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Reduced basis finite element heterogeneous multiscale method
for quasilinear elliptic homogenization problems

Assyr Abdulle!, Yun Bai!, and Gilles Vilmart?
April 10, 2013

Abstract

A reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) for a
class of nonlinear homogenization elliptic problems of nonmonotone type is introduced.
In this approach, the solutions of the micro problems needed to estimate the macroscopic
data of the homogenized problem are selected by a Greedy algorithm and computed in
an offline stage. It is shown that the use of reduced basis (RB) for nonlinear numer-
ical homogenization reduces considerably the computational cost of the finite element
heterogeneous multiscale method (FE-HMM). As the precomputed microscopic functions
depend nonlinearly on the macroscopic solution, we introduce a new a posteriori error
estimator for the Greedy algorithm that guarantees the convergence of the online New-
ton method. A priori error estimates and uniqueness of the numerical solution are also
established. Numerical experiments illustrate the efficiency of the proposed method.

Keywords: nonlinear nonmonotone elliptic problems, numerical homogenization, reduced ba-
sis method, a posteriori error estimator, finite element method

AMS subject classification (2010): 65N30,65M60,74D10,74Q05.

1 Introduction

Quasilinear elliptic problems enter the modeling of numerous problems such as phase transi-
tions, flow in porous media, or reaction and diffusion in electrolysis to mention a few examples
[12]. Numerical approximations of such problems have been analyzed by many authors. We
mention the works of Douglas and Dupont [28], and Nitsche [32], where the first a priori error
analysis was given for the finite element method (FEM). Much recently and relevant for the
present work, we mention the analysis obtained in [11] for a FEM with numerical quadra-
ture, i.e., when the continuous variational form originating from the nonlinear problem is
approximated by a quadrature formula. In this paper we are interested in quasilinear elliptic
problems with highly oscillatory data of the form

=V - (0" (2, v (2))Vui(z)) = f(z) inQ, (1)

in a domain Q C RY, d < 3, where a(x,u) = (a5,,,(u, 5))1<m.n<d i a d x d tensor, associated
to £ > 0, a sequence of positive real numbers going to zero and f € H~1(Q). For simplicity
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we assume homogeneous Dirichlet boundary conditions u® = 0 on 92 but we emphasize that
more general boundary conditions could be considered.

Such problems arise for example in infiltration of water in an unsaturated porous media
modeled by the (stationary) Richards equation [15] or (stationary) heat conduction in a com-
posite material [30]. For the standard FEM, a finescale resolution is needed for a satisfactory
approximation. If the ratio between the scale of interest and the finest scale in the problem
is too large, the FEM approximation will have a prohibitive number of degrees of freedom
(DOF), leading to an enormous computational cost. For efficient numerical computations,
an appropriate upscaling of equation (1) is thus needed. Such coarse graining procedures are
rigorously described by the mathematical homogenization theory [16, 29] and are studied for
the class of problems (1) in [13, 18, 27]. These analyses show that the solution u® of (1)
converges in a weak sense to u” as e — 0, where the homogenized function u° is the solution
of an effective (homogenized) equation that is of the same quasilinear type as the original
equation with an effective homogenized tensor a”(x,u%(z)) that depends nonlinearly on u°.
Numerical homogenization methods for problems of the type (1) are derived in [22] for the
multiscale finite element method (MsFEM) and in [26, 9] for the finite element heterogeneous
multiscale method (FE-HMM) [5, 25]. The MsFEM is based on a standard FE space enriched
with oscillatory functions, while the FE-HMM is based on a strategy first proposed in [25]
that consists in macroscopic FEM on a macroscopic mesh with quadrature formula (QF),
with effective data (the homogenized tensor at the quadrature points) recovered on the fly
from micro problems. These micro problems, defined on sampling domains centered at the
macroscopic quadrature points of the QF, use only the oscillatory data given by the problem
(1). We focus on the FE-HMM proposed in [26, 9] for quasilinear problems. The practical
implementation relies on a Newton method for the macroscopic nonlinear FEM. Since the
value of the corresponding macroscopic solution is updated at each Newton iteration, the
microscopic problems in each element of the macroscopic mesh need to be recomputed. Al-
though the micro problems can be solved independently in parallel, the cost of the procedure
mentioned above can be prohibitive, especially for high dimensional problems.

In this paper, we show how the use of the reduced basis (RB) method (see [34, 33, 35] and
references therein) for computing the micro problems permits to considerably improve the
efficiency of the standard nonlinear FE-HMM. The use of RB for numerical homogenization
problems has first been proposed by in [19] and analyzed for the FE-HMM for a class of
linear elliptic problems in [3]. The algorithm proposed in this paper for nonlinear problems
relies on online and offline procedures: in the offline procedure accurate micro solutions for
the original problem on sampling domains are selected and computed. These micro problems
are parametrized by the location of the cell problem in the domain €2 and the macroscopic
solution at this location. A greedy algorithm allows to choose an optimal basis of micro
functions (computed with high accuracy) for selected values of the parameters. In the online
stage, a Newton method for the RB-FE-HMM implementation is proposed with microscopic
solutions computed in the reduced basis space, which amounts to solve small dimensional
linear systems in each element of the macroscopic mesh. The overall computational cost
of the online macroscopic Newton method is similar to the cost of single scale nonlinear
problems. One difficulty is the design of an a posteriori error estimator in the offline stage
that is both efficient and also guarantees that the online Newton method converges. We
propose in this paper such a posteriori error estimators and prove the convergence of the
online Newton method and the uniqueness of the numerical solution. Furthermore, a fully
discrete error analysis of the quasilinear RB-FE-HMM is derived.



This paper is organized as follows. In Sect. 2, we briefly recall the framework of homoge-
nization theory in our context of quasilinear elliptic problems of nonmonotone type. We then
present in Sect. 3 the new nonlinear RB-FE-HMM with its offline and online procedures,
and analyze its convergence in Sect. 4. We explain some implementation issues in Sect. 5.
Finally, numerical experiments in Sect. 6 show how the use of reduced basis considerably
improves the efficiency by reducing drastically the number of degrees of freedom for various
problems.

2 Homogenization of quasilinear elliptic problems

We assume that the tensor a®(x, s) in (1) is uniformly elliptic and bounded with respect to s
and ¢, i.e., there exist A\, A1 > 0 such that

NEP < af(x,8)6 €, a(z,9)€] < MifE], VEE€RLVsER, ae z €, (2)

and that the functions af,,(z,s), m,n = 1,...,d are continuous, bounded and uniformly
Lipschitz continuous with respect to s. Then, for all fixed € > 0, the weak form of (1) has
a unique solution u® € H{ () (we refer for example to [23, Theorem 11.6] for a proof). The
solution, for each ¢, satisfies the a priori bound [|u®[| 1) < C|| f||g-1(q), hence one can apply
standard compactness arguments to the sequence of solution u® that ensure the existence of
a subsequence of {uf} converging weakly in H'(Q2). The homogenization result is shown in
[18, Theorem 3.6] (see also [27]) and reads as follows: there exists a subsequence of {a®(-, s)}
(again indexed by ¢) such that the corresponding sequence of solutions {u} converges weakly
to u¥ in H'(Q). The limit function u° is the solution of the homogenized problem

-V (ao(:c,uo(x))Vuo(m)) = f(z) in Q, u’(z) =0 on 9. (3)

The tensor a®(z, s), called the homogenized tensor, can be shown to be Lipschitz continuous
with respect to s, uniformly elliptic, and bounded [18, Prop.3.5], i.e., there exists Ay > 0
such that!

|a®(z, 51) — a®(x, s9)||Fp < Az|s1 — sa|, ae. x € Q,Vs1, 55 €R, (4)

and there exist A\, A; > 0 such that a satisfies (2) (possibly with different constants). Under
these assumptions, the homogenized problem (3) has also a unique solution u® € HZ ().

