scattering
remainder (Soliton Resolution Conjecture). Except for the specific case of integrable equa-
tions, such results are usually out of reach (see nevertheless the recent breakthrough on
energy-critical wave equation [10]). In the case of nonlinear Schrödinger equations, multi-
solitons can be constructed via the inverse scattering transform in the integrable case (d = 1,
f(u) = |u|2u). In non-integrable frameworks, multi-solitons are known to exist since the
pioneering work of Merle [21] (see Section 1.2 for more details on the existing results of
multi-solitons). The multi-solitons constructed up to now were made of a finite number of
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solitons and there was little evidence of the possibility of existence of infinite trains of soli-
tons (note nevertheless the result [13] in the integrable case). The existence of such infinite
solitons trains is however important, as they may provide examples or counter-examples of
solutions with borderline behaviors (as it is the case for the Korteweg-de Vries equation,
see [17]). In this paper, we show the existence of such infinite soliton trains for power
nonlinearities. It turns out that our strategy is very flexible and allows us to prove many
results of existence and uniqueness of multi-solitons and multi-kinks solutions for generic
nonlinearities. In the rest of this introduction, we state our main results on infinite trains
(Section 1.1), multi-solitons (Section 1.2) and multi-kinks (Section 1.3) and give a summary
of the strategy of the proofs (Section 1.4).

1.1 Infinite soliton trains

Our first main result is on the construction of a solution to (1.1) behaving at large time like
a sum of infinitly many solitons. For this purpose we have to use scale invariance and work
with the power nonlinearity f1(u) = |u|αu , 0 < α < αmax, αmax = +∞ for d = 1, 2 and
αmax = 4

d−2 for d ≥ 3. Let Φ0 ∈ H1(Rd) be a fixed bound state which solves the elliptic
equation

−∆Φ0 +Φ0 − |Φ0|αΦ0 = 0.

For j ≥ 1, ωj > 0 (frequency), γj ∈ R (phase), vj ∈ R
d (velocity), define a soliton R̃j by

R̃j(t, x) := ei(ωj t−
|vj |

2

4
+ 1

2
vj ·x+γj)ω

1
α

j Φ0

(√
ωj(x− vjt)

)

. (1.2)

We consider the following soliton train:

R∞ =

∞
∑

j=1

R̃j . (1.3)

Since (1.1) is a nonlinear problem, the function R∞ = R∞(t, x) is no longer a solution in
general. Nevertheless we are going to show that in the vicinity of R∞ one can still find
a solution u to (1.1) to which we refer to as an infinite soliton train. More precisely, the
solution u to (1.1) is defined on [T0,+∞) for some T0 ∈ R and such that

lim
t→+∞

‖u−R∞‖X([t,∞)×Rd) = 0. (1.4)

Here ‖ · ‖X([t,∞)×Rd) is some space-time norm measured on the slab [t,∞) × R
d. A simple

example is X = L∞
t L2

x in which case one can replace (1.4) by the equivalent condition

lim
t→+∞

‖u(t)−R(t)‖L2 = 0.

However the definition (1.4) is more flexible as one can allow general Strichartz spaces (see
(2.2)).

The main idea is that in the energy-subcritical setting, all solitons have exponential tails
(see (1.13)). When their relative speed is large, these traveling solitons are well-separated
and have very small overlaps which decay exponentially in time. At such high velocity and
exponential separation, one does not need fine spectral details and the whole argument can
be carried out as a perturbation around the desired profile (e.g. the soliton series R) in a
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well-chosen function space. As our proof is based on contraction estimates, the uniqueness
follows immediately, albeit in a very restrictive function class.

We require that the parameters (ωj, vj) of the train satisfy the following assumption.

Assumption A.

• (Integrability) There exists r1 ≥ 1, dα
2 < r1 < α+ 2, such that

Aω :=

∞
∑

j=1

ω
1
α
− d

2r1
j < ∞. (1.5)

• (High relative speeds) The solitons travel sufficiently fast: there exists a constant v⋆ >
0 such that

√

min{ωj , ωk}
(

|vk − vj |
)

≥ v⋆, ∀ j 6= k. (1.6)

Since R∞ may be badly localized, we seek a infinite soliton train solution to (1.1) in the
form u = R∞ + η, where η satisfies the perturbation equation

i∂tη +∆η = −f(R∞ + η) +
∞
∑

j=1

f(R̃j).

In Duhamel formulation, the perturbation equation for η reads

η(t) = i

∫ ∞

t
ei(t−τ)∆

(

f(R∞ + η)−
∞
∑

j=1

f(R̃j)
)

dτ, ∀ t ≥ 0. (1.7)

The following theorem gives the existence and uniqueness of the solution η to (1.7).

Theorem 1.1 (Existence of an infinite soliton train solution). Consider (1.1) with f(u) =
|u|αu satisfying 0 < α < αmax. Let R∞ be given as in (1.3), with parameters ωj > 0,
γj ∈ R, and vj ∈ R

d for j ∈ N, which satisfy Assumption A. There exist constants C > 0,
c1 > 0 and v♯ ≫ 1 such that (see (1.6)) if v⋆ > v♯, then there exists a unique solution
η ∈ S([0,∞)) (see (2.2) for the definition of Strichartz space) to (1.7) satisfying

‖η‖S([t,∞)) + ‖η(t)‖Lα+2 ≤ Ce−c1v⋆t, ∀ t ≥ 0. (1.8)

Remark 1.2. By using Theorem 1.1 and Lemma 4.1, one can justify the existence of a
solution u = R∞ + η satisfying (1.1) in the distributional sense. The uniqueness of such
solutions is only proven for the perturbation η satisfying (1.7) and (1.8). In the mass-
subcritical case 0 < α < 4

d , the soliton train R∞ is in the Lebesgue space C0
t L

2
x ∩ L∞

tx , and
one can show that the solution u = R∞ + η can be extended to all R × R

d and satisfies

u ∈ C0
t L

2
x(R×R

d)∩L
2(d+2)

d

t,loc L
2(d+2)

d
x (R×R

d) (see (2.1)). Hence it is a localized solution in the

usual sense. In the mass-supercritical case 4
d ≤ α < αmax, the soliton train R∞ =

∑∞
j=1 R̃j

is no longer in L2 since each composing piece R̃j has O(1) L2-norm. Nevertheless we shall

still build a regular solution to (1.7) since R∞ has Lebesgue regularity L∞
t L

dα
2
+

x ∩L∞
tx which

is enough for the perturbation argument to work. We stress that in this case the solution
η is only defined on [0,∞) ×R

d and scatters forward in time in L2.
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Remark 1.3. Typically the parameters (ωj , vj) are chosen in the following order: first we
take (ωj) satisfying (1.5); then we inductively choose vj such that the condition (1.6) is
satisfied. For example one can take for j ≥ 1, ωj = 2−j and vj = 2j v̄ for v̄ ∈ R

d, |v̄| = v⋆.
Note that, when 0 < α < 4

d (mass-subcritical case), we can choose r1 ≤ 2. The soliton

train is then in L∞
t L2

x. We require dα
2 < r1 so that the exponent in (1.5) is positive. The

condition r1 < α+ 2 will be needed to show (4.2) in Lemma 4.1.

Remark 1.4. Note that we did not introduce initial positions in the definition of R̃j, so
each soliton starts centered at 0. With some minor modifications, our construction can also
work for the general case with the solitons starting centered at various xj. For simplicity
of presentation we shall not state the general case here.

Remark 1.5. Certainly Theorem 1.1 can hold in more general situations. For example
instead of taking a fixed profile Φ0 in (1.2), one can draw Φ0 from a finite set of profiles
A = {Φ1

0, · · · ,ΦK
0 } where each Φj

0 is a bound state.

Remark 1.6. The rate of spatial decay of multi-solitons is still an open question in the
NLS case (for KdV it is partly known: multi-solitons decay exponentially on the right). In
Theorem 1.1, the soliton train profile R∞ around which we build our solution has only a
polynomial spatial decay, not uniform in time. Hence we expect the solution u = R∞ + η
to have the same decay.

1.2 Multi-solitons

From now on, we work with a generic nonlinearity and just assume that f(u) = g(|u|2)u
where the function g : [0,∞) → R obeys some Hölder conditions mimicking the usual
power type nonlinearity. Precisely,

• g ∈ C0([0,∞),R) ∩ C2((0,∞),R), g(0) = 0 and

|sg′(s)|+ |s2g′′(s)| ≤ C · (sα1 + sα2), ∀ s > 0, (1.9)

where C > 0, 0 < α1 ≤ α2 <
αmax
2 .

A typical example is g(s) = sα for some 0 < α < αmax
2 . A useful example to keep

in mind is the combined nonlinearity g(s) = sα1 − sα2 for some 0 < α1 < α2 < αmax
2 .

Other examples can be easily constructed. Throughout the rest of this paper we shall
assume f(u) = g(|u|2)u satisfy (1.9). In this case the corresponding nonlinearity f(u) is
usually called energy-subcritical since there are lower bounds of the lifespans of the H1 local
solutions which depend only on the H1-norm (not the profile) of initial data (cf. [5, 11]).
The condition (1.9) is a natural generalization of the pure power nonlinearities. For much
of our analysis it can be replaced by the weaker condition that g(s) and sg′(s) are Hölder
continuous with suitable exponents. However (1.9) is fairly easy to check and it suffices for
most applications.

We give a definition of a solitary wave slightly more general than (1.2). Given a set
of parameters ω0 > 0 (frequency), γ0 ∈ R (phase), x0, v0 ∈ R

d (position and velocity), a
solitary wave, or a soliton, is a solution to (1.1) of the form

RΦ0,ω0,γ0,x0,v0 := Φ0(x− v0t− x0) exp

(

i
(1

2
v0 · x− 1

4
|v0|2t+ ω0t+ γ0

)

)

, (1.10)
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where Φ0 ∈ H1(Rd) solves the elliptic equation

−∆Φ0 + ω0Φ0 − f(Φ0) = 0. (1.11)

A nontrivial H1 solution to (1.11) is usually called a bound state. Compared with (1.2), the
main difference is that we do not use the parameter ωj to rescale the solitons.

