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Reduced basis finite element heterogeneous multiscale method

for quasilinear elliptic homogenization problems

Assyr Abdulle1, Yun Bai1, and Gilles Vilmart2

April 10, 2013

Abstract

A reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) for a
class of nonlinear homogenization elliptic problems of nonmonotone type is introduced.
In this approach, the solutions of the micro problems needed to estimate the macroscopic
data of the homogenized problem are selected by a Greedy algorithm and computed in
an offline stage. It is shown that the use of reduced basis (RB) for nonlinear numer-
ical homogenization reduces considerably the computational cost of the finite element
heterogeneous multiscale method (FE-HMM). As the precomputed microscopic functions
depend nonlinearly on the macroscopic solution, we introduce a new a posteriori error
estimator for the Greedy algorithm that guarantees the convergence of the online New-
ton method. A priori error estimates and uniqueness of the numerical solution are also
established. Numerical experiments illustrate the efficiency of the proposed method.

Keywords: nonlinear nonmonotone elliptic problems, numerical homogenization, reduced ba-
sis method, a posteriori error estimator, finite element method

AMS subject classification (2010): 65N30,65M60,74D10,74Q05.

1 Introduction

Quasilinear elliptic problems enter the modeling of numerous problems such as phase transi-
tions, flow in porous media, or reaction and diffusion in electrolysis to mention a few examples
[12]. Numerical approximations of such problems have been analyzed by many authors. We
mention the works of Douglas and Dupont [28], and Nitsche [32], where the first a priori error
analysis was given for the finite element method (FEM). Much recently and relevant for the
present work, we mention the analysis obtained in [11] for a FEM with numerical quadra-
ture, i.e., when the continuous variational form originating from the nonlinear problem is
approximated by a quadrature formula. In this paper we are interested in quasilinear elliptic
problems with highly oscillatory data of the form

−∇ · (aε(x, uε(x))∇uε(x)) = f(x) in Ω, (1)

in a domain Ω ⊂ Rd, d ≤ 3, where aε(x, u) = (aεmn(u, s))1≤m,n≤d is a d× d tensor, associated
to ε > 0, a sequence of positive real numbers going to zero and f ∈ H−1(Ω). For simplicity
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we assume homogeneous Dirichlet boundary conditions uε = 0 on ∂Ω but we emphasize that
more general boundary conditions could be considered.

Such problems arise for example in infiltration of water in an unsaturated porous media
modeled by the (stationary) Richards equation [15] or (stationary) heat conduction in a com-
posite material [30]. For the standard FEM, a finescale resolution is needed for a satisfactory
approximation. If the ratio between the scale of interest and the finest scale in the problem
is too large, the FEM approximation will have a prohibitive number of degrees of freedom
(DOF), leading to an enormous computational cost. For efficient numerical computations,
an appropriate upscaling of equation (1) is thus needed. Such coarse graining procedures are
rigorously described by the mathematical homogenization theory [16, 29] and are studied for
the class of problems (1) in [13, 18, 27]. These analyses show that the solution uε of (1)
converges in a weak sense to u0 as ε→ 0, where the homogenized function u0 is the solution
of an effective (homogenized) equation that is of the same quasilinear type as the original
equation with an effective homogenized tensor a0(x, u0(x)) that depends nonlinearly on u0.
Numerical homogenization methods for problems of the type (1) are derived in [22] for the
multiscale finite element method (MsFEM) and in [26, 9] for the finite element heterogeneous
multiscale method (FE-HMM) [5, 25]. The MsFEM is based on a standard FE space enriched
with oscillatory functions, while the FE-HMM is based on a strategy first proposed in [25]
that consists in macroscopic FEM on a macroscopic mesh with quadrature formula (QF),
with effective data (the homogenized tensor at the quadrature points) recovered on the fly
from micro problems. These micro problems, defined on sampling domains centered at the
macroscopic quadrature points of the QF, use only the oscillatory data given by the problem
(1). We focus on the FE-HMM proposed in [26, 9] for quasilinear problems. The practical
implementation relies on a Newton method for the macroscopic nonlinear FEM. Since the
value of the corresponding macroscopic solution is updated at each Newton iteration, the
microscopic problems in each element of the macroscopic mesh need to be recomputed. Al-
though the micro problems can be solved independently in parallel, the cost of the procedure
mentioned above can be prohibitive, especially for high dimensional problems.

In this paper, we show how the use of the reduced basis (RB) method (see [34, 33, 35] and
references therein) for computing the micro problems permits to considerably improve the
efficiency of the standard nonlinear FE-HMM. The use of RB for numerical homogenization
problems has first been proposed by in [19] and analyzed for the FE-HMM for a class of
linear elliptic problems in [3]. The algorithm proposed in this paper for nonlinear problems
relies on online and offline procedures: in the offline procedure accurate micro solutions for
the original problem on sampling domains are selected and computed. These micro problems
are parametrized by the location of the cell problem in the domain Ω and the macroscopic
solution at this location. A greedy algorithm allows to choose an optimal basis of micro
functions (computed with high accuracy) for selected values of the parameters. In the online
stage, a Newton method for the RB-FE-HMM implementation is proposed with microscopic
solutions computed in the reduced basis space, which amounts to solve small dimensional
linear systems in each element of the macroscopic mesh. The overall computational cost
of the online macroscopic Newton method is similar to the cost of single scale nonlinear
problems. One difficulty is the design of an a posteriori error estimator in the offline stage
that is both efficient and also guarantees that the online Newton method converges. We
propose in this paper such a posteriori error estimators and prove the convergence of the
online Newton method and the uniqueness of the numerical solution. Furthermore, a fully
discrete error analysis of the quasilinear RB-FE-HMM is derived.
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This paper is organized as follows. In Sect. 2, we briefly recall the framework of homoge-
nization theory in our context of quasilinear elliptic problems of nonmonotone type. We then
present in Sect. 3 the new nonlinear RB-FE-HMM with its offline and online procedures,
and analyze its convergence in Sect. 4. We explain some implementation issues in Sect. 5.
Finally, numerical experiments in Sect. 6 show how the use of reduced basis considerably
improves the efficiency by reducing drastically the number of degrees of freedom for various
problems.

2 Homogenization of quasilinear elliptic problems

We assume that the tensor aε(x, s) in (1) is uniformly elliptic and bounded with respect to s
and ε, i.e., there exist λ,Λ1 > 0 such that

λ|ξ|2 ≤ aε(x, s)ξ · ξ, |aε(x, s)ξ| ≤ Λ1|ξ|, ∀ξ ∈ Rd, ∀s ∈ R, a.e. x ∈ Ω, (2)

and that the functions aεmn(x, s), m, n = 1, . . . , d are continuous, bounded and uniformly
Lipschitz continuous with respect to s. Then, for all fixed ε > 0, the weak form of (1) has
a unique solution uε ∈ H1

0 (Ω) (we refer for example to [23, Theorem 11.6] for a proof). The
solution, for each ε, satisfies the a priori bound ‖uε‖H1(Ω) ≤ C‖f‖H−1(Ω), hence one can apply
standard compactness arguments to the sequence of solution uε that ensure the existence of
a subsequence of {uε} converging weakly in H1(Ω). The homogenization result is shown in
[18, Theorem 3.6] (see also [27]) and reads as follows: there exists a subsequence of {aε(·, s)}
(again indexed by ε) such that the corresponding sequence of solutions {uε} converges weakly
to u0 in H1(Ω). The limit function u0 is the solution of the homogenized problem

−∇ ·
(
a0(x, u0(x))∇u0(x)

)
= f(x) in Ω, u0(x) = 0 on ∂Ω. (3)

The tensor a0(x, s), called the homogenized tensor, can be shown to be Lipschitz continuous
with respect to s, uniformly elliptic, and bounded [18, Prop. 3.5], i.e., there exists Λ2 > 0
such that1

‖a0(x, s1)− a0(x, s2)‖F ≤ Λ2|s1 − s2|, a.e. x ∈ Ω, ∀s1, s2 ∈ R, (4)

and there exist λ,Λ1 > 0 such that a0 satisfies (2) (possibly with different constants). Under
these assumptions, the homogenized problem (3) has also a unique solution u0 ∈ H1

0 (Ω).
We mention that for a locally periodic tensor of the form aε(x, s) = a(x, x/ε, s) where

a(x, y, s) is Y periodic with respect to y, the weak convergence of uε to the solution of (3)
holds for the whole sequence {uε} and the homogenized tensor can be characterized in the
following way [13]:

a0(x, s) =

∫
Y
a(x, y, s)(I + JTχ(x,y,s))dy, for x ∈ Ω, s ∈ R, (5)

where Jχ(x,y,s) is a d×dmatrix with entries Jχ(x,y,s)ij
= (∂χi)/(∂yj) and χi(x, ·, s), i = 1, . . . , d

are the unique solutions in W 1
per(Y ) := {z ∈ H1

per(Y );
∫
Y zdx = 0} of the linear cell problems

with parameters x ∈ Ω, s ∈ R∫
Y
a(x, y, s)∇yχi(x, y, s) · ∇w(y)dy = −

∫
Y
a(x, y, s)ei · ∇w(y)dy, ∀w ∈W 1

per(Y ), (6)

1In this paper, we use the Frobenius norm on matrices defined as ‖M‖F := trace(MTM).
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where H1
per(Y ) := {g ∈ H1(Y )| g periodic in Y } and ei, i = 1, . . . , d are the vectors of the

canonical basis of Rd.