We mention that for a locally periodic tensor of the form a®(x,s) = a(x,z/e,s) where
a(x,y,s) is Y periodic with respect to y, the weak convergence of u¢ to the solution of (3)
holds for the whole sequence {u®} and the homogenized tensor can be characterized in the
following way [13]:

a(z,s) = / a(z,y,s)(I + JQLy’S))dy, for z € Q,s € R, (5)

Y
where J, (; 4 5) I8 & dxd matrix with entries ‘]X(%y,S)ij = (0x")/(0y;) and x'(z,-,8),i=1,...,d
are the unique solutions in WI}BT(Y) ={z¢€ H;er (Y); [y zdz = 0} of the linear cell problems

with parameters ¢ € Q,s € R

/ a(m, Y, S)VyXi(% Y, S) ’ Vw(y)dy = _/ a,(gj7 Y, S)ei ' Vw(y)dy, Vw € Wpler(y)’ (6)
Y Y

n this paper, we use the Frobenius norm on matrices defined as || M| := trace(M ™ M).



where H', (V) := {g € H(Y)| g periodic in Y} and e;, i = 1,...,d are the vectors of the

per
canonical basis of R?.

Remark 2.1. We sometimes refer to the problems (3) or (1) as “non monotone problems”.
This stems from the following fact: writing for example (3) in weak form

B(u®;u®,v) = / a®(z,u° (2))Vul (2)Vo(z)dr = (f,v), Yo € H(Q),
Q

we observe that the monotonicity property B(u®; u®, u® —v) — B(v;v,u’ —v) > C||u’ _UH%I(Q)
with C > 0 does not hold in general for the quasilinear problem (3) (or (1)). This lack of
monotonicity makes the numerical analysis for FEM a nontrivial task, in particular when
quadrature formula are used [11].

For our analysis, we will further assume that the tensor a° is symmetric (and thus also
a’) and that the homogenized tensor is continuous,

ad, €C'QxR), VYmn=1,...,d (7)

3 Reduced basis FE-HMM for quasilinear problems

As the homogenized tensor a” in (3) is in general unknown, the task in numerical homoge-
nization is to design an algorithm capable of computing an approximation of the homogenized
solution u? without knowing a°, relying on a finite number of localized micro problems, i.e.
cell problems, chosen in such a way that the overall computation is both efficient and reliable.
Here, we generalize the RB-FE-HMM introduced in [4] for linear elliptic problems to quasi-
linear elliptic problems. This method relies on a macroscopic solver with macroscopic data
recovered by microscopic simulations (the micro problems) performed on sampling domains
located at appropriate quadrature points of the macroscopic mesh. In addition, in order
to avoid repeated micro computations, the solution of the micro problem are computed in
finite dimensional space of low dimension spanned by a so-called reduced basis obtained in
an offline procedure.

3.1 Preliminaries

We describe here the macro and micro finite element spaces needed to define and analyze the
RB-FE-HMM.

Macroscopic mesh and quadrature formulas. The RB-FE-HMM is based on a macro
finite element (FE) space

S§(Q, Ty) = (v € HY(Q); v |x € RYUK), VK € Ty},

where Ty is a shape-regular family of (macro) partition of Q in simplicial or quadrilateral
elements K of diameter Hy, and RY(K) is the space P*(K) of polynomials on K of total
degree at most ¢ if K is a simplicial FE, or the space Q(K) of polynomials on K of degree at
most £ in each variable if K is a parallelogram FE. For a given macro partition, we define as
usual H := maxge7;; Hr. We highlight that H in our discretization is allowed to be much
larger than €.



For each element K of the macro partition we consider an affine transformation Fx such
that K = F K(f( ), where K is the reference element (simplicial or parallelogram). For a
given quadrature formula {fj,oﬁj}jzl on K, the quadrature weights and integration points
on K € Ty are then given by wg, = @;|det(0Fk)|, zx;, = Fx(Z;), j=1,...,J. We make
the following assumptions on the quadrature formulas, which are standard assumptions also
for linear elliptic problems [24]:

QL) & >0, j=1,....J, S &|Vp(a;)|* > X||v;a||i2(m, V(&) € RYK), where X > 0;
(Q2) [ pla)de = ST @p(35), V(&) € R(K), where o = max(20—2, () if K is a simplicial
FE, or 0 = max(2¢ — 1, + 1) if K is a parallelogram FE.

Microscopic mesh and RB. We consider a micro FE space S(Y,7;) C W(Y) with
simplicial or quadrilateral FEs and piecewise polynomial of degree ¢ on the domain Y =
(—1/2,1/2)¢ equipped with a conformal and shape regular family of triangulation denoted
T;,- The space W(Y') denotes either the Sobolev space

W(Y) = Wy, (V) (8)
for a periodic coupling or
W(Y)=H}Y) (9)

for a coupling with Dirichlet boundary conditions.
We then consider the RB space, which is a subspace of S4(Y,7;) with a low dimension
denoted X
Sn(Y) =span{&un(y), n=1,..,N} C SUY,T;). (10)

where én ~N(y), n =1,..,N denotes the reduced basis. Notice that for the analysis of the
RB-FE-HMM, we shall also consider a RB space of the form

gN(Y) = Span{(gn,./\fy én,./\f)) n= 1)-'7N} C SQ(}/’ 7%)27

which is a subspace of dimension N of (S9(Y,7;))? involving the same functions én A as in
Sn(Y) and where ¢, nr € S(Y, T;), n=1,..,N. The construction of the RB spaces Sy (Y)
and Sy (Y) is discussed in Sect. 3.4 below.

For each macro element K € 7y and each quadrature point xx;, € K, j = 1,...,J,
we define the sampling domains Ks, = vk, + (—6/2,6/2)%, (5§ > ¢). We observe that each
sampling domain K, is in correspondence with Y through the affine transformation

yEY = Goy (y) = ak,; + 0y € K, (11)

This transformation applied to the RB space (10) permits to define the RB space Sx(Kjs;)
associated to each sampling domain K, as

Sn(Ks,) = span{(sgn,N(G;;j (z)) =t &n i, (z), n=1,..,N}. (12)



3.2 Online procedure: the RB-FE-HMM

Assuming that the RB space has been pre-constructed in the offline stage described in the
next section, we introduce a macro method similar to the FE-HMM with the micro problems
solved in the RB space.

The nonlinear RB-FE-HMM for (1) is defined as follows: find w8 € S§(Q, Ty) such
that

BH7RB(uH’RB;uH’RB,vH) = / folde, Yo'l e SS(Q,TH), (13)

with a bilinear form defined for all u?, v wf € S§(Q, Tw) by

Br.rp(ul; o wH) Z Z

KET]I‘ 5’ K5

UH TK . UH TK .
(z,u (zg ))VUN[({ K])(ac) . VwNJ((],KJ)(:U)dx,

(14)

H(xk,), the function vy K, solves vy x. Ulzn] € Sn(Ks;)

where for the scalar parameter s = u
and

/ a®(z, S)va\u(j (z) - Vzy(x)dz =0, Vzy € Sn(Ks,)) (15)
Ks.

and similarly for wy K; (). The problem (15) requires the solution of an N x N linear system,
where the details of the offline output and the online implementation are discussed in Sect. 5.
The efficiency of the RB procedure relies in the fact that the dimension N of the RB space is
usually small. Furthermore, in contrast to the standard FE-HMM, the number of degrees of
freedom (DOF) of the micro (RB) space remains fixed during the online procedure and does
not increase as the macroscopic DOF increase. This is in sharp contrast with the FE-HMM
for which the simultaneous refinement of the macro and micro DOF is a major computational
issue [1].

3.3 Solution of the macro quasilinear problem and Newton method

While the cell problems (15) are linear, the macroscopic problem (14) is nonlinear and is
usually solved by a Newton method.