Existence of bound states is guaranteed (see [1]) if we assume, in addition to (1.1), that
there exists s0 > 0, such that

G(s0) :=

∫ s0

0
g(s̃)ds̃ > ω0s0. (1.12)

Note that the condition (1.12) makes the nonlinearity focusing.
All bound states are exponentially decaying (cf. Section 3.3 of [3] for example), i.e.

e
√
ω|x|(|Φ0|+ |∇Φ0|) ∈ L∞(Rd), for all 0 < ω < ω0. (1.13)

A ground state is a bound state which minimizes among all bound states the action

S(Φ0) =
1

2
‖∇Φ0‖22 +

ω0

2
‖Φ0‖22 −

1

2

∫

Rd

G(|Φ0|2)dx.

The ground state is usually unique modulo symmetries of the equation (see e.g. [20] for
precise conditions on the nonlinearity ensuring uniqueness of the ground state). If d ≥ 2
there exist infinitely many other solutions called excited states (see [1, 2] for more on ground
states and excited states). The corresponding solitons are usually termed ground state
solitons (resp. excited state solitons).

A multi-soliton is a solution to (1.1) which roughly speaking looks like the sum of N
solitons. To fix notations, let (see (1.10))

R(t, x) =
N
∑

j=1

RΦj ,ωj ,γj ,xj ,vj (t, x) =:
N
∑

j=1

Rj(t, x), (1.14)

where each Rj is a soliton made from some parameters (ωj , γj , xj , vj) and bound state Φj

(we assume that (1.12) holds true for all ωj).
If each Φj in (1.14) is a ground state, then the corresponding multi-soliton is called a

ground state multi-soliton. If at least one Φj is an excited state, we call it an excited state
multi-soliton.

We now review in more details some known results on multi-solitons. Most results are
on the pure power nonlinearity f(u) = |u|αu with 0 < α < αmax and ground states. If α = 4

d
(resp. α < 4

d , α > 4
d), then equation (1.1) is called (L2) mass-critical (resp. mass-subcritical,

mass-supercritical). In the integrable case d = 1, α = 2, Zakharov and Shabat [25] derived
an explicit expression of multi-solitons by using the inverse scattering transform. For the
mass-critical NLS, which is non-integrable in higher dimensions, Merle [21] (see Corollary
3 therein) constructed a solution blowing up at exactly N points at the same time, which
gives a multi-soliton after a pseudo-conformal transformation. In the mass-subcritical case,
the ground state solitary waves are stable. Assuming the composing solitary waves Rj are
ground states and have different velocities (i.e. vj 6= vk if j 6= k in (1.14)), Martel and Merle
[18] proved the existence of an H1 ground state multi-soliton u ∈ C([T0,∞),H1) such that

∥

∥

∥
u(t)−

N
∑

j=1

Rj(t)
∥

∥

∥

H1
≤ Ce−β

√
ω⋆v⋆t, ∀ t ≥ T0, (1.15)
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for some constant β > 0, where T0 ∈ R is large enough, and the minimal relative velocity
v⋆ and the minimal frequency ω⋆ are defined by

v⋆ := min{|vj − vk| : 1 ≤ j 6= k ≤ N}, (1.16)

ω⋆ = min{ωj, 1 ≤ j ≤ N}. (1.17)

In the same work, the authors also considered a general energy-subcritical nonlinearity
f(u) = g(|u|2)u with g ∈ C1, g(0) = 0 and satisfy ‖s−αg′(s)‖L∞

s (s≥1) < ∞ for some
0 < α < αmax/2. Assuming a nonlinear stability condition around the ground state (see
(16) of [18]), they proved the existence of an H1 ground state multi-soliton satisfying the
same estimate (1.15).

In [9], Côte, Martel and Merle considered the mass-supercritical NLS (f(u) = |u|αu
with 4

d < α < αmax). Assuming the ground state solitons Rj have different velocities, the
authors constructed an H1 ground state multi-soliton u satisfying (1.15). This result was
sharpened in 1D by Combet: in [7], he showed the existence of a N -parameters family of
multi-solitons.

In [8], Côte and Le Coz considered the general energy-subcritical NLS with f(u) =
g(|u|2)u satisfying assumptions similar to (1.9) and (1.12). Assuming the solitary waves Rj

are excited states and have large relative velocities, i.e. assuming

v⋆ ≥ v♯ > 0

for v♯ large enough, the authors constructed an excited state multi-soliton u ∈ C([T0,∞),H1)
for T0 ∈ R large enough, which also satisfies (1.15).

The main strategy used in the above mentioned works [8, 9, 18, 21] is the following: one
takes a sequence of approximate solutions un solving (1.1) with final data un(Tn) = R(Tn),
Tn → ∞; by using local conservation laws and coercivity of the Hessian (this has to be
suitably modified in certain cases, cf. [8]), one derives uniform H1 decay estimates of
un on the time interval [T0, Tn] where T0 is independent of n; the multi-soliton is then
obtained after a compactness argument. We should point out that the uniqueness of multi-
solitons is still left open by the above analysis (see nevertheless [7, 8] for existence of
a 1 and N parameters families of multi-solitons). Under restrictive assumptions on the
nonlinearity (e.g. high regularity or flatness assumption at the origin) and a large relative
speeds hypothesis, stability of multi-solitons was obtained in [19, 22, 23, 24] and instability
in [8]. See also Remark 1.11 below.

In this section we give new constructions of multi-solitons. We work in the context of
the energy-subcritical problem (1.1) with f(u) satisfying (1.9) and (1.12) We shall focus on
fast-moving solitons, i.e. the minimum relative velocity v⋆ defined in (1.16) is sufficiently
large. The composing solitons are in general bound states which can be either ground
states or excited states. In our next two results, we recover and improve the result from
[8, Theorem 1] in various settings. The improvements here are the lifespan and uniqueness.
As for the infinite train, our new proof rely on a contraction argument around the desired
profile. We begin with the pure power nonlinearity case.

Theorem 1.7 (Existence and uniqueness of multi-solitons, power nonlinearity case). Con-
sider (1.1) with f(u) = |u|αu satisfying 0 < α < αmax. Let R be the same as in (1.14) and
define v⋆ as in (1.16). There exists constants C > 0, c1 > 0 and v♯ ≫ 1 such that if v⋆ > v♯,
then there exists a unique solution u ∈ C([0,∞),H1) to (1.1) satisfying

ec1v⋆t‖u−R‖S([t,∞)) + ec2v⋆t‖∇(u−R)‖S([t,∞)) ≤ C, ∀ t ≥ 0.
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Here c2 = c1 ·min(1, α) ≤ c1. In particular ‖u(t)−R(t)‖H1 ≤ Ce−c2v⋆t.

Remark 1.8. As was already mentioned, Theorem 1.7 is a slight improvement of a cor-
responding result (Theorem 1) in [8]. Here the multi-soliton is constructed on the time
interval [0,∞) whereas in [8] this was done on [T0,∞) for some T0 > 0 large. In particular,
we do not have to wait for the interactions between the solitons to be small to have existence
of our multi-soliton. However, we have no control on the constant C so at small times our
multi-soliton may be very far away from the sum of solitons. The uniqueness of solutions
is a subtle issue, see Remark 1.11.

The next result concerns the general nonlinearity f(u).

Theorem 1.9 (Existence and uniqueness of multi-solitons, general nonlinearity case). Con-
sider (1.1) with f(u) = g(|u|2)u satisfying (1.9) and (1.12). Let R be the same as in (1.14)
and define v⋆ as in (1.16). There exist constants C > 0, c1 > 0, c2 > 0, T0 ≫ 1 and v♯ ≫ 1,
such that if v⋆ > v♯, then there is a unique solution u ∈ C([T0,∞),H1) to (1.1) satisfying

ec1v⋆t‖u−R‖S([t,∞)) + ec2v⋆t‖∇(u−R)‖S([t,∞)) ≤ C, ∀ t ≥ T0.

Remark 1.10. Unlike Theorem 1.7, the solution in Theorem 1.9 exists only for t ≥ T0 with
T0 sufficiently large. To take T0 = 0, our method requires extra conditions. For such results
see Section 6. We can also extend Theorem 1.16 similarly.

Remark 1.11. In Theorems 1.7 and 1.9, the uniqueness of the multi-soliton solution holds in
a quite restrictive function class whose Strichartz-norm decay as e−c1v⋆t. A natural question
is whether uniqueness holds in a wider setting. In general this is a very subtle issue and in
some cases one cannot get away with the exponential decay condition. In [8], the authors
considered the case when one of the composing soliton, say R1 is unstable. Assuming
g ∈ C∞ (see (1.1)) and the operator L = −i∆ + iω1 − idf(Φ1) has an eigenvalue λ1 ∈ C

with ρ := Re(λ1) > 0, they constructed a one-parameter family of multi-solitons ua(t) such
that for some T0 = T0(a) > 0,

‖ua(t)−
N
∑

j=1

Rj(t)− aY (t)‖H1(Rd) ≤ Ce−2ρt, ∀ t ≥ T0.

Here Y (t) is a nontrivial solution of the linearized flow around R1, and eρt‖Y (t)‖H1 is
periodic in t. This instability result shows that the exponential decay condition in the
uniqueness statement cannot be removed in general for NLS with unstable solitary waves.

1.3 Multi-kinks

In this subsection, we push our approach further and attack the problem of the existence
of multi-kinks, i.e. solutions built upon solitons and their nonlocalized counterparts the
kinks. Before stating our result, let us first mention some related works. When its solutions
are considered with a non-zero background (i.e. |u| → ν 6= 0 at ±∞ ), the NLS equation
(1.1) is often refered to as the Gross-Pitaevskii equation. For general non-linearities, Chiron
[6] investigated the existence of traveling wave solutions with a non-zero background and
showed that various types of nonlinearities can lead to a full zoology of profiles for the
traveling waves. In the case of the “classical” Gross-Pitaevskii equation, i.e. when f(u) =
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(1−|u|2)u and solutions verify |u| → 1 at infinity, the profiles of the traveling kink solutions
K(t, x) = φc(x− ct) are explicitly known and given for |c| <

√
2 by the formula

φc(x) =

√

2− c2

2
tanh

(

x
√
2− c2

2

)

+ i
c√
2

with ω = 0. (in particular, one can see that the limits at −∞ and +∞ are different,
thus justifying the name “kink”). In [4], Béthuel, Gravejat and Smets proved the stability
forward in time of a profile composed of several kinks traveling at different speeds. Note
that, due to the non-zero background of the kinks, the profile cannot be simply taken as a
sum of kinks and one has to rely on another formulation of the Gross-Pitaevskii equation
to define properly what is a multi-kink.