Remark 2.1. We sometimes refer to the problems (3) or (1) as “non monotone problems”.
This stems from the following fact: writing for example (3) in weak form

B(u0;u0, v) =

∫
Ω
a0(x, u0(x))∇u0(x)∇v(x)dx = (f, v), ∀v ∈ H1

0 (Ω),

we observe that the monotonicity property B(u0;u0, u0−v)−B(v; v, u0−v) ≥ C‖u0−v‖2H1(Ω)

with C ≥ 0 does not hold in general for the quasilinear problem (3) (or (1)). This lack of
monotonicity makes the numerical analysis for FEM a nontrivial task, in particular when
quadrature formula are used [11].

For our analysis, we will further assume that the tensor aε is symmetric (and thus also
a0) and that the homogenized tensor is continuous,

a0
mn ∈ C0(Ω× R), ∀m,n = 1, . . . , d. (7)

3 Reduced basis FE-HMM for quasilinear problems

As the homogenized tensor a0 in (3) is in general unknown, the task in numerical homoge-
nization is to design an algorithm capable of computing an approximation of the homogenized
solution u0 without knowing a0, relying on a finite number of localized micro problems, i.e.
cell problems, chosen in such a way that the overall computation is both efficient and reliable.
Here, we generalize the RB-FE-HMM introduced in [4] for linear elliptic problems to quasi-
linear elliptic problems. This method relies on a macroscopic solver with macroscopic data
recovered by microscopic simulations (the micro problems) performed on sampling domains
located at appropriate quadrature points of the macroscopic mesh. In addition, in order
to avoid repeated micro computations, the solution of the micro problem are computed in
finite dimensional space of low dimension spanned by a so-called reduced basis obtained in
an offline procedure.

3.1 Preliminaries

We describe here the macro and micro finite element spaces needed to define and analyze the
RB-FE-HMM.

Macroscopic mesh and quadrature formulas. The RB-FE-HMM is based on a macro
finite element (FE) space

S`0(Ω, TH) = {vH ∈ H1
0 (Ω); vH |K ∈ R`(K), ∀K ∈ TH},

where TH is a shape-regular family of (macro) partition of Ω in simplicial or quadrilateral
elements K of diameter HK , and R`(K) is the space P`(K) of polynomials on K of total
degree at most ` if K is a simplicial FE, or the space Q`(K) of polynomials on K of degree at
most ` in each variable if K is a parallelogram FE. For a given macro partition, we define as
usual H := maxK∈TH HK . We highlight that H in our discretization is allowed to be much
larger than ε.
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For each element K of the macro partition we consider an affine transformation FK such
that K = FK(K̂), where K̂ is the reference element (simplicial or parallelogram). For a
given quadrature formula {x̂j , ω̂j}Jj=1 on K̂, the quadrature weights and integration points
on K ∈ TH are then given by ωKj = ω̂j |det(∂FK)|, xKj = FK(x̂j), j = 1, . . . , J . We make
the following assumptions on the quadrature formulas, which are standard assumptions also
for linear elliptic problems [24]:

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2L2(K̂)
, ∀p̂(x̂) ∈ R`(K̂), where λ̂ > 0;

(Q2)
∫
K̂ p̂(x)dx =

∑J
j=1 ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2`−2, `) if K̂ is a simplicial

FE, or σ = max(2`− 1, `+ 1) if K̂ is a parallelogram FE.

Microscopic mesh and RB. We consider a micro FE space Sq(Y, Tĥ) ⊂ W (Y ) with
simplicial or quadrilateral FEs and piecewise polynomial of degree q on the domain Y =
(−1/2, 1/2)d equipped with a conformal and shape regular family of triangulation denoted
Tĥ. The space W (Y ) denotes either the Sobolev space

W (Y ) = W 1
per(Y ) (8)

for a periodic coupling or
W (Y ) = H1

0 (Y ) (9)

for a coupling with Dirichlet boundary conditions.
We then consider the RB space, which is a subspace of Sq(Y, Tĥ) with a low dimension

denoted
SN (Y ) = span{ξ̂n,N (y), n = 1, .., N} ⊂ Sq(Y, Tĥ). (10)

where ξ̂n,N (y), n = 1, .., N denotes the reduced basis. Notice that for the analysis of the
RB-FE-HMM, we shall also consider a RB space of the form

SN (Y ) = span{(ξ̂n,N , ζ̂n,N ), n = 1, .., N} ⊂ Sq(Y, Tĥ)2,

which is a subspace of dimension N of (Sq(Y, Tĥ))2 involving the same functions ξ̂n,N as in

SN (Y ) and where ζ̂n,N ∈ Sq(Y, Tĥ), n = 1, .., N . The construction of the RB spaces SN (Y )
and SN (Y ) is discussed in Sect. 3.4 below.

For each macro element K ∈ TH and each quadrature point xKj ∈ K, j = 1, . . . , J,

we define the sampling domains Kδj = xKj + (−δ/2, δ/2)d, (δ ≥ ε). We observe that each
sampling domain Kδj is in correspondence with Y through the affine transformation

y ∈ Y 7→ GxKj (y) = xKj + δy ∈ Kδj (11)

This transformation applied to the RB space (10) permits to define the RB space SN (Kδj )
associated to each sampling domain Kδj as

SN (Kδj ) = span{δξ̂n,N (G−1
xKj

(x)) =: ξn,Kj (x), n = 1, .., N}. (12)
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3.2 Online procedure: the RB-FE-HMM

Assuming that the RB space has been pre-constructed in the offline stage described in the
next section, we introduce a macro method similar to the FE-HMM with the micro problems
solved in the RB space.

The nonlinear RB-FE-HMM for (1) is defined as follows: find uH,RB ∈ S`0(Ω, TH) such
that

BH,RB(uH,RB;uH,RB, vH) =

∫
Ω
fvHdx, ∀vH ∈ S`0(Ω, TH), (13)

with a bilinear form defined for all uH , vH , wH ∈ S`0(Ω, TH) by

BH,RB(uH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

aε(x, uH(xKj ))∇v
uH(xKj )

N,Kj
(x) · ∇w

uH(xKj )

N,Kj
(x)dx,

(14)
where for the scalar parameter s = uH(xKj ), the function vsN,Kj solves vsN,Kj−v

H
lin,j ∈ SN (Kδj )

and ∫
Kδj

aε(x, s)∇vsN,Kj (x) · ∇zN (x)dx = 0, ∀zN ∈ SN (Kδj ) (15)

and similarly for wsN,Kj (x). The problem (15) requires the solution of an N×N linear system,
where the details of the offline output and the online implementation are discussed in Sect. 5.
The efficiency of the RB procedure relies in the fact that the dimension N of the RB space is
usually small. Furthermore, in contrast to the standard FE-HMM, the number of degrees of
freedom (DOF) of the micro (RB) space remains fixed during the online procedure and does
not increase as the macroscopic DOF increase. This is in sharp contrast with the FE-HMM
for which the simultaneous refinement of the macro and micro DOF is a major computational
issue [1].