The following reformulation of the bilinear form of the RB-FE-HMM will be useful to
define the Newton method used in practice to compute a numerical solution u/-#5 of (13).
The bilinear form (14) can be rewritten as

By rp(u; 0wy = ) ZWK i, (W (k) Vol (2r,) - Vo'l (zg;),  (16)

KeTy j=1

where we define the numerical homogenized tensor as

71,8 7k,s
(0l 1, (216, )i = /Y Gai ) (V0K () + i) - (V0K (0) +ex) dy. (17)
where @}VSKJ € Sn(Ks,), i =1,...,d is the solution of a cell problem (see (28) below) on the
sampling domain Ks;.
Inspired by [28, 9], we explain here how to solve the nonlinear problem (13) with the

Newton method. For given 2 v wH € S§(Q, Ty) we first define the Fréchet derivative

0By obtained by differentiating the nonlinear quantity By (27, 21, w!) with respect to 2

0B rp (270w == By pp(27; 0", H)+BH rp(Z 0w, (18)



where by the reformulation of the RB-FE-HMM bilinear form (16) we derive

J
d
Bl (2" ;0" wh) = Z Zijga?\,’&(s)ISZZH(ij)UH(ij)VzH(ij) : VwH(:cKj). (19)
KeTy j=1

The Newton method for approximating a solution u!! of the nonlinear RB-FE-HMM (13) by
a sequence {ul } reads in weak form

OB (ufl ;ufl y —utl ,wf) = Fy(w™) — By (uif;uff ,wf),  vw € S§(Q, Th). (20)

The fact that the Newton method is well defined and convergence is discussed in Sect. 4.2
while an efficient implementation is detailed in Sect. 5.

3.4 Offine procedure: RB for quasilinear problems

This section describes the offline stage of the RB algorithm in our context of quasilinear
elliptic problems. The task is to construct a low dimensional RB space Sy (Y') spanned by a
small number N < N of representative solutions of the cell problems (25) below (depending
on the quadrature node sg; and the nonlinear parameter s). Here, N denotes the (large)
DOF of the FE space used to obtain a highly resolved solution of (25).

The main novelty here is that the proposed RB algorithm permits to compute efficiently
with a reliable a posteriori error control not only the solutions of the cell problems (25)
but also their derivatives with respect to the nonlinear parameter s. This is an essential
ingredient to prove in Section 3.3 the uniqueness of the RB-FE-HMM macro solution and the
convergence of the Newton method.

Considering an affine representation of the tensor, we first describe a suitable formulation
of the cell problems before presenting the parametrized cell solution space itself. We then
introduce a new a posteriori error estimator and analyze its efficiency and reliability. This
is the key ingredient of the Greedy algorithm for the construction of the RB space that
concludes this section.

Affine representation of the tensor. A suitable representation of the tensor

a:}c}(j ,s(y) = as(Gsz (y)a 5)7 (21)

where we use the transformation (11) is crucial for the RB methodology, i.e., an affine repre-
sentation of the form

Q
Az, ,s(Y) = Z O¢(7,5)aq(y), Yy €Y. (22)
q=1

We notice however that such direct affine representation is generally unavailable and a greedy
algorithm, called the empirical interpolation method (EIM) can be used to approximate a
nonaffine tensor by an affine one of the form (22) (see [14]).

Cell problems. The micro problems in the FE-HMM are based on the FE approximation
of the cell functions w?{i € W(Ks,), solving the linear problem

/ a®(x, s)Vz/J?{‘j () - Vz(x)dz = —/ a*(z,s)e; - Vz(z)dr, Vz € W(Ks,). (23)
Ks

Ks

J J

7



which has a unique solution using (2). For the design of the RB method, is more convenient
to work in the space W(Y') (defined in either (8) or (9)) rather than the quadrature node
dependent space W (Ks,). We thus consider the transformation (11) and using the notations

M%) = [ g a0) Vi) i)y Yoz € WY),
WE) = = [ angalv)ec VE) V2 € W), (24)
the problem (23) with 121}’(“; (y) = @Z);’(‘j (Gij (y)) can be transformed into

b(@jj 2) =1;(2), V2 e W(Y). (25)

On W(Y) we consider the scalar product (v,w)y = [, Vv - Vwdy and associated norm
|v]lw = ((v,v)w)"/? and for (Tj,s) € D the energy norm

lv

1/2
ety = (v, 0)) V% = ( [ arew¥ote): wy)dy) , (26)

and notice that from the ellipticity of the tensor it holds

1
lolw < ﬁ”””é’,Tm' (27)

In what follows, it will be convenient to denote the micro FE space by S?(Ks j,N ) instead
of SY(Ks,,Tn) to emphasize on the dimension N of the micro FE space which in RB strategy
is required to be large. Analogously, the functions in S?(Y, ) are denoted using the subscript
N (e.g., Zx). The FE space S9(Y, V) has a (shape-regular) triangulation 7; with N = O(h~%)
denoting its number of DOF. Consider 1[);\/5 K; € S9(Y, ') the solution of the linear problem

BN ke, 2n) = Li(2w) Van € SUY,N), (28)

We notice using (2) that problem (28) has a unique solution.
For the convergence of the Newton method explained in Section 3.3 we will also need to
control the derivatives with respect to the parameter s of the cell functions sz‘j We assume?

s €R = a(-,8) € (L=(Q)™? is of class C1,
050°(z, 5)E| < Agl€], Vs €R, ae. z € Q,VE e RY (29)

Lemma 3.1. Assume that (2) and (29) hold. Consider the solution 1%’/8’[(]_ of (28). Then,
the map s — 72’;\?1(] € H(Ty) is of class C' and satisfies

0 71,8 11,8 71,8 71,8
20Nk, =Nk, 5, VUK, = VXK, (30)

where for all (€ SUY, N,

/Y oy s (Y)VON i, () - Vin(y)dy = — /Y D5, s(VON i, (0) + €1) - Vixr(y)de.  (31)

2Tt is shown in [18, Rem. 3.3, Prop. 3.5] that the best constant Ao in (4) may differ from the one in (29).



Proof. This is a standard result for FEM problems depending smoothly on a parameter (see
e.g. Lemma 6.1 in [9] for details). O

Parametrized cell solution space. We consider a compact subspace D of 2 x R. For any
randomly chosen parameter® (z,,s) € D, we define the map G, from the physical sampling
domain Ts = x,+(—3/2,5/2)% centered at z, to the reference domain Y and consider (28),(31)
with a tensor ay, s(y) = a°(G..(y),s). Next indexed by {(Tg,s ey); (Tg, s) € Dandn =
1,---,d}, we define the parametrized cell solution space MY (Y') ¢ W (Y)? given by

MN(Y) = {7, 05E35r,); (Ts,5) € D and = 1,- -+ ,d}, (32)

where 57\’/}5 e SUY,N), 0 5/\/ Ty = %57\’/}5 € S9(Y,N) are the solutions of (28),(31) associ-
ated with the mapping G, and the Hilbert space W(Y') is defined in either (8) or (9). On
the Hilbert product space VV(Y)2 we define the norms
1/2 )1/2‘
(33)
The goal of the Greedy procedure described below is to find an /N —dimensional subspace of
MN(Y), called Sx(Y), that minimizes the projection error of functions in M» (Y") over other
choices of N—dimensional subspaces. We emphasize that the derivative functions 0 § N T

1Ca, ) llwsow = (llify + [lvl5y) and  |[(u, v)llexe 150 = (lullE gy s + 1011E 7, 5

involved in the definition (32) of M (V') are considered only for the analysis, but should not
be computed explicitly in the implementation. Hence the solution of the online cell problem
(15) will involve the reduced basis space Sy (Y"), defined as the first component of each couple
of functions in Sy (Y).

A posteriori error estimator. The procedure of selecting the representative cell solutions
is conducted by an a posteriori error estimator which allows to control the accuracy of our
output of interest (the numerically homogenized tensor) [34, 19].