The main differences between our analysis and the works above mentioned are, first,
that our kinks have a zero background on one side and a non-zero one on the other side,
and second, that, due to the Galilean transform used to give a speed to the kink, our kinks
have infinite energy (due to the non-zero background, the rotation in phase generated by
the Galilean transform is not killed any more by the decay of the modulus). In particular,
this would prevent us to use energy methods as it was the case for multi-solitons in [8, 9, 18]
or multi-kinks [4].

We place ourselves in dimension d = 1. In such context and under suitable assumptions
on the nonlinearity f , (1.1) admits kink solutions. More precisely, given γ, ω, v, x0 ∈ R, what
we call a kink solution of (1.1) (or half-kink) is a function K = K(t, x) defined similarly as
a soliton by

K(t, x) := ei
(

1
2
vx− 1

4
|v|2t+ωt+γ

)

φ(x− vt− x0),

but where φ satisfies the profile equation on R with a non-zero boundary condition at one
side of the real line, denoted by ±∞ and zero boundary condition on the other side (denoted
by ∓∞):

{ − φ′′ + ωφ− f(φ) = 0,

lim
x→∓∞

φ(x) = 0, lim
x→±∞

φ(x) 6= 0.
(1.18)

The existence of half-kinks is granted by the following proposition.

Proposition 1.12. Let f : R → R be a C1 function with f(0) = 0 and define F (s) :=
∫ s
0 f(t)dt. For ω ∈ R, let

ζ(ω) := inf{ζ > 0, F (ζ)− ω

2
ζ2 = 0}

and assume that there exists ω1 ∈ R such that

ζ(ω1) > 0, f ′(0)− ω1 < 0, f(ζ(ω1))− ω1ζ(ω1) = 0. (1.19)

Then for ω = ω1 there exists a kink profile solution φ ∈ C2(R) of (1.18), i.e. φ is unique
(up to translation), positive and satisfies φ > 0, φ′ > 0 on R and the boundary conditions

lim
x→−∞

φ(x) = 0, lim
x→+∞

φ(x) = ζ(ω1) > 0. (1.20)

If in addition
f ′(ζ(ω1))− ω1 < 0,

then for any 0 < δ < ω1 −max{f ′(0), f ′(ζ(ω1))} there exists C > 0 such that

|φ′(x)|+ |φ(x)1{x<0}|+ |(ζ1(ω1)− φ(x))1{x>0}| ≤ Ce−δ|x|. (1.21)
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Remark 1.13. By uniqueness we mean that when ω = ω1 the only solutions connecting 0
to ζ(ω1) (i.e. satisfying (1.20)) are of the form φ(·+ c) for some c ∈ R.

Remark 1.14. Using the symmetry x → −x it is easy to see that Proposition 1.12 also
implies the existence and uniqueness of a kink solution φ satisfying

lim
x→−∞

φ(x) = ζ(ω1) > 0, lim
x→+∞

φ(x) = 0.

Reverting the > into the assumptions of Proposition 1.12 we immediately obtain the exis-
tence of a kink profile connecting 0 to ζ(ω1) < 0.

Remark 1.15. It is well known (see [1]) that if instead of (1.19) we assume that there exists
ω0 ∈ R such that

ζ(ω0) > 0, f(ζ(ω0))− ωζ(ω0) > 0,

then for ω = ω0 there exists a soliton profile, i.e. a unique positive even solution φ ∈ C2(R)
to (1.18) with boundary conditions

lim
x→±∞

φ(x) = 0.

The profile on which we want to build a solution to (1.1) is the following. Take N ∈ N,
(vj , xj , ωj, γj)j=0,...,N+1 ⊂ R

4 such that v0 < · · · < vN+1. Assume that for ω0 and ωN+1

there exist two kink profiles φ0 and φN+1 (solutions of (1.18)) satisfying the boundary
conditions

lim
x→−∞

φ0(x) 6= 0, lim
x→+∞

φ0(x) = 0,

lim
x→−∞

φN+1(x) = 0, lim
x→+∞

φN+1(x) 6= 0.

Denote by K0 and KN+1 the corresponding kinks. For j = 1, . . . , N , assume as before that
we are given localized solitons profiles (φj)j=1,...,N and let Rj be the corresponding solitons.
Consider the following approximate solution composed of a kink on the left and on the right
and solitons in the middle (see Figure 1):

KR(t, x) := K0(t, x) +
N
∑

j=1

Rj(t, x) +KN+1(t, x). (1.22)

x0 + v0t x1 + v1t x2 + v2t x3 + v3t x4 + v4t

K0

R1

R2

R3 K4

~v0

~v1
~v2

~v3 ~v4

Figure 1: Schematic representation of the multi-kink profile KR in (1.22)

Our last result concerns solutions of that are composed of solitons and half-kinks.
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Theorem 1.16. Consider (1.1) with d = 1, f(u) = g(|u|2)u satisfying (1.9), and let KR
be the profile defined in (1.22). Define v⋆ by

v⋆ := inf{|vj − vk|; j, k = 0, . . . , N + 1, j 6= k}.

Then there exist v♯ > 0 (independent of (vj)) large enough, T0 ≫ 1 and constants C, c1, c2 >
0 such that if v⋆ > v♯, then there exists a (unique) multi-kink solution u ∈ C([T0,+∞),H1

loc(R))
to (1.1) satisfying

ec1v⋆t‖u−KR‖S([t,+∞)) + ec2v⋆t‖∇(u−KR)‖S([t,+∞)) ≤ C, ∀t ≥ T0.

It will be clear from the proof that the theorem remains valid if we remove K0 or KN+1

from the profile KR. It is also fine if v0 > 0 or vN+1 < 0.

1.4 Strategy of the proofs

To simplify the presentation, we shall give a streamlined proof to Theorems 1.1, 1.7, 1.9
and 1.16. The key tools are Proposition 2.3 and Proposition 2.4 which reduce matters to
the checking of a few conditions on the solitons. This is done in Section 2. We stress that
the situation here is a bit different from the usual stability theory in critical NLS problems
(cf. [15, 16]). There the approximate solutions often have finite space-time norms and the
perturbation errors only need to be small in some dual Strichartz space. In our case the
solitary waves carry infinite space-time norms on any non-compact time interval (unless
one considers L∞

t ). For this we have to rework a bit the stability theory around a solitary
wave type solution. The price to pay is that the perturbation errors and source terms need
to be exponentially small in time. This is the main place where the large relative velocity
assumption is used. We give the proofs of Theorems 1.7 and 1.9 in Section 3, of Theorem
1.1 in Section 4 and finally of Theorem 1.16 in Section 5. In Section 6, we conclude the
paper by giving three results similar to Theorem 1.9 with additional assumptions that allow
us to take T0 = 0.

2 The perturbation argument

We start this section by giving some

Preliminaries and notations

For any two quantities A and B, we use A . B (resp. A & B ) to denote the inequality
A ≤ CB (resp. A ≥ CB) for a generic positive constant C. The dependence of C on other
parameters or constants is usually clear from the context and we will often suppress this
dependence. Sometimes we will write A .k B if the implied constant C depends on the
parameter k. We shall use the notation C = C(X) if the constant C depends explicitly on
some quantity X.

For any function f : R
d → C, we use ‖f‖Lp or ‖f‖p to denote the Lebesgue Lp norm of

f for 1 ≤ p ≤ ∞. We use Lq
tL

r
x to denote the space-time norm

‖u‖Lq
tL

r
x(R×Rd) :=

(

∫

R

(

∫

Rd

|u(t, x)|r dx
)q/r

dt
)1/q

,
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with the usual modifications when q or r are equal to infinity, or when the domain R× R
d

is replaced by a smaller region of space-time such as I × R
d. When q = r we abbreviate

Lq
tL

q
x as Lq

t,x or Lq
tx. We shall write u ∈ Lq

t,locL
r
x(R× R

d) if

‖u‖Lq
tL

r
x(K×Rd) < ∞, for any compact K ⊂ R. (2.1)

We shall need the standard dispersive inequality: for any 2 ≤ p ≤ ∞,

‖eit∆f‖p . |t|−d( 1
2
− 1

p
)‖f‖ p

p−1
, ∀ t 6= 0.

The dispersive inequality can be used to deduce certain space-time estimates known as
Strichartz inequalities. Recall that for dimension d ≥ 1, we say a pair of exponents (q, r) is
(Schrödinger) admissible if

2

q
+

d

r
=

d

2
, 2 ≤ q, r ≤ ∞, and (d, q, r) 6= (2, 2,∞).

For any fixed space-time slab I × R
d, we define the Strichartz norm

‖u‖S(I) := sup
(q, r) admissible

‖u‖Lq
tL

r
x(I×Rd). (2.2)

For d = 2, we need to further impose q > q1 in the above norm for some q1 slightly larger
than 2, so as to stay away from the forbidden endpoint. The choice of q1 is usually simple.
We use S(I) to denote the closure of all test functions in R × R

d under this norm. We
denote by N(I) the dual space of S(I).

We now state the standard Strichartz estimates. For the non-endpoint case, one can see
for example [12]. For the end-point case, see [14].

Lemma 2.1. If u : I × R
d → C solves

i∂tu+∆u = F, u(t0) = u0,

for some t0 ∈ I, u0 ∈ L2
x(R

d). Then

‖u‖S(I) .d ‖u0‖2 + ‖F‖N(I).

We need a few simple estimates on the nonlinearity. For any complex-valued function
F = F (z), recall the notation

Fz :=
1

2

(

∂F

∂x
− i

∂F

∂y

)

, Fz̄ :=
1

2

(

∂F

∂x
+ i

∂F

∂y

)

.