3.3 Solution of the macro quasilinear problem and Newton method

While the cell problems (15) are linear, the macroscopic problem (14) is nonlinear and is
usually solved by a Newton method.

The following reformulation of the bilinear form of the RB-FE-HMM will be useful to
define the Newton method used in practice to compute a numerical solution uH,RB of (13).
The bilinear form (14) can be rewritten as

BH,RB(uH ; vH , wH) =
∑
K∈TH

J∑
j=1

ωKja
0
N,Kj (u

H(xKj ))∇vH(xKj ) · ∇wH(xKj ), (16)

where we define the numerical homogenized tensor as

(a0
N,Kj (xKj , s))ik =

∫
Y
axKj ,s(y)

(
∇ψ̂i,sN,Kj (y) + ei

)
·
(
∇ψ̂k,sN,Kj (y) + ek

)
dy. (17)

where ψ̂i,sN,Kj ∈ SN (Kδj ), i = 1, . . . , d is the solution of a cell problem (see (28) below) on the
sampling domain Kδj .

Inspired by [28, 9], we explain here how to solve the nonlinear problem (13) with the
Newton method. For given zH , vH , wH ∈ S`0(Ω, TH) we first define the Fréchet derivative
∂BH obtained by differentiating the nonlinear quantity BH(zH , zH , wH) with respect to zH

∂BH,RB(zH ; vH , wH) := BH,RB(zH ; vH , wH) +B′H,RB(zH ; vH , wH), (18)
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where by the reformulation of the RB-FE-HMM bilinear form (16) we derive

B′H(zH ; vH , wH) =
∑
K∈TH

J∑
j=1

ωKj
d

ds
a0
N,Kj (s)|s=zH(xKj )v

H(xKj )∇zH(xKj ) · ∇wH(xKj ). (19)

The Newton method for approximating a solution uH of the nonlinear RB-FE-HMM (13) by
a sequence {uHk } reads in weak form

∂BH(uHk ;uHk+1 − uHk , wH) = FH(wH)−BH(uHk ;uHk , w
H), ∀wH ∈ S`0(Ω, TH). (20)

The fact that the Newton method is well defined and convergence is discussed in Sect. 4.2
while an efficient implementation is detailed in Sect. 5.

3.4 Offline procedure: RB for quasilinear problems

This section describes the offline stage of the RB algorithm in our context of quasilinear
elliptic problems. The task is to construct a low dimensional RB space SN (Y ) spanned by a
small number N � N of representative solutions of the cell problems (25) below (depending
on the quadrature node sKj and the nonlinear parameter s). Here, N denotes the (large)
DOF of the FE space used to obtain a highly resolved solution of (25).

The main novelty here is that the proposed RB algorithm permits to compute efficiently
with a reliable a posteriori error control not only the solutions of the cell problems (25)
but also their derivatives with respect to the nonlinear parameter s. This is an essential
ingredient to prove in Section 3.3 the uniqueness of the RB-FE-HMM macro solution and the
convergence of the Newton method.

Considering an affine representation of the tensor, we first describe a suitable formulation
of the cell problems before presenting the parametrized cell solution space itself. We then
introduce a new a posteriori error estimator and analyze its efficiency and reliability. This
is the key ingredient of the Greedy algorithm for the construction of the RB space that
concludes this section.

Affine representation of the tensor. A suitable representation of the tensor

axKj ,s(y) := aε(GxKj (y), s), (21)

where we use the transformation (11) is crucial for the RB methodology, i.e., an affine repre-
sentation of the form

axτ ,s(y) =

Q∑
q=1

Θq(xτ , s)aq(y), ∀y ∈ Y. (22)

We notice however that such direct affine representation is generally unavailable and a greedy
algorithm, called the empirical interpolation method (EIM) can be used to approximate a
nonaffine tensor by an affine one of the form (22) (see [14]).

Cell problems. The micro problems in the FE-HMM are based on the FE approximation
of the cell functions ψi,sKj ∈W (Kδj ), solving the linear problem∫

Kδj

aε(x, s)∇ψi,sKj (x) · ∇z(x)dx = −
∫
Kδj

aε(x, s)ei · ∇z(x)dx, ∀z ∈W (Kδj ). (23)
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which has a unique solution using (2). For the design of the RB method, is more convenient
to work in the space W (Y ) (defined in either (8) or (9)) rather than the quadrature node
dependent space W (Kδj ). We thus consider the transformation (11) and using the notations

b(v̂, ẑ) :=

∫
Y

axKj ,s(y)∇v̂(y) · ∇ẑ(y)dy ∀v̂, z ∈W (Y ),

li(ẑ) := −
∫
Y

axKj ,s(y)ei · ∇ẑ(y)dy ∀ẑ ∈W (Y ), (24)

the problem (23) with ψ̂i,sKj (y) = ψi,sKj (GxKj (y)) can be transformed into

b(ψ̂i,sKj , ẑ) = li(ẑ), ∀z ∈W (Y ). (25)

On W (Y ) we consider the scalar product (v, w)W =
∫
Y ∇v · ∇wdy and associated norm

‖v‖W = ((v, v)W)1/2 and for (Tδ, s) ∈ D the energy norm

‖v‖E,Tδ,s := (b(v, v))1/2 =

(∫
Y

axτ ,s(y)∇v(y) · ∇v(y)dy

)1/2

, (26)

and notice that from the ellipticity of the tensor it holds

‖v‖W ≤
1√
λ
‖v‖E,Tδ,s. (27)

In what follows, it will be convenient to denote the micro FE space by Sq(Kδj ,N ) instead
of Sq(Kδj , Th) to emphasize on the dimension N of the micro FE space which in RB strategy
is required to be large. Analogously, the functions in Sq(Y,N ) are denoted using the subscript
N (e.g., ẑN ). The FE space Sq(Y,N ) has a (shape-regular) triangulation Tĥ withN = O(ĥ−d)

denoting its number of DOF. Consider ψ̂i,sN ,Kj ∈ S
q(Y,N ) the solution of the linear problem

b(ψ̂i,sN ,Kj , ẑN ) = li(ẑN ) ∀ẑN ∈ Sq(Y,N ), (28)

We notice using (2) that problem (28) has a unique solution.
For the convergence of the Newton method explained in Section 3.3 we will also need to

control the derivatives with respect to the parameter s of the cell functions ψ̂i,sKj . We assume2

s ∈ R 7→ aε(·, s) ∈ (L∞(Ω))d×d is of class C1,

|∂saε(x, s)ξ| ≤ Λ2|ξ|, ∀s ∈ R, a.e. x ∈ Ω,∀ξ ∈ Rd. (29)

Lemma 3.1. Assume that (2) and (29) hold. Consider the solution ψ̂i,sN ,Kj of (28). Then,

the map s 7→ ψ̂i,sN ,Kj ∈ H
1(Tδ) is of class C1 and satisfies

∂

∂s
ψ̂i,sN ,Kj = φ̂i,sN ,Kj ,

∂

∂s
∇ψ̂i,sN ,Kj = ∇φ̂i,sN ,Kj , (30)

where for all ζ̂N ∈ Sq(Y,N ),∫
Y
axτ ,s(y)∇φ̂i,sN ,Kj (y) · ∇ζ̂N (y)dy = −

∫
Y
∂saxτ ,s(∇ψ̂

i,s
N ,Kj (y) + ei) · ∇ζ̂N (y)dx. (31)

2It is shown in [18, Rem. 3.3, Prop. 3.5] that the best constant Λ2 in (4) may differ from the one in (29).
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Proof. This is a standard result for FEM problems depending smoothly on a parameter (see
e.g. Lemma 6.1 in [9] for details).

Parametrized cell solution space. We consider a compact subspace D of Ω×R. For any
randomly chosen parameter3 (xτ , s) ∈ D, we define the map Gxτ from the physical sampling
domain Tδ = xτ+(−δ/2, δ/2)d centered at xτ to the reference domain Y and consider (28),(31)
with a tensor axτ ,s(y) = aε(Gxτ (y), s). Next indexed by {(Tδ, s, eη); (Tδ, s) ∈ D and η =
1, · · · , d}, we define the parametrized cell solution space MN (Y ) ⊂W (Y )2 given by

MN (Y ) := {(ξ̂η,sN ,Tδ , ∂sξ̂
η,s
N ,Tδ); (Tδ, s) ∈ D and η = 1, · · · , d}, (32)

where ξ̂η,sN ,Tδ ∈ S
q(Y,N ), ∂sξ̂

η,s
N ,Tδ := ∂

∂s ξ̂
η,s
N ,Tδ ∈ S

q(Y,N ) are the solutions of (28),(31) associ-
ated with the mapping Gxτ and the Hilbert space W (Y ) is defined in either (8) or (9). On
the Hilbert product space W (Y )2 we define the norms

‖(u, v)‖W×W := (‖u‖2W + ‖v‖2W)1/2 and ‖(u, v)‖E×E,Tδ,s := (‖u‖2E,Tδ,s + ‖v‖2E,Tδ,s)
1/2.