Assume that the RB space of dimension /, denoted by 5;(Y"), is available (its construction
will be detailed in Algorithm 3.4). Given the parameters (x,, s, ), consider ({j\’/‘—in, 855/1\’;%),

(é;’;g,@séf’i) the solutions of (28),(31) in S4(Y,N)? and S;(Y), respectively (i.e. with test
functions (zxr, (v) in SY(Y,N)? and S;(Y), respectively). We then consider

ey = & =y (34)
85A;;5 = 0 flzg §A/73 (35)

We derive an a posteriori estimator for both é;% and E?sé;’sTa will be analyzed in Lemma 3.3.
We have that . B

b(éy 7> 2n) = b(&7y 2n) — li(En), Van € SV, N, (36)
where the right-hand side defines a linear form on S?(Y, N'). Hence, by the Riesz theorem,
there exists a unique é%T € S9(Y,N) such that

b(éy, 2n) = (€17 2w, Van € SU(Y,N). (37)
We then define the residual of the a posteriori error estimator as

o Ny | 105,
BIs /LB Vi

3D should be chosen such that Ts C Q, for all (x,,s) € D.

(38)




where A\ p is an approximation of the coercivity constant A defined in (2). We notice that
the first term in (38) is the standard residual used for linear problems [33, 35]. The second
term arises from the nonlinearity of our problem and its control is needed to ensure the
uniqueness of the nonlinear RB-FE-HMM and the convergence of the Newton method used
in the implementation.

Remark 3.2. To compute the residual éﬁ’STE in (38), we first observe that we need to solve
(37), which depends on the parameter s. Thanks to the affine representation of the tensor, (37)
can be decomposed into several parameter independent F'E problems that can be precomputed
/33, 35] and hence Hé;:;é llw is cheap to compute. Second, for evaluating 85627’2}6 one can simply
consider the finite difference approximation

_i,5+./eps _4,8
1,Ts — €115

J/eps ’

where eps is the machine precision. This can be done by solving (37) twice with parameters
s and s + /eps, respectively. In the analysis, we shall neglect the error of the above finite
difference.

—ZS
Ose € ~

The next lemma gives a bound for the a posteriori error in output of interest in terms of
the norms (33). It is a generalization of the result [3, Lemma 3.3] in the context of linear
elliptic problems. These results are needed in our nonlinear context to control the microscopic
error in the macroscopic (nonlinear) solver.

Consider éi’fpé defined in (37) and the residual Af’%ﬁ defined in (38). Define

@y = [ ans) (Vg +e) - (VL0 +e)dn (39)
(@aansDs = [ onale) (V7,00 +e) - (V5,00 +e)dy (a0)

Lemma 3.3. Assume (2) and (29). Let (é/lvsTé gNT(;) and (f};é,@sf;;é) be the solution
of problem (28)-(31) in SU(Y,N)? and S;(Y), with test functions (zxr,(n) in SUY,N)? and
Si(Y), respectively. Assume that the approximation A\pp of the coercivity constant satisfies
0 < A < \. Consider the quantities éz’i}é and asé;;;é defined in (34). Then

AT, S ~1,8 A 7,8
(& s> s el:T(;)HSXE,Ta, <2+ A\ o)A Ts> (41)
(281 + M) TIAYEAL L < (E% 05605, Iwnow < (22157 + X )AL, (42)

(W8, ()5 = (08, ()il + 10: (a8, ()5 = Ouafry (o))l < 3(1+ 2 ) Al A, (43)

where A1, A2 are the constants in (29),(2) and || - (26).
Proof of Lemma 3.3. Taking Zy = éf:;é in (37) and using (27) yields successively,
L N (44)
1,8
. 1T,
lepgllw < —2==. (45)

ALB
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A consequence of (39),(40), and the symmetry of the tensor, is the identity

(a?T(g(wT?s)) ij (aNT5($T7 $))ij

= [ eonsl) (Ve 0~ V€3 W) - (Ve ) — VEL ) i (46)
We deduce from the Cauchy-Schwarz inequality and (44),

(a7 (8))is — (@l (9))ig] < Ay, Al7, (47)

Using Lemma 3.1, we obtain after differentiation of (37) with respect to the parameter s,

(05 elT CEN )W / 05y, s VelT Vipndy + /Y%T sV (0s elT ) - Vindy, Viy € SUY,N).

(48)
We take Zn = 8&?% in (48) and we write
”8 é; 3‘5 HS,T(;,S = (8562;67 3sé§fp6)w - /};asaxf,s(y)Vé;:;‘(; (y) : v(aséli:;é (y))dy
We deduce from the Cauchy-Schwarz inequality and (27),(29),
. —1/2)1 4 = . . .
105875 12 7. < AL 10sE) 5, Iwl|Oseys, e my,s + Azlle)s, IwlDseys, lw

which gives, using (45),(27),

10s€; T(;H&T(Sys <1+ A2//\LB)A1’ST5 (49)

The estimates (44) and (49) yield (41), and using in addition (27) proves the upper bound in
(42). Next, taking Zyv = ¢z, in (37) using the Cauchy-Schwarz inequality yields HE;ST I <
Arllég, lw, while taking 2y = 0.7, in (48) yields X T lw < Aslley 7 b+ Ad10sér7 lw-
We obtain Aj . < )\ZE/Z(A1 +AD)ler 7w +)\LB Ay )|0s é;; |l which yields the lower bound

in (42). We finally prove (43). Differentiating the equality (46) and using (48) with Zy = éf:sp
we obtain (using the Cauchy-Schwarz inequality)

(0503 1 (w7, 9))ij — (Dsalz, (27, 5)) 5]
< 30217, Iwllel T, Ilw + 119587, w187, w + 105l 7, Iw € 7, lw

Ao
< (322 1 92) AVS ADS
—( /\LB‘i' > 1T 2T

where we used (45) and the definition (38) in the last inequality. Finally, using (47) concludes
the proof. O

Offline algorithm. We now state step by step the offline stage of the RB algorithm. In
the offline stage, we select by a greedy algorithm N triples of the form (T, ,s,n,), where
(T5,, s) belongs to a given compact D C 2 x R (since the range of the parameter s can only
be obtained when the macro solution u>f*% is computed, we propose in Sect. 5 an ad hoc
method to find an a priori range of s) and 7, corresponds to the unit vector e, belonging
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to the canonical basis of R?. Corresponding to the N couples of (T, 503 S, 1), We compute
é}(}é%n, the solution of (28) with a tensor given by a., s(y) (v, is the barycenter of T, )
and a right-hand side given by [, (). The complete offline algorithm stated below is based
on the usual procedure of the RB methodology (see [34, 35]). Notice that in the case of a
linear elliptic problem (i.e. a®(z, s) independent of s), it coincides with the Greedy procedure
proposed in [3].

Algorithm 3.4 (Greedy procedure). Given the mazimum basis number Nrp and a stopping
tolerance tolgrp:
1. Choose randomly (by a Monte Carlo method) Nirain, parameters (Ts, ,sn) € D. Define the
“training set” Zrp = (Ts,, 1y Mn); 1 < Mp < dy 1 <1 < Nipain} 4
71,51

2. Select randomly (T5,,s1,m1) € Erp and compute é/\f 15 » the solution of (28) with right-hand
Y
side Ly, (+) in SUY,N), corresponding to the selected parameter (Ty,,s1,m1). Setl =1 and de-

R £M1581 ( )
ne = T717.s )
fine &in(Y) 1602 Tow

N Ty Y ; < _ F11,51 11,51
and the corresponding RB space S1(Y') = span{ ({777, » 0sEr T, )}
) 1 ) 1
3. Forl=2,...,Npp

a. Compute for each (Ts,s,n) € Erp the residual A"’ 1, defined in (38) and select the
next reduced basis by choosing

_ ,)775
(Ts,, 51,m) = Argmax(Ts,.sm)eErp AZ—LT&’

provided that® MaX(7; s )= pp (A?fl’Té)z > tolrp, otherwise the algorithm ends.

b. Compute éﬂ’/% the solution of (28) in SU(Y,N') corresponding to the selected param-
)
eters (Ts,,s1,m). Enlarge the RB space: S|(Y) = S;_1(Y) & span{(ﬁ}’\lfif‘,iél,asfxl/%l)}.
Setl=1+1 and go back to a.