If we write F (z) = F ∗(z, z̄) with z and z̄ treated as independent variables in F ∗, then
Fz =

∂F ∗

∂z and Fz̄ =
∂F ∗

∂z̄ .
By the chain rule and Fundamental Theorem of Calculus, it is easy to check that

∇(F (u(x))) = Fz(u(x))∇u(x) + Fz̄(u(x))∇u(x);

F (z1)− F (z2) = (z1 − z2)

∫ 1

0
Fz(z2 + θ(z1 − z2))dθ

+ (z1 − z2)

∫ 1

0
Fz̄(z2 + θ(z1 − z2))dθ. (2.3)

These two identities will be used later.
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Lemma 2.2 (Hölder continuity of f ′ and g). Let f(z) = g(|z|2)z for z ∈ C and suppose g
satisfy (1.9) and (1.12). Then for all s1, s2 > 0 we have

|g(s21)− g(s22)|+ |s21g′(s21)− s22g
′(s22)|

. |s1 − s2|min{2α1,1}(s1 + s2)
max{2α1−1,0}

+ |s1 − s2|min{2α2,1}(s1 + s2)
max{2α2−1,0}; (2.4)

and for any z1, z2 ∈ C,

|fz(z1)− fz(z2)|+|fz̄(z1)− fz̄(z2)|+ |g(|z1|2)− g(|z2|2)|
. |z1 − z2|min{2α1,1}(|z1|+ |z2|)max{2α1−1,0}

+ |z1 − z2|min{2α2,1}(|z1|+ |z2|)max{2α2−1,0}; (2.5)

|f(z1)− f(z2)| . |z1 − z2| ·
(

(|z1|+ |z2|)2α1 + (|z1|+ |z2|)2α2
)

. (2.6)

Proof of Lemma 2.2. By (1.9), we get for any s > 0,

|(s2g′(s2))′| . |sg′(s2)|+ |s3g′′(s2)| . s2α1−1 + s2α2−1.

Clearly for any s1, s2 > 0, using the above estimate, we have

|s21g′(s21)− s22g
′(s22)| . |s2α1

1 − s2α1
2 |+ |s2α2

1 − s2α2
2 |

.
∑2

k=1|s1 − s2|min{2αk ,1}(s1 + s2)
max{2αk−1,0}.

The estimate for g(s2) is similar. Therefore (2.4) follows. Observe that

fz(z) = g′(|z|2)|z|2 + g(|z|2), fz̄(z) = g′(|z|2)z2.
Obviously (2.5) holds for g(|z|2) and fz(z) using (2.4). For fz̄(z), the estimate is similar:
Let z1 = ρ1e

iθ1 , z2 = ρ2e
iθ2 , with |θ1 − θ2| ≤ π. One just need to note that

|fz̄(z1)− fz̄(z2)| = |g′(ρ21)ρ21ei(θ1−θ2) − g′(ρ22)ρ
2
2e

i(θ2−θ1)|,

and |z1−z2| ∼ |ρ1−ρ2|| cos(θ1−θ2
2 )|+(ρ1+ρ2)| sin(θ1−θ2

2 )|. Estimating the real and imaginary
parts separately gives the result. Finally (2.6) follows from (2.3) and (2.5).

With the preliminaries and notations out of the way, we now turn to the main matter
of this section.

To prove our results, we shall state and prove a general proposition on the solvability of
NLS around an approximate solution profile with exponentially decaying source terms. This
proposition is very useful in that it reduces the construction of multi-soliton solutions to the
verification of only a few conditions (see (2.7) and (2.11) below). To simplify numerology
we shall first deal with the pure power nonlinearity case.

Proposition 2.3. Let 0 < α < αmax. Let H = H(t, x) : [0,∞) × R
d → C, W = W (t, x) :

[0,∞) ×R
d → C be given functions which satisfy for some C1 > 0, λ > 0:

‖W (t)‖α+2 + eλt‖H(t)‖α+2
α+1

≤ C1, ∀ t ≥ 0. (2.7)

Let f1(z) = |z|αz and consider the equation

η(t) = i

∫ ∞

t
ei(t−τ)∆

(

f1(W + η)− f1(W ) +H
)

(τ) dτ. (2.8)

There exists a constant λ∗ = λ∗(α, d,C1) > 0 sufficiently large such that if λ ≥ λ∗ then
the following holds:
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• There exists a unique solution η to (2.8) satisfying

‖η(t)‖α+2 ≤ C1e
−λt, ∀ t ≥ 0. (2.9)

• All (L2 level) Strichartz norms of η are finite and decay exponentially, i.e.

‖η‖S([t,∞)) . e−λt, ∀ t ≥ 0. (2.10)

• If in addition to (2.7), (H,W ) also satisfies for some C2 > 0:

‖∇W (t)‖α+2 + eλt‖∇H(t)‖α+2
α+1

≤ C2, ∀ t ≥ 0, (2.11)

then η ∈ L∞
t H1

x, and for some C3 = C3(d, α,C1) > 0,

‖∇η(t)‖α+2 + ‖∇η‖S([t,∞)) ≤ C3C2e
−min{α,1}λt, ∀ t ≥ 0. (2.12)

Here both C3 and λ∗ are independent of C2.

Proof of Proposition 2.3. We write (2.8) as η = V η. We shall show that for λ sufficiently
large, V is a contraction in the ball

B =

{

η : ‖η‖X̃ :=
∥

∥

∥
eλt‖η(t)‖α+2

∥

∥

∥

L∞
t ([0,∞))

≤ C1

}

.

We first check that V maps B into B. Denote

θ := d

(

1

2
− 1

α+ 2

)

.

It is easy to check that 0 < θ < 1 since by assumption 0 < α < αmax. By the simple
inequality

|f1(z1)− f1(z2)| . |z1 − z2| · (|z1|α + |z2|α), ∀ z1, z2 ∈ C (2.13)

we have

|f1(W + η)− f1(W )| . |η| · (|W |α + |η|α). (2.14)

By using the dispersive estimate, the assumptions on (W , H) and (2.14), we have

‖η(t)‖α+2

≤ C

∫ ∞

t
|t− τ |−θ

(

‖|W (τ)|α|η(τ)|‖α+2
α+1

+ ‖|η(τ)|α+1‖α+2
α+1

+ ‖H(τ)‖α+2
α+1

)

dτ

≤ C

∫ ∞

t
|t− τ |−θ

(

‖W (τ)‖αα+2‖η(τ)‖α+2 + ‖η(τ)‖α+1
α+2 + ‖H(τ)‖α+2

α+1

)

dτ

≤ C

∫ ∞

t
|t− τ |−θ

(

Cα
1 C1e

−λτ + Cα+1
1 e−λ(α+1)τ + C1e

−λτ
)

dτ

≤ CC1e
−λtI1, (2.15)

where C = C(d, α) and (τ̃ = τ − t)

I1 = Cα
1

∫ ∞

0
(τ̃ )−θe−λτ̃dτ̃ + Cα

1

∫ ∞

0
(τ̃)−θe−λ(α+1)τ̃dτ̃ +

∫ ∞

0
(τ̃ )−θe−λτ̃dτ̃ .
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It is not difficult to check that for λ sufficiently large

CI1 ≤
C(C1, d, α)

λ1−θ
≤ 1.

Hence ‖η(t)‖α+2 ≤ C1e
−λt and V maps B to B. By using (2.13) and a similar estimate as

in (2.15), we can also show that for any η1 ∈ B, η2 ∈ B,

‖(V η1)(t)− (V η2)(t)‖X̃ ≤ 1

2
‖η1 − η2‖X̃ .

This completes the proof that V is a contraction on B.

Next (2.10) is a simple consequence of the Strichartz estimate. Denote by a the number
such that 2

a + d
α+2 = d

2 . It is easy to check that 2 < a < ∞ since 0 < α < αmax. By (2.13)
and Strichartz estimate, we have

‖η‖S([t,∞)) . ‖f1(W + η)− f1(W )‖
L

a
a−1
τ L

α+2
α+1
x ([t,∞))

+ ‖H‖
L

a
a−1
τ L

α+2
α+1
x ([t,∞))

. ‖|η| · (|W |α + |η|α)‖
L

a
a−1
τ L

α+2
α+1
x ([t,∞))

+ ‖H‖
L

a
a−1
τ L

α+2
α+1
x ([t,∞))

. ‖W‖α
L∞
τ Lα+2

x ([0,∞))
· ‖η‖

L
a

a−1
τ Lα+2

x ([t,∞))

+ ‖η‖α+1

L
(α+1)a
a−1

τ Lα+2
x ([t,∞))

+ ‖H‖
L

a
a−1
τ L

α+2
α+1
x ([t,∞))

. e−λt, ∀ t ≥ 0. (2.16)

Finally to show (2.12), we first prove that V maps B1 into B1 where

B1 = B
⋂

{

η : sup
t≥0

(

emin{α,1}λt‖∇η(t)‖α+2

)

≤ C2

}

.

We start with the identity

∇
(

f1(W + η)− f1(W )
)

=
(

(∂zf1)(W + η)− (∂zf1)(W )
)

∇(W + η) + (∂zf1)(W )∇η

+
(

(∂z̄f1)(W + η)− (∂z̄f1)(W )
)

∇(W + η) + (∂z̄f1)(W )∇η. (2.17)

Note that for 0 < α ≤ 1,

|(∂zf1)(z1)− (∂zf1)(z2)| . |z1 − z2|α, ∀ z1, z2 ∈ C,

and for α > 1,

|(∂zf1)(z1)− (∂zf1)(z2)| . (|z1|α−1 + |z2|α−1)|z1 − z2|, ∀ z1, z2 ∈ C.

Therefore

|∇(f1(W + η)− f1(W ))| .
{

|η|α|∇(W + η)|+ |W |α|∇η|, if 0 < α ≤ 1,

(|η|α−1 + |W |α−1)|η||∇(W + η)|+ |W |α|∇η|, if α > 1

(2.18)
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For simplicity we shall only discuss the case 0 < α ≤ 1. The argument for α > 1 is
similar (even simpler) and will be omitted. By using (2.18) , (2.9), (2.11), and the dispersive
inequality, we have for t ≥ 0:

‖∇η(t)‖α+2 .d,α

∫ ∞

t
|t− τ |−θ

(

‖|η|α|∇(W + η)|‖α+2
α+1

+ ‖|W |α∇η‖α+2
α+1

+ ‖∇H‖α+2
α+1

)

dτ

.d,α

∫ ∞

t
|t− τ |−θ

(

‖η‖αα+2(‖∇W‖α+2 + ‖∇η‖α+2)

+ ‖W‖αα+2‖∇η‖α+2 + ‖∇H‖α+2
α+1

)

dτ

.d,α,C1 C2

∫ ∞

t
|t− τ |−θe−λατdτ + C2

∫ ∞

t
|t− τ |−θe−λτdτ

.d,α,C1 C2

∫ ∞

t
|t− τ |−θe−λατdτ

≤ C2e
−λαt · C(d, α,C1)

∫ ∞

0
|τ̃ |−θe−λατ̃dτ̃

= C2e
−λαt · C(d, α,C1) · (λα)−(1−θ)

∫ ∞

0
|τ̃ |−θe−τ̃dτ̃ .