(33)
The goal of the Greedy procedure described below is to find anN−dimensional subspace of

MN (Y ), called SN (Y ), that minimizes the projection error of functions inMN (Y ) over other
choices of N−dimensional subspaces. We emphasize that the derivative functions ∂sξ̂

η,s
N ,Tδ

involved in the definition (32) ofMN (Y ) are considered only for the analysis, but should not
be computed explicitly in the implementation. Hence the solution of the online cell problem
(15) will involve the reduced basis space SN (Y ), defined as the first component of each couple
of functions in SN (Y ).

A posteriori error estimator. The procedure of selecting the representative cell solutions
is conducted by an a posteriori error estimator which allows to control the accuracy of our
output of interest (the numerically homogenized tensor) [34, 19].

Assume that the RB space of dimension l, denoted by Sl(Y ), is available (its construction
will be detailed in Algorithm 3.4). Given the parameters (xτ , s, i), consider (ξ̂i,sN ,Tδ , ∂sξ̂

i,s
N ,Tδ),

(ξ̂i,sl,Tδ , ∂sξ̂
i,s
l,Tδ

) the solutions of (28),(31) in Sq(Y,N )2 and Sl(Y ), respectively (i.e. with test

functions (zN , ζN ) in Sq(Y,N )2 and Sl(Y ), respectively). We then consider

êi,sl,Tδ = ξ̂i,sl,Tδ − ξ̂
i,s
N ,Tδ , (34)

∂sê
i,s
l,Tδ

= ∂sξ̂
i,s
l,Tδ
− ∂sξ̂i,sN ,Tδ . (35)

We derive an a posteriori estimator for both êi,sl,Tδ and ∂sê
i,s
l,Tδ

will be analyzed in Lemma 3.3.
We have that

b(êi,sl,Tδ , ẑN ) = b(ξ̂i,sl,Tδ , ẑN )− li(ẑN ), ∀ẑN ∈ Sq(Y,N ), (36)

where the right-hand side defines a linear form on Sq(Y,N ). Hence, by the Riesz theorem,
there exists a unique ēil,Tδ ∈ S

q(Y,N ) such that

b(êi,sl,Tδ , ẑN ) = (ēi,sl,Tδ , ẑN )W , ∀ẑN ∈ Sq(Y,N ). (37)

We then define the residual of the a posteriori error estimator as

∆i,s
l,Tδ

:=
‖ēi,sl,Tδ‖W√

λLB
+
‖∂sēi,sl,Tδ‖W√

λLB
, (38)

3D should be chosen such that Tδ ⊂ Ω, for all (xτ , s) ∈ D.
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where λLB is an approximation of the coercivity constant λ defined in (2). We notice that
the first term in (38) is the standard residual used for linear problems [33, 35]. The second
term arises from the nonlinearity of our problem and its control is needed to ensure the
uniqueness of the nonlinear RB-FE-HMM and the convergence of the Newton method used
in the implementation.

Remark 3.2. To compute the residual ēi,sl,Tδ in (38), we first observe that we need to solve
(37), which depends on the parameter s. Thanks to the affine representation of the tensor, (37)
can be decomposed into several parameter independent FE problems that can be precomputed
[33, 35] and hence ‖ēi,sl,Tδ‖W is cheap to compute. Second, for evaluating ∂sē

i,s
l,Tδ

one can simply
consider the finite difference approximation

∂sē
i,s
l,Tδ
≈
ē
i,s+
√
eps

l,Tδ
− ēi,sl,Tδ√

eps
,

where eps is the machine precision. This can be done by solving (37) twice with parameters
s and s +

√
eps, respectively. In the analysis, we shall neglect the error of the above finite

difference.

The next lemma gives a bound for the a posteriori error in output of interest in terms of
the norms (33). It is a generalization of the result [3, Lemma 3.3] in the context of linear
elliptic problems. These results are needed in our nonlinear context to control the microscopic
error in the macroscopic (nonlinear) solver.

Consider ēi,sl,Tδ defined in (37) and the residual ∆i,s
l,Tδ

defined in (38). Define

(a0
N ,Tδ(xτ , s))ij =

∫
Y
axτ ,s(y)

(
∇ξ̂i,sN ,Tδ(y) + ei

)
·
(
∇ξ̂j,sN ,Tδ(y) + ej

)
dy, (39)

(a0
l,Tδ

(xτ , s))ij =

∫
Y
axτ ,s(y)

(
∇ξ̂i,sl,Tδ(y) + ei

)
·
(
∇ξ̂j,sl,Tδ(y) + ej

)
dy. (40)

Lemma 3.3. Assume (2) and (29). Let (ξ̂i,sN ,Tδ , ∂sξ̂
i,s
N ,Tδ) and (ξ̂i,sl,Tδ , ∂sξ̂

i,s
l,Tδ

) be the solution

of problem (28)-(31) in Sq(Y,N )2 and Sl(Y ), with test functions (zN , ζN ) in Sq(Y,N )2 and
Sl(Y ), respectively. Assume that the approximation λLB of the coercivity constant satisfies
0 < λLB ≤ λ. Consider the quantities êi,sl,Tδ and ∂sê

i,s
l,Tδ

defined in (34). Then

‖(êi,sl,Tδ , ∂sê
i,s
l,Tδ

)‖E×E,Tδ,s ≤ (2 +
Λ2

λLB
)∆i,s

l,Tδ
, (41)

(2Λ1 + Λ2)−1λ
1/2
LB∆i

l,Tδ
≤ ‖(êi,sl,Tδ , ∂sê

i,s
l,Tδ

)‖W×W ≤ (2λ
−1/2
LB + Λ2λ

−3/2
LB )∆i

l,Tδ
, (42)

|(a0
N ,Tδ(s))ij − (a0

l,Tδ
(s))ij |+ |∂s(a0

N ,Tδ(s))ij − ∂s(a
0
l,Tδ

(s))ij | ≤ 3
(

1 +
Λ2

λLB

)
∆i,s
l,Tδ

∆j,s
l,Tδ

, (43)

where Λ1,Λ2 are the constants in (29),(2) and ‖ · ‖E,Tδ,s is the energy norm defined in (26).

Proof of Lemma 3.3. Taking ẑN = êi,sl,Tδ in (37) and using (27) yields successively,

‖êi,sl,Tδ‖E,Tδ,s ≤ ∆i,s
l,Tδ

, (44)

‖êi,sl,Tδ‖W ≤
∆i,s
l,Tδ√
λLB

. (45)

10



A consequence of (39),(40), and the symmetry of the tensor, is the identity

(a0
l,Tδ

(xτ , s))ij − (a0
N ,Tδ(xτ , s))ij

=

∫
Y
axτ ,s(y)

(
∇ξ̂i,sN ,Tδ(y)−∇ξ̂i,sl,Tδ(y)

)
·
(
∇ξ̂j,sN ,Tδ(y)−∇ξ̂j,sl,Tδ(y)

)
dy. (46)

We deduce from the Cauchy-Schwarz inequality and (44),

|(a0
N ,Tδ(s))ij − (a0

l,Tδ
(s))ij | ≤ ∆i,s

l,Tδ
∆j,s
l,Tδ

. (47)

Using Lemma 3.1, we obtain after differentiation of (37) with respect to the parameter s,

(∂sē
i,s
l,Tδ

, ẑN )W =

∫
Y
∂saxτ ,s∇ê

i,s
l,Tδ
· ∇ẑNdy +

∫
Y
axτ ,s∇(∂sê

i,s
l,Tδ

) · ∇ẑNdy, ∀ẑN ∈ Sq(Y,N ).