We emphasize once again that the derivative functions 855}1}’% involved in Algorithm 3.4 do
779

not need to be computed in the implementation and shall be considered only in the analysis.
Thanks to Remark 3.2 for the a posteriori error estimator evaluation, as output of the Greedy
algorithm, it is sufficient to compute only the list of functions él, AN, =1,..., N that span the
space Sy(Y) := span{él, N N} These RB functions are obtained by orthogonalizing
in W(Y) the functions éxl/:‘;i(sl ,l=1,...,N and they are defined as

-1
2 Rl Yy ni,s F11,8 F £
() = anjv, where  Rify) = &% (1) — S0 (€5 mnIwbon
m=1

Remark 3.5. Notice that we choose to orthogonalize the RB in W(Y') with respect to the
scalar product (-,-)yy rather than the RB in W(Y)? with respect to the scalar product (-, )2
associated to the norm || - |,z in (33) (as normally expected in the usual RB methodol-
ogy) because this is more convenient in the implementation (avoiding the computation of

855%:‘;56l). Since Max(ry s n)e=pp (A?ﬁ) decays exponentially as | increases (under the as-

sumptions of Theorem 4.3, a slight variation of the result in [20, Corollary 4.1] and [17]), we

have f}(}%l ¢ S;—1 and thus |Ri|lw # 0 and the above orthogonalization procedure succeeds.

4 Nyrain should be large enough to ensure that the results of the greedy algorithm are stable with respect
to other choices of training sets.
Notice that the error of the outputs of interest scale like the square of the error of the cell functions (43).

12



4 Analysis of the RB-FE-HMM

In this section we first derive a priori error estimates for the RB-FE-HMM. We then show the
uniqueness of the numerical approximation which is based on the convergence of the Newton
method.

4.1 A priori error analysis

We introduce the following quantity to measure the error between the tensor a® of the ho-
mogenized problem (3) and the numerical homogenized tensor aj)v’ K, in (17).

rava = sup @ (zkg, o (2 ) — ale g, (uB P ()| (50)
KETH,CEKj cK

Theorem 4.1. Consider u® the solution of problem (3). Let £ > 1 and p =0 or 1. Consider
a quasi-uniform macro mesh satisfying (Q1), (Q2). Assume

W’ e HTY Q) NnWwheQ),  ab, e WHECQXR), VYm,n=1...d.

Assume further that (2),(4),(7) hold and that 8,42, € W1 (Q x R), and that the coefficients
al, (z,s) are twice differentiable with respect to s, with the first and second order derivatives
continuous and bounded on Q x R, for all m,n = 1...d. Then, there exist ro > 0 and Hy > 0
such that, provided

H<Hy and rgyum <r0, (51)

any solution uHB of (13) satisfies

IA

C(HE—I—THMM) ifu:(),l
C(HZ+1 +ramm) if p=1,

[u” — w1

IN

[u® = u BB 12 )
where C is independent of H,h, N, N, ¢.
Proof. We apply Lemma 7.1 (a result from [9] stated in the Appendix) with a(zg;,s) =

aly K, (s) and @ = uEB, O

We next have to quantify the error rgyas defined in (50) which can be decomposed as
ravyM < ryvop + Tvmic + Tre, i.e. with the modeling, micro, and RB errors, respectively.
These quantities are defined by

rMOD = sup o’ (zk,, u P (a,)) — @ (w i, u T (k) | Py (52)
KETH,$KJ. cK

rMIC = sup @’ (zk,, u T (2k,) — af i, (WP (k) | s (53)
KETH,ij eK

s = swp % (R () — by PPk e (54)

KETH,Z‘Kj eK

To estimate the quantities ry;7¢ and ryrop, we make the following smoothness and structure
assumptions on the tensor:

(H1) Given the degree q of the micro FE space SY(Kj;,Tp), the cell functions WKSJ solution
of (23) satisfy the bound |¢§’5|Hq+1(K5v) < Ce™1,/|Ks,|, with C' independent of ¢, the
J

quadrature point rg;, the domain Kj;, and the parameter s for alli=1...d.
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(H2) for all m,n = 1,...,d, we assume a5,,(z,s) = amn(z,x/c,s), where amp(z,y,s) is y-
periodic in Y, and the map (z,8) — amn(x,-,s) is Lipschitz continuous and bounded
from Q x R into Wpe(Y).

We next discuss the reduced basis error. Consider the space MY (Y) as defined in (32).
We want to quantify how well MV (Y) can be approximated by the linear space Sy (Y) of
dimension N. Such a quantification relies on the notion Kolmogorov N-width.

Definition 4.2. Let F be a subset of a Banach space W. We denote the distance of F' to
any generic N—dimensional subspace Wy of W by

E(F;Wx) =sup inf |z —ylw.
reF YEWN

The minimal error E(F; W) is given by the Kolmogorov N-width of F in W
dn(F, W) = inf{E(F;Wx) : Wx a N—dimensional subspace of W'}.

We say that F has an exponentially small Kolmogorov N-width if there exists constants
C,r > 0 independent of N such that

dy(F,W) < Ce™™V. (55)

In [20, Corollary 4.1] and [17], it is shown, for a class of symmetric linear uniformly coercive
elliptic problems with continuity bound A and coercivity constant A, that if the parametrized
space of the RB algorithm has an exponentially small N—width (55) with constant

r > log(1+ (A/Arg)VA/N),

where 0 < Arp < A is an estimate of the coercivity bound, then the RB algorithm converges
exponentially fast with respect to the dimension N of the RB space. Such assumption (55) is
motivated by [31] where it is proved in the special case of one-dimensional parameter linear
elliptic problems.

Notice that problem (28)-(31) with solution (1%\/8 K, 831%\’/8’ K],) € W(Y)2%is not coercive due
to the nonlinearity of the tensor. Nevertheless, problem (28)-(31) still satisfies the following
Céa inequality (see Lemma 7.3 in the Appendix) in the Hilbert space W(Y)? with norm
defined in (33),

”(q[}j\,}s’Kﬁan}j\,[s’Kj) - (@f;;{j,as?%,’;j)Hwa <y E%an) ”(&ﬁ,Kjaasik;’Kj) - ZHWXW (56)
ZE0]

where we consider the solution (@;%J,@S%%J) of (28)-(31) in the space S;(Y) (i.e. taking
test functions (2;,G) € §;(Y)). The above constant is given by

00:\//?(%?2%) (57)

where A, A1, Ay are the coercivity and continuity bounds (2),(29). In addition, recall the a
posteriori estimate (42) of the form CiowA} 7, < [[(€/7,, 05¢)7 ) [wxw < Cupd] 7y, With

Crow = (201 + Ag) A2 Cup =27 12 + Mo o2 (58)

We obtain the following result which states that the reduced basis method converges expo-
nentially. This is a slight adaptation of the result in [20, Corollary 4.1] and [17].

14



Theorem 4.3. In addition to (2) and (29), assume that the parametrized cell solution space
MN i (32) has an exponentially small Komogorov N -width,

dy(MN, W (Y)?) < Ce™™, with r > log((1 + Cup/Clow)Ch), (59)
with constants in (56),(58). Then, there exists constants ¢,k > 0 independent of N such that

1% 5, = O i, Iw < ce ™™ 00 ke, = Bsthn? e, I < e (60)

for all K € Ty and all x; € K, where 1/3}\}9& and 1/AJ§VSKJ are the solutions of the cell problem
(28) in SUY,N) and Sy(Y), respectively, with corresponding test functions Zyr € SY(Y,N)
and Zy € SN(Y)

Proof. Inspecting the proof of [20, Corollary 4.1] reveals that the coercivity of the problem
is not needed and the Céa inequality (56) is sufficient to obtain the exponential convergence
(60) of the RB algorithm using the RB space Sy (Y) constructed in the Greedy algorithm
3.4. O

Theorem 4.4. Consider u® the solution of problem (3), and u™RB the solution of (13). In
addition to the assumptions of Theorem 4.1, assume that uH7RB(:BK].) € (udtow 40ur) | for all
K € Tu,rk, € K. Assume further (H1), (H2), and (59). Then, there exist Hy > 0 and
ro > 0 such at if H < Hy, h/e <o, and ce™™N < ry then for p=0,1,

C(H™F + ()24 + 6) + rgp, ifW=WL, andé/e €N,
if W = Wk,, 6/ € N,
Ja® = ™oy < § O™ 4 (22 + 1z, wod oo B

placed by  a(rk,, %,s)

n (21),(14),(15),(23),
C(HH + (L)% 46+ %) +rpp, if W=H} (6 >¢),

where rrp < A1(ce™™N)2 with Ay given in (2). We also assume § < rg or 6 +¢/6 < rg in
the first and third cases, respectively. We use the notation H(Q) = L?(2). The constants C

are independent of H,h,e,0, N,N .