Now if we take λ ≥ λ∗ and λ∗ = λ∗(d, α,C1) is independent of C2 and sufficiently large such
that

C(d, α,C1) · (λ∗α)
−(1−θ)

∫ ∞

0
|τ̃ |−θe−τ̃dτ̃ ≤ 1

2
, (2.19)

then clearly

‖∇η(t)‖α+2 ≤ C2e
−λαt, ∀ t ≥ 0.

By a similar argument, we also obtain for the case α > 1,

‖∇η(t)‖α+2 ≤ C2e
−λt, ∀ t ≥ 0.

Hence we have proved that V maps B1 to B1. Since V is a contraction on B and maps B1

into B1, it is obvious that we have constructed the solution satisfying

‖∇η(t)‖α+2 ≤ C2e
−λmin{α,1}t, ∀ t ≥ 0. (2.20)

It remains for us to bound the Strichartz norm ‖∇η(t)‖S([t,∞)). The argument is similar

to that in (2.16). Let a be the same number such that 2
a + d

α+2 = d
2 . By (2.18) and

Strichartz, we have

‖∇η‖S([t,∞)) .d

∥

∥

∥
|η|α|∇(W + η)|

∥

∥

∥

N([t,∞))
+
∥

∥

∥
|W |α|∇η|

∥

∥

∥

N([t,∞))
+ ‖∇H‖N([t,∞))

.d

∥

∥

∥
|η|α|∇W |

∥

∥

∥

L
a

a−1
τ L

α+2
α+1
x ([t,∞))

+
∥

∥

∥
|η|α|∇η|

∥

∥

∥

L
a

a−1
τ L

α+2
α+1
x ([t,∞))

+ ‖|W |α|∇η|‖
L

a
a−1
τ L

α+2
α+1
x ([t,∞))

+ ‖∇H‖
L

a
a−1
τ L

α+2
α+1
x ([t,∞))

.d

∥

∥

∥|η|α
∥

∥

∥

L
a

a−1
τ L

α+2
α

x ([t,∞))

∥

∥

∥|∇W |+ |∇η|
∥

∥

∥

L∞
τ Lα+2

x ([t,∞))

+ ‖|W |α‖
L∞
τ L

α+2
α

x ([t,∞))
‖∇η‖

L
a

a−1
τ Lα+2

x ([t,∞))

+ ‖∇H‖
L

a
a−1
τ L

α+2
α+1
x ([t,∞))

. (2.21)
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By (2.9), we have

∥

∥

∥
|η|α

∥

∥

∥

L
a

a−1
τ L

α+2
α

x ([t,∞))
≤
∥

∥

∥
‖η‖αα+2

∥

∥

∥

L
a

a−1
τ ([t,∞))

≤ Cα
1

(

∫ ∞

t
e−λα aτ

a−1dτ
)

a−1
a

≤ Cα
1 ·
(

λα
a

a− 1

)− a−1
a

· e−λαt.

Plugging the above estimates into (2.21) and using (2.11), (2.20), we obtain

‖∇η‖S([t,∞)) .d,α,C1 C2e
−λαt.

This settles the estimate for 0 < α ≤ 1.

By a similar estimate, we also have for α > 1,

‖∇η‖S([t,∞)) .d,α,C1 C2e
−λt.

This completes the proof of (2.12).

The next proposition, unlike Proposition 2.3, is based solely on Strichartz estimates. It
will be used in the proof of Theorems 1.9 and 1.16. Several assumptions and conditions
have to be modified to take care of the general nonlinearity f(u).

Proposition 2.4. Let f be the same as in (1.1) satisfying condition (1.9). Let H = H(t, x) :
[0,∞)×R

d → C, W = W (t, x) : [0,∞)×R
d → C be given functions which satisfy for some

C1 > 0, C2 > 0, λ > 0, T0 ≥ 0:

‖W (t)‖∞ + eλt‖H(t)‖2 ≤ C1, ∀ t ≥ T0;

‖∇W (t)‖2 + ‖∇W (t)‖∞ + eλt‖∇H(t)‖2 ≤ C2, ∀ t ≥ T0. (2.22)

Consider the equation

η(t) = i

∫ ∞

t
ei(t−τ)∆

(

f(W + η)− f(W ) +H
)

(τ) dτ, t ≥ T0. (2.23)

There exists a constant λ∗ = λ∗(d, α1, α2, C1) > 0 (independent of C2) and a time T∗ =
T∗(d, α1, α2, C1, C2) > 0 sufficiently large such that if λ ≥ λ∗ and T0 ≥ T ∗, then there exists
a unique solution η to (2.23) on [T0,+∞)× R

d satisfying

eλt‖η‖S([t,∞)) + eλc1t‖∇η‖S([t,∞)) ≤ 1, ∀t ≥ T0. (2.24)

Here c1 > 0 is a constant depending only on (α1, d).

Remark 2.5. It is important to notice that λ∗ does not depend on C2. This will be essential
for the proof of Theorems 1.9 and 1.16.

Proof of Proposition 2.4. To minimize numerology we will suppress all explicit dependence
of constants on all parameters except the constant C2.
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We now sketch the main computations. Take 0 < β1 ≤ 2α1 such that β1 <
1

100d . Denote

β2 :=

{

4
d−2 , if d ≥ 3,

m− 1, if d = 1, 2;

c1 :=
1

2
β1.

Here for d = 1, 2, m is an integer such that m > 2α2 + 2.
We shall omit the standard contraction argument since it will be essentially a repetition

and we check only the following property: If on [T0,+∞) we have

eλt‖η‖S([t,∞)) + ec1λt‖∇η‖S([t,∞)) ≤ C.

then the following a priori estimate holds, provided λ and T0 are chosen large enough,

eλt‖η‖S([t,∞)) + ec1λt‖∇η‖S([t,∞)) ≤ 1. (2.25)

We start with ‖η‖S([t,∞)). By Lemma 2.2 and Strichartz, we have

‖η‖S([t,∞)) . ‖f(W + η)− f(W )‖N([t,∞)) + ‖H‖N([t,∞))

. ‖η(|W |β1 + |W |β2 + |η|β1 + |η|β2)‖N([t,∞)) (2.26)

+ ‖H‖L1
τL

2
x([t,∞)). (2.27)

For (2.27), by using (2.22), we have

‖H‖L1
τL

2
x([t,∞)) .

∫ ∞

t
e−λτdτ ≤ 1

100
e−λt,

where the constant 1
100 is obtained by taking λ large enough.

For (2.26), consider two cases. If d ≥ 3, then by the boundedness of W , we have
∣

∣

∣
η(|W |β1 + |W |β2 + |η|β1 + |η|β2)

∣

∣

∣
. |η|+ |η|1+

4
d−2 . (2.28)

Hence for d ≥ 3, using that both (2d+4
d , 2d+4

d ) and (q∗, q) are admissible with 1/q∗ =

1/q − 1/d = d−2
2d+4 ,

(2.26) . ‖η‖L1
τL

2
x([t,∞)) + ‖η|η|

4
d−2‖

L

2(d+2)
d+4

τ,x ([t,∞))

.

∫ ∞

t
e−λτdτ + ‖η‖

L
2(d+2)

d
τ,x ([t,∞))

· ‖η‖
4

d−2

L

2(d+2)
d−2

τ,x ([t,∞))

.
1

λ
e−λt + ‖η‖S([t,∞)) · ‖∇η‖

4
d−2

S([t,∞))

.
1

λ
e−λt + e−λt · e−

4
d−2

c1λt

≤ 1

100
e−λt,

where we have used the fact that λ and t ≥ T0 are sufficiently large.
For d = 1, 2, we replace (2.28) by

|η(|W |β1 + |W |β2 + |η|β1 + |η|β2)| . |η|+ |η|m.

17



Then

‖|η|m‖N([t,∞)) . ‖|η|m‖L1
τL

2
x([t,∞))

.

∫ ∞

t
‖η(τ)‖m2mdτ.

By (2.24) and interpolation (i.e. Gagliardo-Nirenberg), we have for θ = d(12 − 1
2m)

‖η(τ)‖2m . ‖η(τ)‖1−θ
2 ‖∇η(τ)‖θ2

. e−
(

(1−θ)λ+c1λθ
)

τ .

It is easy to check that m(1− θ) ≥ 1. Therefore

‖|η|m‖N([t,∞)) .

∫ ∞

t
e−λτdτ ≤ 1

100
e−λt.

Hence the estimate also holds for d = 1, 2. Consequently for all d ≥ 1, and t ≥ T0,

‖η‖S([t,∞)) ≤
1

10
e−λt.

Now we estimate ‖∇η‖S([t,∞)). By Strichartz and (2.17)

‖∇η‖S([t,∞)) . ‖∇(f(W + η)− f(W ))‖N([t,∞)) + ‖∇H‖N([t,∞))

. ‖|fz(W + η)− fz(W )| · ∇(W + η)‖N([t,∞))

+ ‖|fz̄(W + η)− fz̄(W )| · ∇(W + η)‖N([t,∞))

+ ‖|fz(W )|∇η‖N([t,∞)) + ‖|fz̄(W )|∇η‖N([t,∞)) + ‖∇H‖N([t,∞)).

By Lemma 2.2, we get

‖∇η‖S([t,∞)) . ‖|η|β1 |∇η|‖N([t,∞)) + ‖|η|β1 |∇W |)‖N([t,∞)) (2.29)

+ ‖|η|min{β2,1}(|W |+ |η|)max{β2−1,0} · (|∇W |+ |∇η|)‖N([t,∞)) (2.30)

+ ‖(|fz(W )|+ |fz̄(W )|)∇η‖L1
τL

2
x([t,∞)) + ‖∇H‖L1

τL
2
x([t,∞)). (2.31)

Consider (2.29). Let a be the number such that 2
a + d

β1+2 = d
2 and let a′ = a

a−1 . Then

‖|η|β1 |∇η|‖N([t,∞)) . ‖|η|β1∇η‖
La′
τ L

β1+2
β1+1
x ([t,∞))

. ‖|η|β1‖
L
( 1
a′

− 1
a )−1

τ L

β1+2
β1

x ([t,∞))

‖∇η‖
La
τL

β1+2
x ([t,∞))

.