(48)

We take ẑN = ∂sê
i,s
l,Tδ

in (48) and we write

‖∂sêi,sl,Tδ‖
2
E,Tδ,s = (∂sē

i,s
l,Tδ

, ∂sê
i,s
l,Tδ

)W −
∫
Y
∂saxτ ,s(y)∇êi,sl,Tδ(y) · ∇(∂sê

i,s
l,Tδ

(y))dy.

We deduce from the Cauchy-Schwarz inequality and (27),(29),

‖∂sêi,sl,Tδ‖
2
E,Tδ,s ≤ λ

−1/2
LB ‖∂sē

i,s
l,Tδ
‖W‖∂sêi,sl,Tδ‖E,Tδ,s + Λ2‖êi,sl,Tδ‖W‖∂sê

i,s
l,Tδ
‖W

which gives, using (45),(27),

‖∂sêi,sl,Tδ‖E,Tδ,s ≤ (1 + Λ2/λLB)∆i,s
l,Tδ

. (49)

The estimates (44) and (49) yield (41), and using in addition (27) proves the upper bound in
(42). Next, taking ẑN = ēi,sl,Tδ in (37) using the Cauchy-Schwarz inequality yields ‖ēi,sl,Tδ‖W ≤
Λ1‖êi,sl,Tδ‖W , while taking ẑN = ∂sē

i,s
l,Tδ

in (48) yields ‖∂sēi,sl,Tδ‖W ≤ Λ2‖êi,sl,Tδ‖W+Λ1‖∂sêi,sl,Tδ‖W .

We obtain ∆i
l,Tδ
≤ λ−1/2

LB (Λ1 +Λ2)‖êi,sl,Tδ‖W+λ
−1/2
LB Λ1‖∂sêi,sl,Tδ‖W which yields the lower bound

in (42). We finally prove (43). Differentiating the equality (46) and using (48) with ẑN = êj,sl,Tδ
we obtain (using the Cauchy-Schwarz inequality)

|(∂sa0
N ,Tδ(xτ , s))ij − (∂sa

0
l,Tδ

(xτ , s))ij |

≤ 3Λ2‖êi,sl,Tδ‖W‖ê
j,s
l,Tδ
‖W + ‖∂sēi,sl,Tδ‖W‖ê

j,s
l,Tδ
‖W + ‖∂sēj,sl,Tδ‖W‖ê

i,s
l,Tδ
‖W

≤
(

3
Λ2

λLB
+ 2

)
∆i,s
l,Tδ

∆j,s
l,Tδ

where we used (45) and the definition (38) in the last inequality. Finally, using (47) concludes
the proof.

Offline algorithm. We now state step by step the offline stage of the RB algorithm. In
the offline stage, we select by a greedy algorithm N triples of the form (Tδn , s, ηn), where
(Tδn , s) belongs to a given compact D ⊂ Ω× R (since the range of the parameter s can only
be obtained when the macro solution uH,RB is computed, we propose in Sect. 5 an ad hoc
method to find an a priori range of s) and ηn corresponds to the unit vector eηn belonging
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to the canonical basis of Rd. Corresponding to the N couples of (Tδn , s, ηn), we compute
ξ̂ηn,sN ,Tδn

, the solution of (28) with a tensor given by axτn ,s(y) (xτn is the barycenter of Tδn)

and a right-hand side given by lηn(·). The complete offline algorithm stated below is based
on the usual procedure of the RB methodology (see [34, 35]). Notice that in the case of a
linear elliptic problem (i.e. aε(x, s) independent of s), it coincides with the Greedy procedure
proposed in [3].

Algorithm 3.4 (Greedy procedure). Given the maximum basis number NRB and a stopping
tolerance tolRB:

1. Choose randomly (by a Monte Carlo method) Ntrain parameters (Tδn , sn) ∈ D. Define the
”training set” ΞRB = (Tδn , sn, ηn); 1 ≤ ηn ≤ d, 1 ≤ n ≤ Ntrain} 4.

2. Select randomly (Tδ1 , s1, η1) ∈ ΞRB and compute ξ̂η1,s1N ,Tδ1
, the solution of (28) with right-hand

side lη1(·) in Sq(Y,N ), corresponding to the selected parameter (Tδ1 , s1, η1). Set l = 1 and de-

fine ξ̂1,N (y) =
ξ̂
η1,s1
N ,Tδ1

(y)

‖ξ̂η1,s1N ,Tδ1
‖W

, and the corresponding RB space S1(Y ) = span{(ξ̂η1,s1N ,Tδ1
, ∂sξ̂

η1,s1
N ,Tδ1

)}.

3. For l = 2, . . . , NRB

a. Compute for each (Tδ, s, η) ∈ ΞRB the residual ∆η,s
l−1,Tδ

defined in (38) and select the
next reduced basis by choosing

(Tδl , sl, ηl) = argmax(Tδ,s,η)∈ΞRB ∆η,s
l−1,Tδ

,

provided that5 max(Tδ,s,η)∈ΞRB (∆η,s
l−1,Tδ

)2 > tolRB, otherwise the algorithm ends.

b. Compute ξ̂ηl,slN ,Tδl
the solution of (28) in Sq(Y,N ) corresponding to the selected param-

eters (Tδl , sl, ηl). Enlarge the RB space: Sl(Y ) = Sl−1(Y ) ⊕ span{(ξ̂ηl,slN ,Tδl
, ∂sξ̂

ηl,sl
N ,Tδl

)}.
Set l = l + 1 and go back to a.

We emphasize once again that the derivative functions ∂sξ̂
ηl,sl
N ,Tδl

involved in Algorithm 3.4 do

not need to be computed in the implementation and shall be considered only in the analysis.
Thanks to Remark 3.2 for the a posteriori error estimator evaluation, as output of the Greedy
algorithm, it is sufficient to compute only the list of functions ξ̂l,N , l = 1, . . . , N that span the

space SN (Y ) := span{ξ̂1,N , . . . , ξ̂N,N }. These RB functions are obtained by orthogonalizing

in W (Y ) the functions ξ̂ηl,slN ,Tδl
, l = 1, . . . , N and they are defined as

ξ̂l,N (y) :=
Rl(y)

‖Rl‖W
, where Rl(y) := ξ̂ηl,slN ,Tδl

(y)−
l−1∑
m=1

(ξ̂ηl,slN ,Tδl
, ξ̂m,N )W ξ̂m,N .

Remark 3.5. Notice that we choose to orthogonalize the RB in W (Y ) with respect to the
scalar product (·, ·)W rather than the RB in W (Y )2 with respect to the scalar product (·, ·)W2

associated to the norm ‖ · ‖W2 in (33) (as normally expected in the usual RB methodol-
ogy) because this is more convenient in the implementation (avoiding the computation of
∂sξ̂

ηl,sl
N ,Tδl

). Since max(Tδ,s,η)∈ΞRB (∆η,s
l,Tδ

) decays exponentially as l increases (under the as-

sumptions of Theorem 4.3, a slight variation of the result in [20, Corollary 4.1] and [17]), we
have ξ̂ηl,slN ,Tδl

/∈ Sl−1 and thus ‖Rl‖W 6= 0 and the above orthogonalization procedure succeeds.

4Ntrain should be large enough to ensure that the results of the greedy algorithm are stable with respect
to other choices of training sets.

5Notice that the error of the outputs of interest scale like the square of the error of the cell functions (43).
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4 Analysis of the RB-FE-HMM

In this section we first derive a priori error estimates for the RB-FE-HMM. We then show the
uniqueness of the numerical approximation which is based on the convergence of the Newton
method.

4.1 A priori error analysis

We introduce the following quantity to measure the error between the tensor a0 of the ho-
mogenized problem (3) and the numerical homogenized tensor a0

N ,Kj in (17).

rHMM := sup
K∈TH ,xKj∈K

‖a0(xKj , u
H,RB(xKj ))− a0

N ,Kj (u
H,RB(xKj ))‖F . (50)

Theorem 4.1. Consider u0 the solution of problem (3). Let ` ≥ 1 and µ = 0 or 1. Consider
a quasi-uniform macro mesh satisfying (Q1), (Q2). Assume

u0 ∈ H`+1(Ω) ∩W 1,∞(Ω), a0
mn ∈W `+µ,∞(Ω× R), ∀m,n = 1 . . . d.