Proof. In view of Theorem 4.1, we estimate rgyps. Using (H1), the estimate ryrc <
C(h/e)?@ follows from [1] (see also [2]). Using (H2), The estimates ry;op < C3, rayrop = 0,
rvop < C(6 + ¢/6) follows from [7, 26]. Finally, the estimate rrp < Ai(ce™"N)?2 follows
from (60) and the identity (46). O

4.2 Uniqueness of the RB-FE-HMM solution and the Newton method

Consider the derivatives with respect to s of the exact and numerical homogenized tensors

in (3) and (17). We define

H,RB (

P = sw |0, e (e,)) - Ol e, (PP )| (61)

KeTu LK eK

The proof of the uniqueness of the RB-FE-HMM solution relies on the following result
which is an adaptation of Lemma 4.11 in [9].
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Theorem 4.5. Assume that the hypotheses of Theorem 4.1 and (59) hold. Then, there exist
positive constants Hy,rg such that if

H < Hy and H 2 g + rgaar < 1o (62)
then the solution u 78 of (13) is unique.

The proof of Theorem 4.5 relies on the convergence of the Newton method stated in the
following lemma.

Lemma 4.6. Assume that the hypotheses of Theorem 4.5 hold. Let w8 be a solution of
(13). Then, there exists Hy,rg,v > 0, such that provided a smallness assumption of the form
(62), for all ull € S§(Q, Tr) satisfying

orlug = u | gy < v, (63)

the sequence {uf!} of the Newton method (20) with initial value uf is well defined and ||uf, |, —

UH7RBHH1(Q) < C’JHHukH—uH’RBHIQLIl(Q), where C is a constant independent of H, h,k,N', N, e.

Proof. We apply Lemma 7.2 (a result from [9] stated in the Appendix) with a(zk;,s) =
a?\f,Kj (s) and @ = uHEB, O

Proof of Theorem 4.5. The proof is an immediate consequence of Lemma 4.6, where given
two numerical solutions w8 gHRE of (13), we apply the Newton method with the initial

guess ull := @B, The smallness assumption (62) together with the H' a priori error
estimate of Theorem 4.1 permits to satisfy the condition (63). O

For the estimation of r/;,,,, in (61), we consider the decomposition

/ / / /
Tavy < "mop + Twmic + TrRB

where 7,0 p, Th1cs Trp are defined similarly to (52),(53),(54), respectively, with the excep-
tion that all the tensors are differentiated with respect to the s parameter. Hence hypothesis
(H1’) and (H2’), similar to (H1) and (H2) but for 851/1?], are needed. Following [8], the
quantities TMO Ds r?wc satisfy analogous estimates to those of ryjop, "are. It remains to
estimate

TRB = sup ’ 35(19\7,1{]- (UH’RB(JCKJ-)) - 5sa9\/,Kj (UH’RB(HJKj))H

KGTH,$Kj eK F

This is done in the following lemma.

Lemma 4.7. Assume that the hypotheses of Theorem 4.4 hold with a periodic coupling with
d =e. Assume further (29), and (59). Then, there exist constants ¢,k > 0 such that

g < (2A1 + Ag)(ce™"N)2,
Proof. Differentiating (46) with respect to s and using Theorem 4.3 conclude the proof. [

Remark 4.8. Notice that a similar a posteriori estimator as used here in the offline stage
to control rrp and r'pp could be used to define a RB-FE-HMM for linear parabolic multiscale
problems with a time-dependent tensor of the form %(m, t) =V - (a*(z,t)Vus(z,t))+ f(x,1)
as analysed in [10]. In this case, the micro problems would be parametrized by the location of
the cell problem in the domain €2 and the time variable of the tensor af.
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5 Implementation issues

We give in this section details on an efficient implementation of the offline and online proce-
dures of the proposed RB-FE-HMM.

5.1 Offline procedure

Output of the offline procedure. The output of the offline procedure is the RB space
(10). Rather than storing the reduced basis functions, using the affine representation (22)
described above, it is sufficient to compute the following matrices and vectors

(Ag)um = /Y o) Venn (¥) - Vemn @y, (Fim = /Y ag)e; - Vémn )y (64)

We emphasize that offline stage is only operated once and the output of offline stage can be
repeatedly used for the online stage computations independently of the chosen online solver.

Preprocess of the offline stage. In Algorithm 3.4, we assume that the value of the
solution u!(x,) at the quadrature point x, lies in a bounded real interval for each 7 in
training set. But the range of u! can only be known once the macro solution is computed
due to the nonlinearity of the problem. One possibility to address this issue is to map R into
a bounded interval. However, our numerical tests indicate that this approach fails in general
unless an unreasonably large training set is used. Therefore, we propose to use an empirical
algorithm to get an a priori guess of the solution range, motivated by the following classical
result [29, Chapter 1.6].

Lemma 5.1. (Voigt-Reiss’ inequality) Assume a,, s(y) to be symmetric, uniformly elliptic
and bounded for Vx, € Q,Vs € R and Vy € Y. Then we have

( /Y o o) dy) " < e, s) < /Y o (y)dy, (65)

where a® (., s) is the exact homogenized tensor defined in (5).

We then apply the following procedure: we first solve (3) replacing the homogenized tensor
a’(zr, s) alternatively with ([ axﬁs(y)_laly)_1 and [y az, s(y)dy. We then set a maximum
range (u%°? 40UP) by taking the minimum and maximum values of the two solutions obtained
from the first step. In the end, we consider the range of parameter s to be (121" —a, u%* + )
enlarged by +a (a safety factor of about 10%).

5.2 Online procedure

We describe here how the online stage of the RB-FE-HMM can be efficiently implemented.

Fast solution of micro problems. Owing to the affine form (22) of the tensor a®, the
problem (15) amounts to solving an N x N linear system (recall that N, the number of RB

K;) H

H
functions, is small). Indeed, writing vf\, I((gj — Uy ;(T) = 22;1 anén,K; (), we observe that
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(15) reads

N
o af(z,u (2, i () - Ve k. (2)dx
> /K (@, u (2,)) V., (%) - Vém i, ()

n=1

d H
" Miin,j
= - E / as(:p,u (:UK))el mej((ﬂ?)dﬂ? —, (66)
i=1 7 Ke; J J O

for all m = 1,... N. Next, again thanks to the affine representation of the tensor (here we
are assuming the representation (22) for simplicity), (66) can be written as

N Q . .
Z Qn Z GQ(ij ) UH(ij)) /Y aq(y)vén,/\/'(y) : vém,/\f(y)dy

n=1 q=1
_ : H 5 a”l?w
- _Zz@q(ﬁiju (:CKJ)) Yaq(y)ei : V€m7N(y)dyaT’ (67)
i=1 g=1 ¢
or equivalently
< H L H iy O,
(Z@q(ij,u (ij))AfI)a = _Z (Z@q(aj;{j,u (ij))Fq)W.” (68)

q=1 i=1 g¢=1 !

where the N x N matrices Ay, ¢ = 1,...,Q and the vectors F; eERN, ¢g=1,...,Q, i =
1,...,d are defined by (64).

We emphasize that the matrices A, and the vectors ch are assembled and stored in the
offline stage, thus (68) amounts just in building the linear combination by evaluating O,(:, -)
at the desired parameter (v, u’ (zk,)) for the tensor a,, (y) and solving the N x N system
(68) for each micro function at the quadrature points needed to assemble (14).