(∫ ∞

t
‖η(τ)‖β1· a

a−2

β1+2 dτ

)
a−2
a

· ‖∇η‖S([t,∞)). (2.32)

It is not difficult to check that β1· a
a−2 < a (since β1 < 4/d). By using the fact ‖η‖

La
τL

β1+2
x ([t,∞))

.

e−λt and Hölder inequality, for t ≥ T0 we have
∫ ∞

t
‖η(τ)‖β1 · a

a−2

β1+2 dτ .
∑

k≥t−1

∫ k+1

k
‖η(τ)‖β1· a

a−2

β1+2 dτ

.
∑

k≥t−1

(

∫ k+1

k
‖η(τ)‖aβ1+2dτ

)
1
a
· aβ1
a−2

.
∑

k≥t−1

e−λk· aβ1
a−2 .

1

λ
e−λ(t−1)· aβ1

a−2 .
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Plugging the above estimate into (2.32), we obtain

‖|η|β1 |∇η|‖N([t,∞)) .

(

1

λ

)
a−2
a

e−λβ1(t−1) · e−c1λt ≤ 1

100
e−c1λt, t ≥ T0,

for λ sufficiently large and T0 ≥ 1.
Similarly we have for t ≥ T0, using β1a

′ = β1a/(a − 1) < a,

‖|η|β1 |∇W |‖N([t,∞)) . ‖|η|β1‖
La′
τ L

β1+2
β1

x ([t,∞))

‖∇W‖
L∞
τ L

β1+2
x ([t,∞))

. e−λβ1(t−1)C2

. e−c1λte−λc1(t−2)C2 ≤
1

100
e−c1λt.

Hence

(2.29) ≤ 1

50
e−c1λt.

Next we deal with (2.30). Consider first the case d ≥ 6. In this case β2 ≤ 1. Therefore

(2.30) . ‖|η|
4

d−2 (|∇W |+ |∇η|)‖N([t,∞))

. ‖|η|
4

d−2∇η‖
L

2(d+2)
d+4

τ,x ([t,∞))

+ ‖|η|
4

d−2 |∇W |‖
L2
τL

2d
d+2
x ([t,∞))

. ‖∇η‖1+
4

d−2

S([t,∞)) +

∥

∥

∥

∥

‖η(τ)‖
4

d−2

L2
x

· ‖∇W‖
L
( d+2

2d
− 2

d−2
)−1

x

∥

∥

∥

∥

L2
τ ([t,∞))

. e−c1λ(1+
4

d−2
)t + C2 ·

(

∫ ∞

t
‖η(τ)‖

4
d−2

·2
2 dτ

) 1
2

. e−c1λ(1+
4

d−2
)t + C2 ·

(

∫ ∞

t
e−

8
d−2

λτdτ
)

1
2

≤ 1

200
e−c1λt + C2 · e−c1λT0 · e−c1λt ≤ 1

100
e−c1λt, (2.33)

for λ and T0 sufficiently large.
Consider next the case 3 ≤ d ≤ 5. In this case β2 = 4

d−2 > 1. Therefore using the
boundedness of W , we have

(2.30) . ‖|η| · (|W |+ η)
4

d−2
−1(|∇W |+ |∇η|)‖N([t,∞))

. ‖|η|β1(|∇W |+ |∇η|)‖N([t,∞)) + ‖|η|
4

d−2 (|∇W |+ |∇η|)‖N([t,∞))

. |(2.29)|+ ‖|η|
4

d−2∇η‖
L

2(d+2)
d+4

τ,x ([t,∞))

+ ‖|η|
4

d−2 |∇W |‖N([t,∞))

≤ 1

30
e−c1λt + ‖|η|

4
d−2 |∇W |‖N([t,∞)).

For d = 5, we can bound the term ‖|η|
4

d−2 |∇W |‖N([t,∞)) in the same way as in (2.33) (it is

easy to check that 2d
d+2 < d−2

2 for d ≥ 5). For d = 3, 4, we have

‖|η|
4

d−2 |∇W |‖N([t,∞)) . ‖|η|
4

d−2 |∇W |‖
L2
τL

2d
d+2
x ([t,∞))

. C2

(

∫ ∞

t
‖η(τ)‖

8
d−2
8d

d2−4

dτ
) 1

2
. (2.34)
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Since d = 3, 4, it is easy to check that 2 < 8d
d2−4 < 2d

d−2 . By interpolation we have for

θ = 1
8 (d− 2)2,

‖η(τ)‖
L

8d
d2−4
x

. ‖η(τ)‖θ2‖∇η(τ)‖1−θ
2

. e−θλτ e−(1−θ)c1λτ . e−θλτ .

Plugging this estimate into (2.34), we obtain for d = 3, 4,

‖|η|
4

d−2 |∇W |‖N([t,∞)) . C2

(

∫ ∞

t
e−λ(d−2)τdτ

) 1
2
. C2 · λ− d−2

2 e−
d−2
2

λt ≤ 1

100
e−c1λt

which is clearly enough for us.
It remains to bound (2.30) for d = 1, 2. Since in this case β2 = m− 1 > 1, we have

(2.30) . ‖|η|(|W | + |η|)m−2(|∇W |+ |∇η|)‖N([t,∞))

. ‖|η|β1(|∇W |+ |∇η|)‖N([t,∞)) + ‖|η|m|∇W |‖N([t,∞)) + ‖|η|m|∇η|‖N([t,∞))

. |(2.29)|+ ‖|η|m|∇W |‖L1
τL

2
x([t,∞)) + ‖|η|m|∇η|‖

L

2(d+2)
d+4

τ,x ([t,∞))

. |(2.29)|+ C2‖η‖mLm
τ L2m

x ([t,∞)) + ‖∇η‖S([t,∞)) · ‖η‖m
L
m· d+2

2
τ,x ([t,∞))

. (2.35)

Now by Gagliardo-Nirenberg inequality,

‖η(τ)‖m2m .
(

‖η(τ)‖1−d( 1
2
− 1

2m
)

2 ‖∇η(τ)‖d(
1
2
− 1

2m
)

2

)m

. ‖η(τ)‖
d
2
2 . e−

1
2
λτ .

Similarly

‖η(τ)‖mm(d+2)
2

. ‖η(τ)‖
2d
d+2

2 . e−
1
2
λτ .

Plugging the above estimates into (2.35) and integrating in time, we obtain for d = 1, 2,

(2.30) ≤ 1

100
e−c1λt

which is acceptable for us. We have completed the estimate of (2.30) for all d ≥ 1.
Finally consider (2.31). Note ‖|fz(W )|+ |fz̄(W )|‖L∞

t,x
≤ C by (2.5) and (2.22). Thus

(2.31) ≤ C

∫ ∞

t

(

‖∇η‖L∞
t L2

x([τ,∞)) + ‖∇H(τ)‖L2
x

)

dτ

≤ C

∫ ∞

t
(e−c1λτ + C2e

−λτ ) dτ ≤
(

C

c1λ
+ C2e

−c1λt

)

e−c1λt ≤ 1

100
e−c1λt

if we take λ and t ≥ T0 large enough.
We have finished the proof of the a priori estimate (2.25). The proposition is proved.

Remark 2.6. Our proof does not work for the energy-critical case because the overlap of
multi-solitons no longer decays exponentially, but is just power-like; our proof relies heavily
on the exponential decay property.
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3 The N-soliton case

In this section we give the proofs of Theorem 1.7 and Theorem 1.9.
We first recall (1.14), the multi-soliton profile, and observe that the difference η = u−R

satisfies the equation

i∂tη +∆η = −f(R+ η) +

N
∑

j=1

f(Rj)

= −
(

f(R+ η)− f(R)
)

−
(

f(R)−
N
∑

j=1

f(Rj)
)

. (3.1)

The following lemma gives the estimates on R and the source term f(R)−∑N
j=1 f(Rj).

Lemma 3.1. There exist constants C̃1 > 0 depending on
(

N,α1, α2, d, (ωj)
N
j=1, (xj)

N
j=1

)

,

c̃1 > 0 depending only on α1, C̃2 > 0 depending on
(

N,α1, α2, d, (ωj)
N
j=1, (vj)

N
j=1, (xj)

N
j=1

)

,
such that the following hold: For every 1 ≤ r ≤ ∞ and t ≥ 0,

‖R(t)‖r +
N
∑

j=1

‖Rj(t)‖r ≤ C̃1, (3.2)

∥

∥

∥f(R(t))−
N
∑

j=1

f(Rj(t))
∥

∥

∥

r
≤ C̃1e

−c̃1
√
ω⋆v⋆t, (3.3)

‖∇R(t)‖r ≤ C̃2, (3.4)

∥

∥

∥∇
(

f(R(t))−
N
∑

j=1

f(Rj(t))
)

∥

∥

∥

r
≤ C̃2e

−c̃1
√
ω⋆v⋆t. (3.5)

Here recall ω⋆ = min{ωj , 1 ≤ j ≤ N} and v⋆ = min{|vk − vj | : 1 ≤ k 6= j ≤ N}.

Proof of Lemma 3.1. The estimates (3.2) and (3.4) follow directly from (1.10) and (1.13).
To simplify the notations, denote

Ω :=
(

N,α1, α2, d, (ωj)
N
j=1, (xj)

N
j=1

)

.

To prove (3.3), we start with the point-wise estimate. By (3.2) and Lemma 2.2,

∣

∣

∣
f(R(t, x))−

N
∑

j=1

f(Rj(t, x))
∣

∣

∣
=
∣

∣

∣

N
∑

j=1

g(|R(t, x)|2)Rj(t, x)−
N
∑

j=1

g(|Rj(t, x)|2)Rj(t, x)
∣

∣

∣

≤
N
∑

j=1

|g(|R(t, x)|2)− g(|Rj(t, x)|2)| · |Rj(t, x)|

.Ω

N
∑

j=1

(

|R(t, x)−Rj(t, x)|+ |R(t, x)−Rj(t, x)|2α1
)

· |Rj(t, x)|

.Ω sup
k 6=j

(

|Rk(t, x)| · |Rj(t, x)| + (|Rk(t, x)| · |Rj(t, x)|)2α1

)

.

(3.6)
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It suffices to treat the first term in the bracket of (3.6). The second term is similarly
estimated.