Assume further that (2),(4),(7) hold and that ∂ua
0
mn ∈W 1,∞(Ω×R), and that the coefficients

a0
mn(x, s) are twice differentiable with respect to s, with the first and second order derivatives

continuous and bounded on Ω×R, for all m,n = 1 . . . d. Then, there exist r0 > 0 and H0 > 0
such that, provided

H ≤ H0 and rHMM ≤ r0, (51)

any solution uH,RB of (13) satisfies

‖u0 − uH,RB‖H1(Ω) ≤ C(H` + rHMM ) if µ = 0, 1

‖u0 − uH,RB‖L2(Ω) ≤ C(H`+1 + rHMM ) if µ = 1,

where C is independent of H,h,N,N , ε.

Proof. We apply Lemma 7.1 (a result from [9] stated in the Appendix) with ã(xKj , s) =
a0
N ,Kj (s) and ũH = uH,RB.

We next have to quantify the error rHMM defined in (50) which can be decomposed as
rHMM ≤ rMOD + rMIC + rRB, i.e. with the modeling, micro, and RB errors, respectively.
These quantities are defined by

rMOD := sup
K∈TH ,xKj∈K

‖a0(xKj , u
H,RB(xKj ))− a0(xKj , u

H,RB(xKj ))‖F , (52)

rMIC := sup
K∈TH ,xKj∈K

‖a0(xKj , u
H,RB(xKj ))− a0

N,Kj (u
H,RB(xKj ))‖F , (53)

rRB := sup
K∈TH ,xKj∈K

‖a0
N,Kj (u

H,RB(xKj ))− a0
N ,Kj (u

H,RB(xKj ))‖F . (54)

To estimate the quantities rMIC and rMOD, we make the following smoothness and structure
assumptions on the tensor:

(H1) Given the degree q of the micro FE space Sq(Kδj , Th), the cell functions ψi,sKj solution

of (23) satisfy the bound |ψi,sKj |Hq+1(Kδj ) ≤ Cε−q
√
|Kδj |, with C independent of ε, the

quadrature point xKj , the domain Kδj , and the parameter s for all i = 1 . . . d.
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(H2) for all m,n = 1, . . . , d, we assume aεmn(x, s) = amn(x, x/ε, s), where amn(x, y, s) is y-
periodic in Y , and the map (x, s) 7→ amn(x, ·, s) is Lipschitz continuous and bounded
from Ω× R into W 1,∞

per (Y ).

We next discuss the reduced basis error. Consider the space MN (Y ) as defined in (32).
We want to quantify how well MN (Y ) can be approximated by the linear space SN (Y ) of
dimension N . Such a quantification relies on the notion Kolmogorov N -width.

Definition 4.2. Let F be a subset of a Banach space W . We denote the distance of F to
any generic N−dimensional subspace WN of W by

E(F ;WN ) = sup
x∈F

inf
y∈WN

‖x− y‖W .

The minimal error E(F ;WN ) is given by the Kolmogorov N -width of F in W

dN (F,W ) = inf{E(F ;WN ) : WN a N−dimensional subspace of W}.

We say that F has an exponentially small Kolmogorov N -width if there exists constants
C, r > 0 independent of N such that

dN (F,W ) ≤ Ce−rN . (55)

In [20, Corollary 4.1] and [17], it is shown, for a class of symmetric linear uniformly coercive
elliptic problems with continuity bound Λ and coercivity constant λ, that if the parametrized
space of the RB algorithm has an exponentially small N−width (55) with constant

r > log(1 + (Λ/λLB)
√

Λ/λ),

where 0 < λLB ≤ λ is an estimate of the coercivity bound, then the RB algorithm converges
exponentially fast with respect to the dimension N of the RB space. Such assumption (55) is
motivated by [31] where it is proved in the special case of one-dimensional parameter linear
elliptic problems.

Notice that problem (28)-(31) with solution (ψ̂i,sN ,Kj , ∂sψ̂
i,s
N ,Kj ) ∈W (Y )2 is not coercive due

to the nonlinearity of the tensor. Nevertheless, problem (28)-(31) still satisfies the following
Céa inequality (see Lemma 7.3 in the Appendix) in the Hilbert space W (Y )2 with norm
defined in (33),

‖(ψ̂i,sN ,Kj , ∂sψ̂
i,s
N ,Kj )− (ψ̂i,sl,Kj , ∂sψ̂

i,s
l,Kj

)‖W×W ≤ C0 inf
z∈Sl(Y )

‖(ψ̂i,sN ,Kj , ∂sψ̂
i,s
N ,Kj )− z‖W×W (56)

where we consider the solution (ψ̂i,sl,Kj , ∂sψ̂
i,s
l,Kj

) of (28)-(31) in the space Sl(Y ) (i.e. taking

test functions (ẑl, ζ̂l) ∈ Sl(Y )). The above constant is given by

C0 =

√
Λ1

λ

(
3 +

8Λ2
2

λ2

)
(57)

where λ,Λ1,Λ2 are the coercivity and continuity bounds (2),(29). In addition, recall the a
posteriori estimate (42) of the form Clow∆i

l,Tδ
≤ ‖(êi,sl,Tδ , ∂sê

i,s
l,Tδ

)‖W×W ≤ Cup∆i
l,Tδ

, with

Clow = (2Λ1 + Λ2)−1λ
1/2
LB , Cup = 2λ

−1/2
LB + Λ2λ

−3/2
LB . (58)

We obtain the following result which states that the reduced basis method converges expo-
nentially. This is a slight adaptation of the result in [20, Corollary 4.1] and [17].
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Theorem 4.3. In addition to (2) and (29), assume that the parametrized cell solution space
MN in (32) has an exponentially small Komogorov N -width,

dN (MN ,W (Y )2) ≤ Ce−rN , with r > log((1 + Cup/Clow)C0), (59)

with constants in (56),(58). Then, there exists constants c, κ > 0 independent of N such that

‖ψ̂i,sN,Kj − ψ̂
i,s
N ,Kj‖W ≤ ce

−κN , ‖∂sψ̂i,sN,Kj − ∂sψ̂
i,s
N ,Kj‖W ≤ ce

−κN (60)

for all K ∈ TH and all xKj ∈ K, where ψ̂i,sN ,Kj and ψ̂i,sN,Kj are the solutions of the cell problem

(28) in Sq(Y,N ) and SN (Y ), respectively, with corresponding test functions ẑN ∈ Sq(Y,N )
and ẑN ∈ SN (Y ).

Proof. Inspecting the proof of [20, Corollary 4.1] reveals that the coercivity of the problem
is not needed and the Céa inequality (56) is sufficient to obtain the exponential convergence
(60) of the RB algorithm using the RB space SN (Y ) constructed in the Greedy algorithm
3.4.

Theorem 4.4. Consider u0 the solution of problem (3), and uH,RB the solution of (13). In
addition to the assumptions of Theorem 4.1, assume that uH,RB(xKj ) ∈ (u0,low, u0,up), for all
K ∈ TH , xKj ∈ K. Assume further (H1), (H2), and (59). Then, there exist H0 > 0 and
r0 > 0 such at if H ≤ H0, h/ε ≤ r0, and ce−κN ≤ r0 then for µ = 0, 1,

‖u0 − uH,RB‖H1−µ(Ω) ≤



C(H`+µ + (hε )2q + δ) + rRB, if W = W 1
per and δ/ε ∈ N,

C(H`+µ + (hε )2q) + rRB,

if W = W 1
per, δ/ε ∈ N,

and aε(x, s) is re-
placed by a(xKj ,

x
ε , s)

in (21),(14),(15),(23),
C(H`+µ + (hε )2q + δ + ε

δ ) + rRB, if W = H1
0 (δ > ε),

where rRB ≤ Λ1(ce−κN )2 with Λ1 given in (2). We also assume δ ≤ r0 or δ + ε/δ ≤ r0 in
the first and third cases, respectively. We use the notation H0(Ω) = L2(Ω). The constants C
are independent of H,h, ε, δ,N,N .

Proof. In view of Theorem 4.1, we estimate rHMM . Using (H1), the estimate rMIC ≤
C(h/ε)2q follows from [1] (see also [2]). Using (H2), The estimates rMOD ≤ Cδ, rMOD = 0,
rMOD ≤ C(δ + ε/δ) follows from [7, 26]. Finally, the estimate rRB ≤ Λ1(ce−κN )2 follows
from (60) and the identity (46).