Newton method implementation. We consider a sequence of {ul’} in S§(§2, Ty) and
express each function in the FE basis of S§(Q, Tx) as ull = Y "meero UigH We further denote
Uy = (UL, ..., UéWm“”’)T. The Newton method (20) can be written out in terms of matrices
as

(B(ug) + B'(uf)) (Ups1 — Ux) = —=B(ui )Ux + F, (69)

where B(ull), B'(uf') are the stiffness matrices associated to the bilinear forms B (2, ),
Bl (2. ) defined in (14) and (19), respectively. Here, F is a vector associated to the source
term (13), which also contains the boundary data if for instance general Dirichlet or Neumann
boundary conditions are considered.

Stiffness matrices. Following the implementation in [6] we consider for each element K €
T the FE basis functions {gb%z K associated with this element and the local contribution

B (ull) to the stiffness matrix (BK(UE))Zf(;:l = ijl(BK,j (ukH))qu‘zl with
Bre s, = K [ e B g NVer T (@) vl D (yde,  (70)
1< pa=1 = TR 7 oo @A TGV Prc P @
J
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h,zt (:rK) h,zH(ij)
where P, p PKq

TK;, respectlvely.

‘Similarly to the FE-HMM implementation [9], we see by differentiating (70) that the
stiffness matrix B'(U) in (69) associated to the non-symmetric form B (2;-,-) defined in
(19) is given by the sum of J products of ng x ngx matrices

are the solutions of (15) constrained by ¢ p, Pl o linearized at

Mu

B (ug!)

(2 (Besls))

) (UK,k(QZ)gl (ZK,); - - v¢§n}< (xKJ)))

7j=1 SZZH(ij)
where the column vector Uy of size ny gives the components of 2 in the basis {¢ JI%

of the macro element K € 7. Here, the derivative with respect to s of the nx X nx matrix
~ Br.j(s+1/€ps)—Bi ;(s)
~ NG ,
where eps is the machine precision. Therefore, the cost of computing the stiffness matrices
for both B(uil) and B'(ull) is about twice the cost of computing the stiffness matrix B(uil)

alone.

By, j(s) can be simply approximated by the finite difference % (Bk,j(s))

6 Numerical experiments

This section is dedicated to the numerical illustration of the theoretical results in Sect. 4 and
the performances of the proposed RB-FE-HMM compared to the FE-HMM. All computations
are performed in Matlab on the same machine (with a non-parallel implementation). We first
consider a simple illustrative example and then the stationary Richards problem which has
a nonaffine tensor.

Numerical evaluation of the errors.  Let u’’ be the numerical solution and u"*/ be a
reference solution (for the effective problem (1)) computed on a fine triangulation 7, of Q.

The errors ¢/ — uf in the H' and L? norms are estimated by
4 1/2
€rz = HUTEfHZQI(Q)( Z ZPK]"’U'H(ZK]') - uref(sz)IQ) )
KeTy j=1
4 1/2
eyl = HurefH;Ill(Q)( Z Zij|VuH(sz) - Vuref(sz)|2) ,
KeTy, j=1

where {zK].,p K].} denotes the quadrature formula on the fine triangulation 7.

Macro FEM and QF used in the examples. In the following examples, when using
P1 triangular (tetrahedral) elements for the macro problems, we choose the barycenter of
the element as single quadrature point and the weight @ = \K |. When we use P2 triangular
elements for the macro problems, we choose the Gauss three points quadrature formula with
barycentric coordinates (1/6,1/6,2/3) and weights &; = |K|/3, i = 1,2, 3.

19



6.1 A simple illustrative example

We consider the model problem (1) in Q = [0,1]? with f = 50e(#1-02°+(@2-03)* " 414 the
following mixed boundary conditions,
uf(z) = 223 (z — 1)> 4+ 323(22 — 12 +1 on {z; =0} U {x; =1},
n-(a°(z,u(z))Vu(z)) =0 on {ze =0} U {ze = 1}. (71)

Consider a diagonal multiscale tensor with the following affine expression ©

ac(z,8)11 = (2% +0.2) + (2o sin(sm) + 2)(Sln(27r—) +2),

a®(x,s)ag = ( e 4+0.05) + (z122 + 1)(sin(27r?) +2). (72)

s+1
Using the homogenization theory [29], the corresponding homogenized tensor is also diagonal
with entries given by the harmonic averages

ag = (/ a(z,y; 8)*1dy)71, i=1,2. (73)
Y

Offline stage. In the offline stage, we set the parameter space to be D = €); x U, where €,
is a closed subset of Q such that Ts = 2, +[—§/2,6/2]¢ C Q for all 7 € ©;, and U is a closed
bounded interval of R (an estimation of the range for u°). In order to obtain U, motivated
by Lemma 5.1, we first solve (1) on a coarse 8 x 8 macro mesh by replacing the homogenized
tensor respectively with the arithmetic and harmonic averages of the multiscale tensor. The
ranges of the corresponding solutions are shown in Table 1 and we choose U = [0.9, 3.66]
adding a safety correction.

Table 1: A priori estimate for the solution range. Mesh size = 8 x 8.

tensor type solution range
fY a(z,y; s 1, 3.14]
(fy alz,y;s 1dy) 1 [1, 3.56]

For the RB offline stage, we propose in Sect. 3.4 a new a posteriori error estimator (38)
in order to guarantee the convergence of the Newton method. We will also check the com-
putational overhead of this new estimator compared to the (standard) a posteriori estimator

o Nl
RN v

used for linear problems [3]. The offline parameters are collected in Table 2 and the com-
parison of the two estimators are shown in Table 3. We observe in this test that the offline
output using A; 7, has only one additional basis function.

(74)

Online stage: convergence rates for the P1 and P2 RB-FE-HMM. Using the
computed offline output (obtained by via A; 7, as the offline estimator), we consider a P1
FEM and a P2 FEM for the online stage. The reference solution u"¢f ~ u? is obtained using
the P2 FEM with a 1024 x 1024 uniform mesh.

5Recall that since the RB-FE-HMM computes the solution of the effective problem as ¢ — 0, the actual
value of ¢ is not needed in the algorithm.
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Table 2: Offline parameters

Parameter space | [0, 1] x [0.9, 3.66] Table 3: A posteriori estimators

Training set size 4400 Arrs | Ay
Solver P1 FEM Basis number 9 8
Mesh 1500 x 1500 Offline CPU time | 1300 | 1100
tolrp le-10

Slope 1

-e-H error
——2 error

257 5 9 17 33 65

129 129 257

(a) P1 RB-FE-HMM (b) P2 RB-FE-HMM
Figure 1: Test problem (1)-(71)-(72). The errors HU/I—LRB_urefHLQ(Q) and HuH’RB—urefHH1(Q)
versus Nyjac = 1/H for the P1 RB-FE-HMM and the P2 RB-FE-HMM, respectively.

By the a priori estimates of Theorems 4.1-4.4 and the mesh size used for the offline
computation, we have the bound AZTS = O(tolgp) ~ 10710 for rgp and rpc ~ 1077,
As we choose sampling domains with size § = ¢ with periodic boundary condition we have
ryop = 0 and we expect rgya ~ 10~7. We observe in Fig. 1 the expected convergence
rates with respect to the macro mesh.

RB-FE-HMM v.s FE-HMM. In this test, we compare the efficiency and accuracy be-
tween the P1 RB-FE-HMM and the P1 FE-HMM. For the P1 FE-HMM, we set Nyjc =
Nysac for each refinement step (L2 refinement strategy), where Nysac and Nysro are the
numbers of macro and micro DOF in one space direction, respectively. We can see in Table 4
that the H' and L? errors for the two methods decay with the same rates which is consistent
with the a priori estimates. However, the RB-FE-HMM has a considerably reduced computa-
tional cost for fine meshes (up to two orders of magnitude in this example). Next we present

Table 4: Comparison between the RB-FE-HMM and the FE-HMM.