By (1.13), for any δ < 1,

|Rk(t, x)| .d,δ e
−δ

√
ωk|x−vkt−xk|, ∀ k = 1, . . . , N.

Now fix some δ < 1 for the rest of the proof.

Clearly for any k 6= j,

|Rk(t, x)| · |Rj(t, x)| .d,δ e
−δ(

√
ωk|x−vkt−xk|+

√
ωj |x−vjt−xj |). (3.7)

By the triangle inequality, it is clear that for all j 6= k, x ∈ R
d, t ≥ 0:

√
ωk|x− vkt− xk|+

√
ωj|x− vjt− xj |

≥min{√ωj,
√
ωk}

(

|vj − vk|t− |xk − xj |
)

≥√
ω⋆

(

v⋆t− |xk − xj|
)

. (3.8)

Plugging (3.8) into (3.7), we obtain for any k 6= j,

|Rk(t, x)| · |Rj(t, x)| .Ω e−
δ
2

√
ω⋆v⋆t · e− δ

2
(
√
ωk|x−vkt−xk|+

√
ωj |x−vjt−xj |) (3.9)

Now (3.3) follows easily from (3.9) and (3.6).

Finally to show (3.5) we only need to recall (2.3) and write

∇(f(R))−
N
∑

j=1

∇(f(Rj))

=

N
∑

j=1

(fz(R)− fz(Rj))∇Rj +

N
∑

j=1

(fz̄(R)− fz̄(Rj))∇Rj .

Thanks to the above decomposition, the rest of the proof is essentially a repetition of that
of (3.3). The only difference is that the constants will depend on the velocities vj due to
the terms ∇Rj. We omit further details.

Now we are ready to complete the

Proof of Theorem 1.7. By (3.1), we need to solve the integral equation (2.8) for η on [0,∞)×
R
d, with W = R and H = f1(R)−

∑N
j=1 f1(Rj). By Lemma 3.1, conditions (2.7) and (2.11)

are satisfied. Thus, by Proposition 2.3, there exists η ∈ C([0,∞),H1) with ‖〈∇〉η‖S([t,∞))

decaying exponentially in t. Since the soliton piece R ∈ C([0,∞),H1), so is u(t).

Proof of Theorem 1.9. This is similar to the proof of Theorem 1.7. We need to apply
Proposition 2.4 with W = R and H = f(R)−

∑N
j=1 f(Rj). By Lemma 3.1, the condition

(2.22) is satisfied. By Proposition 2.4, there exists η ∈ C([T0,∞),H1) with ‖〈∇〉η‖S([t,∞))

(in particular ‖η(t)‖H1) decaying exponentially in t.
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4 An infinite soliton train

In this section we construct an infinite soliton train solution to (1.1).
Thanks to Proposition 2.3, the proof of Theorem 1.1 is reduced to checking the regularity

of the infinite soliton R∞ and the tail estimates.

Lemma 4.1 (Regularity of R∞). Let R∞ be given as in (1.3) and recall f1(z) = |z|αz.
Then

1. There is a constant Ã1 > 0 depending only on (Aω, d, α), such that

‖R∞(t)‖∞ + ‖R∞(t)‖r1 +
∞
∑

j=1

(‖R̃j(t)‖∞ + ‖R̃j(t)‖r1) ≤ Ã1, ∀ t ≥ 0, (4.1)

‖f1(R∞(t))‖α+2−ǫ1
α+1

+

∞
∑

j=1

‖f1(R̃j(t))‖α+2−ǫ1
α+1

≤ Ã1, ∀ t ≥ 0. (4.2)

where 0 < ǫ1 < 1 is a small constant depending on (r1, α).

2. There are constants c̃1 > 0, c̃2 > 0 depending only on (α, d), C1 > 0, C2 > 0 depending
on (Ã1, d, α), such that

‖f1(R∞(t))−
∞
∑

j=1

f1(R̃j(t))‖∞ ≤ C1e
−c̃1v⋆t, ∀ t ≥ 0, (4.3)

‖f1(R∞(t))−
∞
∑

j=1

f1(R̃j(t))‖α+2
α+1

≤ C2e
−c̃2v⋆t, ∀ t ≥ 0. (4.4)

Proof of Lemma 4.1. The inequalities (4.1)–(4.2) are simple consequences of (1.5). The
proof of the inequality (4.3) is similar to the proof of (3.3) and we sketch the modifications.
By using (4.1) and (1.13) (fix η < 1), we have

|f1(R∞(t, x)) −
∞
∑

j=1

f1(R̃j(t, x))| .
∞
∑

j=1

∣

∣

∣
|R∞(t, x)|α − |R̃j(t, x)|α

∣

∣

∣
· |R̃j(t, x)|

.

∞
∑

j=1

|R∞(t, x)− R̃j(t, x)|min{α,1}|R̃j(t, x)|

.

∞
∑

j=1

∣

∣

∣

∑

k 6=j

ω
1
α

k e−η
√
ωk|x−vkt|

∣

∣

∣

min{1,α}
ω

1
α

j e−η
√
ωj |x−vjt|

.

∞
∑

j=1

ω
1
α

j

∣

∣

∣

∑

k 6=j

ω
1
α

k e−η(
√
ωk|x−vkt|+

√
ωj |x−vjt|)

∣

∣

∣

min{1,α}
.

By (1.6), we have

√
ωk|x− vkt|+

√
ωj|x− vjt| ≥ v⋆t, ∀ t ≥ 0.

Hence (4.3) follows from the above estimate and (1.5). Finally (4.4) follows from interpo-
lating the estimates (4.2)–(4.3).
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We now complete the

Proof of Theorem 1.1. We first rewrite (1.7) as

η(t) = i

∫ ∞

t
ei(t−τ)∆

(

f1(R∞ + η)− f1(R∞) + f1(R∞)−
∞
∑

j=1

f1(R̃j)
)

dτ.

We then apply Proposition 2.3 with W = R∞ and H = f1(R∞) −∑∞
j=1 f1(R̃j). By

Lemma 4.1, it is easy to check that the condition (2.7) is satisfied. The theorem follows
easily.

5 Half-kinks

We conclude this paper by giving the proofs of Theorem 1.16 and Proposition 1.12.

Proof of Theorem 1.16. The proof is similar to that of Theorem 1.9. The only difference is
that, due to the non-zero background, the profile KR is not in C(R,H1) any more but only
in C(R,H1

loc).

Proof of Proposition 1.12. Assume ω = ω1 and define ζ1 := ζ(ω1). Take any φ0 ∈ (0, ζ1)
and let φ be the solution to (1.18) on the maximal interval of existence I and with initial
data

φ(0) = φ0, φ′(0) =
√

ω1φ2
0 − 2F (φ0).

We first prove that φ(x) ∈ (0, ζ1) for any x ∈ I. Indeed, assume on the contrary that
there exists x0 such that φ(x0) = 0 or φ(x0) = ζ1. From our choice of initial data for φ, it
follows that, for any x ∈ I, φ satisfies the first integral identity

−1

2
|φ′(x)|2 = F (φ(x)) − ω1

2
|φ(x)|2. (5.1)

In particular, (5.1) at x = x0 implies

φ′(x0) = 0.

However, by Cauchy-Lipschitz Theorem it follows that φ ≡ 0 or φ ≡ ζ1 on I, which enters
in contradiction with φ0 ∈ (0, ζ1). Hence for all x ∈ I we have φ(x) ∈ (0, ζ1) which implies
in particular that I = R.

Since φ0 ∈ (0, ζ1), we have φ′(0) > 0 and by continuity φ′(x) > 0 for x close to 0. We
claim that in fact φ′(x) > 0 on R. Indeed, assume by contradiction that there exists x0
such that φ′(x0) = 0. From the first integral (5.1), this implies that

F (φ(x0))−
ω1

2
|φ(x0)|2 = 0.

Therefore φ(x0) = 0 or φ(x0) = ζ1, but we have proved that to be impossible. Hence φ′ > 0
on R.

We consider now the limits of φ at ±∞. Define

l := lim
x→−∞

φ(x), L := lim
x→+∞

φ(x).
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Let us show that l = 0 and L = ζ1. Indeed, by (5.1), we have F (l) − ω1
2 l2 = 0 (indeed

otherwise it would implies |φ′| > δ > 0 for x large, a contradiction with the boundedness of
φ). Since φ ∈ (0, ζ1) and φ is increasing, this implies l = 0 and L = ζ1.

Let us now show that φ is unique up to translations. Assume by contradiction that
there exists φ̃ ∈ C2(R) solution to (1.18) satisfying the connection property (1.20). Since
we claim uniqueness only up to translation, we can assume that φ(0) ∈ (0, ζ1). In addition,
since we have shown that φ varies continuously from 0 to ζ1, we can also assume without
loss of generality that φ(0) = φ0 = φ̃(0). The first integral identity for φ̃ is for any x ∈ R

1

2
|φ̃′(x)|2 − ω1

2
|φ̃(x)|2 + F (φ̃(x)) =

1

2
|φ̃′(0)|2 − ω1

2
|φ̃(0)|2 + F (φ̃(0))

In particular, since limx→±∞ φ̃′(x) = 0, and 0 and ζ1 are zeros of ζ → F (ζ)− ω
2 ζ

2, we have

1

2
|φ̃′(0)|2 =

ω1

2
|φ̃(0)|2 − F (φ̃(0)).

As previously, it is not hard to see that φ′ has a constant sign, which must be positive
due to the limits of φ at ±∞. Therefore φ̃′(0) = φ′(0) and the uniqueness follows from
Cauchy-Lipschitz Theorem. Differentiating the equation we see that φ′ verifies

−(φ′)′′ + (ω1 − f ′(φ))φ′ = 0.

Since limx→−∞(ω1−f ′(φ)) = ω1−f ′(0) > 0 and limx→+∞(ω1−f ′(φ)) = ω1−f ′(ζ(ω1)) > 0,
(1.21) follows from classical ODE arguments.

6 Multi-soliton up to time zero

In this section we add extra conditions to Theorem 1.9 so that the solution exists in [0,∞).

Theorem 6.1. Consider (1.1) with f(u) = g(|u|2)u satisfying (1.9) and (1.12). Let R be
the same as in (1.14) and define v⋆ as in (1.16). Suppose

v̄ := max
k=1,...,N

|vk| ≤ MvM⋆ , for some M ≥ 1. (6.1)

There exist constants C > 0, c1 > 0, c2 > 0 and v♯ = v♯(M) ≫ 1, such that if v⋆ > v♯, then
there is a unique solution u ∈ C([0,∞),H1) to (1.1) satisfying

ec1v⋆t‖u−R‖S([t,∞)) + ec2v⋆t‖∇(u−R)‖S([t,∞)) ≤ C, ∀ t ≥ 0.