4.2 Uniqueness of the RB-FE-HMM solution and the Newton method

Consider the derivatives with respect to s of the exact and numerical homogenized tensors
in (3) and (17). We define

r′HMM := sup
K∈TH ,xKj∈K

∥∥∥∂sa0(xKj , u
H,RB(xKj ))− ∂sa0

N ,Kj (u
H,RB(xKj ))

∥∥∥
F
. (61)

The proof of the uniqueness of the RB-FE-HMM solution relies on the following result
which is an adaptation of Lemma 4.11 in [9].
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Theorem 4.5. Assume that the hypotheses of Theorem 4.1 and (59) hold. Then, there exist
positive constants H0, r0 such that if

H ≤ H0 and H−1/2rHMM + r′HMM ≤ r0 (62)

then the solution uH,RB of (13) is unique.

The proof of Theorem 4.5 relies on the convergence of the Newton method stated in the
following lemma.

Lemma 4.6. Assume that the hypotheses of Theorem 4.5 hold. Let uH,RB be a solution of
(13). Then, there exists H0, r0, ν > 0, such that provided a smallness assumption of the form
(62), for all uH0 ∈ S`0(Ω, TH) satisfying

σH‖uH0 − uH,RB‖H1(Ω) ≤ ν, (63)

the sequence {uHk } of the Newton method (20) with initial value uH0 is well defined and ‖uHk+1−
uH,RB‖H1(Ω) ≤ CσH‖uHk −uH,RB‖2H1(Ω), where C is a constant independent of H,h, k,N , N, ε.

Proof. We apply Lemma 7.2 (a result from [9] stated in the Appendix) with ã(xKj , s) =
a0
N ,Kj (s) and ũH = uH,RB.

Proof of Theorem 4.5. The proof is an immediate consequence of Lemma 4.6, where given
two numerical solutions uH,RB, ũH,RB of (13), we apply the Newton method with the initial
guess uH0 := ũH,RB. The smallness assumption (62) together with the H1 a priori error
estimate of Theorem 4.1 permits to satisfy the condition (63).

For the estimation of r′HMM in (61), we consider the decomposition

r′HMM ≤ r′MOD + r′MIC + r′RB

where r′MOD, r′MIC , r′RB are defined similarly to (52),(53),(54), respectively, with the excep-
tion that all the tensors are differentiated with respect to the s parameter. Hence hypothesis
(H1’) and (H2’), similar to (H1) and (H2) but for ∂sψ

i,s
Kj

are needed. Following [8], the

quantities r′MOD, r′MIC satisfy analogous estimates to those of rMOD, rMIC . It remains to
estimate

r′RB := sup
K∈TH ,xKj∈K

∥∥∥∂sa0
N,Kj (u

H,RB(xKj ))− ∂sa0
N ,Kj (u

H,RB(xKj ))
∥∥∥
F
.

This is done in the following lemma.

Lemma 4.7. Assume that the hypotheses of Theorem 4.4 hold with a periodic coupling with
δ = ε. Assume further (29), and (59). Then, there exist constants c, κ > 0 such that

r′RB ≤ (2Λ1 + Λ2)(ce−κN )2.

Proof. Differentiating (46) with respect to s and using Theorem 4.3 conclude the proof.

Remark 4.8. Notice that a similar a posteriori estimator as used here in the offline stage
to control rRB and r′RB could be used to define a RB-FE-HMM for linear parabolic multiscale
problems with a time-dependent tensor of the form ∂uε

∂t (x, t) = ∇· (aε(x, t)∇uε(x, t)) + f(x, t)
as analysed in [10]. In this case, the micro problems would be parametrized by the location of
the cell problem in the domain Ω and the time variable of the tensor aε.
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5 Implementation issues

We give in this section details on an efficient implementation of the offline and online proce-
dures of the proposed RB-FE-HMM.

5.1 Offline procedure

Output of the offline procedure. The output of the offline procedure is the RB space
(10). Rather than storing the reduced basis functions, using the affine representation (22)
described above, it is sufficient to compute the following matrices and vectors

(Aq)nm :=

∫
Y
aq(y)∇ξ̂n,N (y) · ∇ξ̂m,N (y)dy, (F iq)m :=

∫
Y
aq(y)ei · ∇ξ̂m,N (y)dy. (64)

We emphasize that offline stage is only operated once and the output of offline stage can be
repeatedly used for the online stage computations independently of the chosen online solver.

Preprocess of the offline stage. In Algorithm 3.4, we assume that the value of the
solution uH(xτ ) at the quadrature point xτ lies in a bounded real interval for each τ in
training set. But the range of uH can only be known once the macro solution is computed
due to the nonlinearity of the problem. One possibility to address this issue is to map R into
a bounded interval. However, our numerical tests indicate that this approach fails in general
unless an unreasonably large training set is used. Therefore, we propose to use an empirical
algorithm to get an a priori guess of the solution range, motivated by the following classical
result [29, Chapter 1.6].

Lemma 5.1. (Voigt-Reiss’ inequality) Assume axτ ,s(y) to be symmetric, uniformly elliptic
and bounded for ∀xτ ∈ Ω,∀s ∈ R and ∀y ∈ Y . Then we have( ∫

Y
axτ ,s(y)−1dy

)−1 ≤ a0(xτ , s) ≤
∫
Y
axτ ,s(y)dy, (65)

where a0(xτ , s) is the exact homogenized tensor defined in (5).

We then apply the following procedure: we first solve (3) replacing the homogenized tensor

a0(xτ , s) alternatively with
( ∫

Y axτ ,s(y)−1dy
)−1

and
∫
Y axτ ,s(y)dy. We then set a maximum

range (u0,low, u0,up) by taking the minimum and maximum values of the two solutions obtained
from the first step. In the end, we consider the range of parameter s to be (u0,low−α, u0,up+α)
enlarged by ±α (a safety factor of about 10%).

5.2 Online procedure

We describe here how the online stage of the RB-FE-HMM can be efficiently implemented.

Fast solution of micro problems. Owing to the affine form (22) of the tensor aε, the
problem (15) amounts to solving an N ×N linear system (recall that N , the number of RB

functions, is small). Indeed, writing v
vH(xKj )

N,Kj
− vHlin,j(x) =

∑N
n=1 αnξn,Kj (x), we observe that
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(15) reads

N∑
n=1

αn

∫
Kδj

aε(x, uH(xKj ))∇ξn,Kj (x) · ∇ξm,Kj (x)dx

= −
d∑
i=1

∫
Kδj

aε(x, uH(xKj ))ei · ∇ξm,Kj (x)dx
∂vHlin,j
∂xi

, (66)

for all m = 1, . . . N. Next, again thanks to the affine representation of the tensor (here we
are assuming the representation (22) for simplicity), (66) can be written as

N∑
n=1

αn

Q∑
q=1

Θq(xKj , u
H(xKj ))

∫
Y
aq(y)∇ξ̂n,N (y) · ∇ξ̂m,N (y)dy

= −
d∑
i=1

Q∑
q=1

Θq(xKj , u
H(xKj ))

∫
Y
aq(y)ei · ∇ξ̂m,N (y)dy

∂vHlin,j
∂xi

, (67)

or equivalently

( Q∑
q=1

Θq(xKj , u
H(xKj ))Aq

)
α = −

d∑
i=1

( Q∑
q=1

Θq(xKj , u
H(xKj ))F

i
q

)∂vHlin,j
∂xi

, (68)

where the N × N matrices Aq, q = 1, . . . , Q and the vectors F iq ∈ RN , q = 1, . . . , Q, i =
1, . . . , d are defined by (64).

We emphasize that the matrices Aq and the vectors F iq are assembled and stored in the
offline stage, thus (68) amounts just in building the linear combination by evaluating Θq(·, ·)
at the desired parameter (xKj , u

H(xKj )) for the tensor axτ ,s(y) and solving the N×N system
(68) for each micro function at the quadrature points needed to assemble (14).