RE-FE-HMM FE-HMM
DOF H'! error | L? error | online time (s) | H! error | L? error | time cost (s)
dXD 0.3727 0.0471 0.08 0.3724 0.0481 0.26
9x9 0.2086 0.0176 0.23 0.2082 0.0167 1.59
17 x 17 0.1053 0.0058 0.90 0.1052 0.0056 11.49
33 x 33 0.0632 0.0013 3.82 0.0631 0.0012 160.20
65 X 65 0.0316 | 3.15e-04 19.83 0.0316 | 3.03e-04 2802.68
129 x 129 0.0159 | 7.89e-05 146.75 0.0159 | 7.61e-05 49260.89
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in Table 5 a comparison that takes into account the computational overhead from the offline
stage for the RB-FE-HMM. Here we have t‘;%f glme = 1300s and we denote the total offline and
online time by t%‘ll. We see that the FE-HMM is still significantly more expensive except for
coarse macroscopic meshes. This indicates that even for one computation, the RB-FE-HMM
can provide an important computational speed-up.

Table 5: CPU comparison between the RB-FE-HMM and the FE-HMM.

DOF e ftpp_ v | ESR [ trE— M
33 x 33 2.38% 813.87%
65 X 65 0.69% 47%
129 x 129 0.3% 2.9%

6.2 Stationary Richards problem

We consider the stationary Richards equation for describing the fluid pressure in an unsatu-
rated porous media

—V - (K®(z, u*(2))V(uf(z) — 22) = f(z) in [0,1]*. (75)
with a nonlinear permeability tensor K¢(s) similar to the one in [21, Sect. 5.1] written as

0.005

K (2, 5) = (20007~ 0~2-5P0°) 4 (2, 03 4 23 4 )1, a*(x) = .
(x,s) = (200a%e + (21— 0.3)" + a5 + 2)1, o°(2) 2+ 1.8sin(272 — 67)

Notice that this problem can be cast in the form (1) by using the change of variable v°(z) =
uf(x) —xo. Weset f =1 and consider Dirichlet conditions on the top boundary of the domain
and Neumann conditions on the rest of boundaries, that is

uf(z) =1—1.922, on [0,1] x {1},
n- (K(z,u*(z))V(u* () — 22)) =0, on [0,1] x {0} U{0,1} x [0,1].

Offline stage. The parameters are given in Table 6. Similarly as explained for the previous
example, we determine an a priori range for the homogenized solution U = [0.9,3.93]. As
the permeability tensor K¢ does not have an affine representation (22), we need to apply the
EIM, which introduces another error term rgyas in 7garas, as discussed in [3] (this term can
be controlled by the prescribed tolerance tolgrys [14]).

Online stage. We plot in Fig. 2 the online solution u>*® on a uniform 65 x 65 macro
mesh for the P1 RB-FE-HMM (left picture) and the FE-HMM (right picture). We observe
that the two solutions are very similar as expected.

We notice that the range of u®B is [~2.9, —1] which safely lies in our a priori range
[—3.1, —0.8]. Therefore, the offline output can be successfully used for the online computation.
In Table 7, we present the errors of the Newton method iterations and the corresponding CPU
times. Due to the quadratic convergence rate of the Newton method, only four iterations are
needed in all considered cases to reach the machine precision.
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Table 6: RB offline settings and output for the nonaffine test problem (75).

Parameter space | [0,1]? x [-3.1, —0.8]
Training set size 4400
Mesh 1000 x 1000
tol EIM le-6
EIM basis number 5
EIM CPU time 550.19s
tol RB le-9
Solver P1-FEM
RB Basis number 4
Offline CPU time 912.73s

—a

02 03 04 05 06 07

08 09 1

(a) P1 RB-FE-HMM

I
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I3
=
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>

)
Y

1

0 01 02 03 04 05 06 07 08

(b) P1 FE-HMM

-0.2
: -04
‘ -06
y -08
y -1
. -12
g -14

-16
: -18

0.9

Figure 2: Richards stationary problem (75). The RB-FE-HMM solution and the FE-HMM
solution on a 65 x 65 macro mesh.

Table 7: Richards stationary problem (75). Online CPU times and Newton iteration errors
for the RB-FE-HMM.

DOF CPU time | Iteration 1 err | Iteration 2 err | Iteration 3 err | Iteration 4 err
5x5 0.15 2.78 0.0053 4.87¢-8 1.78e-15
9x9 0.2 2.80 0.0047 5.76e-8 5.77e-15
17 x 17 0.8 2.81 0.0046 5.78-8 1.46e-14
33 x 33 3.13 2.82 0.0045 5.71e-8 1.42e-14
65 x 65 14.72 2.82 0.0045 5.70e-8 3.02e-14
129 x 129 55.56 2.82 0.0045 5.70e-8 4.39¢-14

7 Appendix

The proof of Theorem 4.1 relies on the following lemma taken from [9] and based on the
analysis for standard FEM with numerical quadrature from [11]. It is a reformulation of the
statement of Theorem 3.1 in [9], its proof is thus omitted.

Lemma 7.1. Consider u® the solution of problem (3). Assume the assumptions of Theorem
4.1. Then, there exist ro > 0 and Ho > 0 such that, for all tensor a(z,s) satisfying (4), (2)
and continuous on Q x R, for all H < Hy, and for all solution @™ of the nonlinear FEM
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problem

J
Z ZwKJZL(ij,ﬁH(ij))VﬂH(ij)'VwH(acK].):/Qf(x)wH(x)d:C, vl ESg(Q,TH),
KeTy j=1
(76)

provided
Qy = sup Hd(a:Kj,uH(ij))—ao(a:Kj,uH(ij))HF <o,

KETH,CCKJ.EK
we have the HY and L? error estimates
[ — @) < CH'+Qm) ifpn=0,1
[u® — @20y < CHN +Qu) ifp=1,

where C' is independent of H, Q and the tensor a.

The proof of Theorem 4.5 relies on the following result which is a reformulation of Lemma
4.11 in [9].

Lemma 7.2. Assume that the hypotheses of Lemma 7.1 hold. Assume further that a(x,s)
is twice continuously differentiable with respect to s with derivatives continuous and bounded
on 2 x R. Then, there exists Hy, Ry, v > 0, such that for

QH < H < H,, QQ—I = Sup Hasd(xKﬁuH('ij)) - asao(ijauH(ij))HF < R,
KETH,JCK].EK

for all Wt solution of 7.1 and for all for all ull € S§(Q, Tu) satisfying
oulug —a|m@) < v,

the sequence {ull} of the Newton method (20) applied to the problem (76) with initial value

ufl is well defined and |ufl,, — ﬂHHHl(Q) < Copyllull - 'L~LH||?{1(Q), where C' is a constant

independent of H, h, k.

Finally, for the proof of Theorem 4.3, we need to prove the Céa inequality (56) for the
problem (28)-(31).

Lemma 7.3. Assume (2) and (29). Then (56) holds with constant Cy in (57).

Proof. We denote é = @Ejvﬁs K~ 1[1;;(3 and 0sé = 851/35'\’/5’ K~ 85121;;(] Considering the problem
(28)-(31) with test functions in S¢(Y, N')? and S;(Y'), respectively, and subtracting, we deduce

for all (z,¢;) € Sy,
b(asévfl) - _/

. asa:ij,s<y)Vé(y> : Véldya (77)

where the symmetric bilinear form b(-,-) is defined in (24). Using
b5, 05) = b(Ds8, D7 i, — G1) + b0, G — Dy’ )
we obtain from the Cauchy-Schwarz inequality and (77),(29),

b(Ds6,05€) < (D8, 058)"/*b(Ds6 — G, Ds& — ()M* + Aaléllw (105037 s, — Gllw + [195€][w)-

24



We deduce from the Young inequality and (2),
M0sellfy < b(Dsé, 058) < Mi[|05832 i, — Gy + 22 llEllw |07 i, — Gillw + 2Aa 1€l wllDsé |
Using again the Young inequality yields

2\ ; 8A2

IRk, = Gl + 1+ Dl

(&, 058) [fysw < (1 +
Finally, the application of the Céa lemma to (28) yields |||y < 4/ % inf, cg,v) HT/AJj\/SKJ —z1|lw
which permits to conclude the proof.
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