Remark 6.2. The extra condition (6.1) is satisfied for example if vj = µṽj for some fixed ṽj
and µ is an increasing parameter.

Sketch of proof. Following the proof of Lemma 3.1, the assumption (2.22) of Proposition
2.4 is satisfied with

T0 = 1, λ = cv⋆, C1 = C0, C2 = C0v̄,

where c = C(α1)
√

minj=1,...,N{ωj} and C0 = C0(d,N, α1, α2, (ωj)
N
j=1, (xj)

N
j=1) are indepen-

dent of (vj)
N
j=1. The smallness condition used in the proof of Proposition 2.4 is of the

form
e−cλ∗t(1 + C2) ≤ ε (6.2)
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for some small ε > 0 independent of C2. It can be satisfied either by fixing λ∗ ≫ 1
independent of C2 and then requiring t ≥ T0 with T0 = T0(C2) large (as in the proof of
Proposition 2.3), or by fixing T0 = 1, using the assumption C2 = C0v̄ ≤ C0MvM⋆ , and
requiring v⋆ sufficiently large. In the latter case we get a solution η(t) for 1 ≤ t < ∞. Since
the soliton piece R ∈ C([0,∞),H1) and ‖η(t = 1)‖H1 can be chosen sufficiently small by
enlarging λ∗, we can extend η(t) up to time t = 0 with O(1) estimates by local existence
theory in H1.

The following result is L2-theory for L2-subcritical and critical nonlinearities.

Theorem 6.3. Consider (1.1) with f(u) = g(|u|2)u satisfying (1.9) and (1.12). Further
assume α2 ≤ 2/d. Let R be the same as in (1.14) and define v⋆ as in (1.16). There exist
constants C > 0, c1 > 0, and v♯ ≫ 1, such that if v⋆ > v♯, then there is a unique solution
u ∈ C([0,∞), L2) to (1.1) satisfying

ec1v⋆t‖u−R‖S([t,∞)) ≤ C, ∀ t ≥ 0.

Sketch of proof. We will modify the first part of the proof of Proposition 2.4 which bounds
η = u − R in S([t,∞)). In that part, estimates for ∇η is only used to bound the global
nonlinear terms

∑

j=1,2 |η|2αj+1 in the dual Strichartz space N([t,∞)). Suppose α2 ≤ 2/d
and

‖η‖S([t,∞)) ≤ e−λt, ∀t > 0.

For m = 2αj + 1, r = m+ 1, and a such that 2
a + d

r = d
2 , we have

‖|η|m‖N([t,∞)) ≤ ‖|η|m‖La′Lr′(t,∞) ≤ ‖η‖m
La′mLr′m(t,∞)

,

where r′ = r/(r − 1) and a′ = a/(a− 1). Let q and b be such that

q = r′m,
2

b
+

d

q
=

d

2
.

We claim that αj ≤ 2/d is equivalent to

a′m ≤ b. (6.3)

Indeed, (6.3) amounts to

2

a′
≥ 2m

b
= m

(

d

2
− d

q

)

= m
d

2
− d

r′
,

i.e.

m
d

2
≤ d

r′
+

2

a′
= d+ 2−

(

d

r
+

2

a

)

=
d

2
+ 2,

which is exactly αj ≤ 2/d. Thus

‖|η|m‖N([t,∞)) ≤
(
∫ ∞

t
‖η(s)‖a′mLq ds

)1/a′

=

( ∞
∑

k=0

∫ t+k+1

t+k
‖η(s)‖a′mLq ds

)1/a′

≤





∞
∑

k=0

(∫ t+k+1

t+k
‖η(s)‖bLqds

)

a′m
b





1/a′

≤
( ∞
∑

k=0

(

e−bλ(t+k)
)

a′m
b

)1/a′

= Ce−mλt.
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We have used (6.3) in the second inequality. The rest of the proof is the same as the first
part of the proof for Proposition 2.4.

The following result is valid for both L2-subcritical and L2-supercritical nonlinearities.
Its proof extends that of Proposition 2.3.

Theorem 6.4. Consider (1.1) with f(u) = g(|u|2)u satisfying (1.9) and (1.12). Let βj =
2αj , j = 1, 2, with 0 < β1 ≤ β2 < αmax. Assume for d ≥ 3

β2
1 + β2

≤ β1 ≤ β2, if 0 < β2 <
αmax

2
, (6.4)

β2
αmax + 1− β2

< β1 ≤ β2, if
αmax

2
≤ β2 < αmax, (6.5)

and for d = 1, 2 we assume (6.4) only. Then we can choose r1 and r2 such that

0 ≤ r1 − 2 ≤ β1 ≤ β2 ≤ r2 − 2 < αmax, (6.6)

r1β2 ≤ r1r2 − r1 − r2 ≤ r2β1. (6.7)

Let R be the same as in (1.14) and define v⋆ as in (1.16). For any choice of r1, r2 satisfying
(6.6)–(6.7), there exist constants C > 0, c1 > 0, and v♯ ≫ 1, such that if v⋆ > v♯, then there
is a unique solution u = R+ η to (1.1) on [0,+∞) satisfying

‖η(t)‖Lr1∩Lr2 ≤ Ce−c1v⋆t, ∀t ≥ 0. (6.8)

Moreover,

‖η‖S([t,∞)) ≤ Ce−c1v⋆t, ∀t ≥ 0.

Note the first strict inequality in (6.5), compared to (6.4). See Figure 2 for the β1-β2
region when d = 3. Remark also that (6.4) and (6.5) are equivalent (when d ≥ 3) to

β1 ≤ β2 ≤
β1

1− β1
, if 0 < β1 <

αmax

αmax + 2
, (6.9)

β1 ≤ β2 <
(αmax + 1)β1

1 + β1
, if

αmax

αmax + 2
≤ β1 < αmax. (6.10)

Sketch of proof of Theorem 6.4. For j = 1, 2 and θj = d(12 − 1
rj
) ∈ (0, 1), we have

‖η(t)‖Lrj .

∫ ∞

t
|t− τ |−θj

∑

k=1,2

‖|η(τ)|1+βk‖r′jdτ + (nice terms),

where r′j = rj/(rj − 1). The nice terms can be estimated as in the proof of Proposition 2.3.
Note that

‖|η|1+βk‖r′j = ‖η‖1+βk

(r′j)(1+βk)

can be estimated by Hölder inequality and (6.8) if

r1 ≤
rj

rj − 1
(1 + βk) ≤ r2, ∀j, k. (6.11)
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Figure 2: Region of admissible β1, β2 in Theorem 6.4 for d = 3

For j = 1, the left inequality of (6.11) is always true. The right inequality is equivalent to
r1(1 + β2) ≤ r2(r1 − 1), or

r2 ≤ r1(r2 − 1− β2). (6.12)

For j = 2, the right inequality of (6.11) is always true. The left inequality is equivalent to
r1(r2 − 1) ≤ r2(1 + β1), or

r2(r1 − 1− β1) ≤ r1. (6.13)

Equations (6.12) and (6.13) are equivalent to (6.7). Furthermore, (6.6) and (6.7) can be
combined into the following equivalent condition

0 ≤ r1 − 2 ≤ b1(r1, r2) ≤ β1 ≤ β2 ≤ b2(r1, r2) ≤ r2 − 2 < αmax (6.14)

where

b1(r1, r2) = r1 − 1− r1/r2, b2(r1, r2) = r2 − 1− r2/r1.

It turns out that when 2 ≤ r1 ≤ r2 < αmax + 2 we always have

0 ≤ r1 − 2 ≤ b1(r1, r2) ≤ b2(r1, r2) ≤ r2 − 2 < αmax.

Thus for any (β1, β2) in the right triangle with a vertex (b1(r1, r2), b2(r1, r2)) and hypotenuse
on the line β1 = β2, the pair r1, r2 satisfies (6.6) and (6.7).

Denote the curve Γ(r1) for fixed 2 ≤ r1 < 2 + αmax,

Γ(r1) = {(b1(r1, r2), b2(r1, r2)) : r1 ≤ r2 ≤ 2 + αmax}.

It satisfies

b2 =
b1

r1 − 1− b1
, b1 =

(r1 − 1)b2
1 + b2

,
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and starts at (r1−2, r1−2). It goes to infinity with asymptote b1 = r1−1 for d = 1, 2, while
ends at Σ(2 + αmax) to be defined below for d ≥ 3. It moves to the right as r1 increases.

Denote the curve Σ(r2) for fixed 2 < r2 ≤ 2 + αmax,

Σ(r2) = {(b1(r1, r2), b2(r1, r2)) : 2 ≤ r1 ≤ r2}.

It satisfies

b2 = (r2 − 1)
b1

1 + b1
.

It starts at Γ(2) and ends at (r2 − 2, r2 − 2). It moves upward as r2 increases.

For given 0 < β1 < β2 < αmax, conditions (6.4)–(6.5) imply that (β1, β2) is on the right of
Γ(2) and, if d ≥ 3, is below Σ(αmax). Thus we can find R1 = R1(β1, β2) and R2 = R2(β1, β2)
such that (β1, β2) is the intersection point of Γ(R1) and Σ(R2), and R1 ≤ R2. To satisfy
(6.14), we can either choose (r1, r2) = (R1, R2), or any 2 ≤ r1 < R1 ≤ R2 < r2 < 2 + αmax

as long as the intersection point Γ(r1) ∩ Σ(r2) is at upper-left direction to (β1, β2).

The above shows we can estimate |η|1+βk in Lr′j for j, k = 1, 2.

For the Strichartz estimate, since (2/θ1, r1) is admissible, we have with a = (2/θ1)
′

‖η‖S([t,∞)) . ‖f(W + η)− f(W ) +H‖
La(t,∞;Lr′1)

. ‖e−c1v∗τ‖La(t,∞) . v
−1/a
∗ e−c1v∗t.
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[8] R. Côte and S. Le Coz. High-speed excited multi-solitons in nonlinear Schrödinger
equations. J. Math. Pures Appl. (9), 96(2):135–166, 2011.
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