Newton method implementation. We consider a sequence of {uHk } in S`0(Ω, TH) and

express each function in the FE basis of S`0(Ω, TH) as uHk =
∑Mmacro

i=1 U ikφ
H
i . We further denote

Uk = (U1
k , . . . , U

Mmacro
k )T . The Newton method (20) can be written out in terms of matrices

as (
B(uHk ) +B′(uHk )

)
(Uk+1 − Uk) = −B(uHk )Uk + F, (69)

where B(uHk ), B′(uHk ) are the stiffness matrices associated to the bilinear forms BH(zH ; ·, ·),
B′H(zH ; ·, ·) defined in (14) and (19), respectively. Here, F is a vector associated to the source
term (13), which also contains the boundary data if for instance general Dirichlet or Neumann
boundary conditions are considered.

Stiffness matrices. Following the implementation in [6] we consider for each element K ∈
TH the FE basis functions {φHK,i}

nK
i=1 associated with this element and the local contribution

BK(uHk ) to the stiffness matrix (BK(uHk ))nKp,q=1 =
∑J

j=1(BK,j(u
H
k ))nKp,q=1 with

(BK,j(u
H
k ))nKp,q=1 =

ωKj
|Kδj |

∫
Kδj

aε(x, zHk (xKj ))∇ϕ
h,zH(xKj )

Kj ,p
(x) · ∇ϕ

h,zH(xKj )

Kj ,q
(x)dx, (70)
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where ϕ
h,zH(xKj )

Kj ,p
, ϕ

h,zH(xKj )

Kj ,q
are the solutions of (15) constrained by φHK,p, φ

H
K,q, linearized at

xKj , respectively.
Similarly to the FE-HMM implementation [9], we see by differentiating (70) that the

stiffness matrix B′(U) in (69) associated to the non-symmetric form B′H(zH ; ·, ·) defined in
(19) is given by the sum of J products of nK × nK matrices

B′K(uHk ) =
J∑
j=1

( ∂

∂s
(BK,j(s))

∣∣∣∣
s=zH(xKj )

)(
UK,k(φ

H
K1

(xKj ), . . . , φ
H
KnK

(xKj ))
)

where the column vector UK,k of size nK gives the components of zH in the basis {φHK,i}
nK
i=1

of the macro element K ∈ TH . Here, the derivative with respect to s of the nK × nK matrix

BK,j(s) can be simply approximated by the finite difference ∂
∂s(BK,j(s)) ≈

BK,j(s+
√
eps)−BK,j(s)√
eps ,

where eps is the machine precision. Therefore, the cost of computing the stiffness matrices
for both B(uHk ) and B′(uHk ) is about twice the cost of computing the stiffness matrix B(uHk )
alone.

6 Numerical experiments

This section is dedicated to the numerical illustration of the theoretical results in Sect. 4 and
the performances of the proposed RB-FE-HMM compared to the FE-HMM. All computations
are performed in Matlab on the same machine (with a non-parallel implementation). We first
consider a simple illustrative example and then the stationary Richards problem which has
a nonaffine tensor.

Numerical evaluation of the errors. Let uH be the numerical solution and uref be a
reference solution (for the effective problem (1)) computed on a fine triangulation Th of Ω.
The errors uref − uH in the H1 and L2 norms are estimated by

eL2 := ‖uref‖−1
L2(Ω)

( ∑
K∈Th

J∑
j=1

ρKj |uH(zKj )− uref (zKj )|2
)1/2

,

eH1 := ‖uref‖−1
H1(Ω)

( ∑
K∈Th

J∑
j=1

ρKj |∇uH(zKj )−∇uref (zKj )|2
)1/2

,

where {zKj , ρKj} denotes the quadrature formula on the fine triangulation Th.

Macro FEM and QF used in the examples. In the following examples, when using
P1 triangular (tetrahedral) elements for the macro problems, we choose the barycenter of
the element as single quadrature point and the weight ω̂ = |K̂|. When we use P2 triangular
elements for the macro problems, we choose the Gauss three points quadrature formula with
barycentric coordinates (1/6, 1/6, 2/3) and weights ω̂i = |K̂|/3, i = 1, 2, 3.
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6.1 A simple illustrative example

We consider the model problem (1) in Ω = [0, 1]2 with f = 50e(x1−0.2)2+(x2−0.3)2 , and the
following mixed boundary conditions,

uε(x) = 2x2
1(x1 − 1)2 + 3x2

2(x2 − 1)2 + 1 on {x1 = 0} ∪ {x1 = 1},
n · (aε(x, uε(x))∇uε(x)) = 0 on {x2 = 0} ∪ {x2 = 1}. (71)

Consider a diagonal multiscale tensor with the following affine expression 6

aε(x, s)11 = (x2
1 + 0.2) + (x2 sin(sπ) + 2)(sin(2π

x1

ε
) + 2),

aε(x, s)22 = (
1

s+ 1
ex2 + 0.05) + (x1x2 + 1)(sin(2π

x2

ε
) + 2). (72)

Using the homogenization theory [29], the corresponding homogenized tensor is also diagonal
with entries given by the harmonic averages

a0
ii =

( ∫
Y
a(x, y; s)−1dy

)−1
, i = 1, 2. (73)

Offline stage. In the offline stage, we set the parameter space to be D = Ωi×U , where Ωi

is a closed subset of Ω such that T̄δ = xτ + [−δ/2, δ/2]d ⊂ Ω̄ for all τ ∈ Ωi, and U is a closed
bounded interval of R (an estimation of the range for u0). In order to obtain U , motivated
by Lemma 5.1, we first solve (1) on a coarse 8× 8 macro mesh by replacing the homogenized
tensor respectively with the arithmetic and harmonic averages of the multiscale tensor. The
ranges of the corresponding solutions are shown in Table 1 and we choose U = [0.9, 3.66]
adding a safety correction.

Table 1: A priori estimate for the solution range. Mesh size = 8× 8.
tensor type solution range∫
Y a(x, y; s)dy [1, 3.14]

(
∫
Y a(x, y; s)−1dy)−1 [1, 3.56]

For the RB offline stage, we propose in Sect. 3.4 a new a posteriori error estimator (38)
in order to guarantee the convergence of the Newton method. We will also check the com-
putational overhead of this new estimator compared to the (standard) a posteriori estimator

∆̃i,s
l,Tδ

:=
‖ēi,sl,Tδ‖W√

λLB
(74)

used for linear problems [3]. The offline parameters are collected in Table 2 and the com-
parison of the two estimators are shown in Table 3. We observe in this test that the offline
output using ∆l,Tδ has only one additional basis function.

Online stage: convergence rates for the P1 and P2 RB-FE-HMM. Using the
computed offline output (obtained by via ∆l,Tδ as the offline estimator), we consider a P1
FEM and a P2 FEM for the online stage. The reference solution uref ≈ u0 is obtained using
the P2 FEM with a 1024× 1024 uniform mesh.

6Recall that since the RB-FE-HMM computes the solution of the effective problem as ε → 0, the actual
value of ε is not needed in the algorithm.
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Table 2: Offline parameters
Parameter space [0, 1]2 × [0.9, 3.66]
Training set size 4400

Solver P1 FEM
Mesh 1500× 1500
tolRB 1e-10

Table 3: A posteriori estimators
∆l,Tδ ∆̃l,Tδ

Basis number 9 8
Offline CPU time 1300 1100

(a) P1 RB-FE-HMM (b) P2 RB-FE-HMM

Figure 1: Test problem (1)-(71)-(72). The errors ‖uH,RB−uref‖L2(Ω) and ‖uH,RB−uref‖H1(Ω)

versus NMAC = 1/H for the P1 RB-FE-HMM and the P2 RB-FE-HMM, respectively.

By the a priori estimates of Theorems 4.1-4.4 and the mesh size used for the offline
computation, we have the bound ∆2

l,Tδ
= O(tolRB) ∼ 10−10 for rRB and rMIC ∼ 10−7.

As we choose sampling domains with size δ = ε with periodic boundary condition we have
rMOD = 0 and we expect rHMM ∼ 10−7. We observe in Fig. 1 the expected convergence
rates with respect to the macro mesh.

RB-FE-HMM v.s FE-HMM. In this test, we compare the efficiency and accuracy be-
tween the P1 RB-FE-HMM and the P1 FE-HMM. For the P1 FE-HMM, we set NMIC =
NMAC for each refinement step (L2 refinement strategy), where NMAC and NMIC are the
numbers of macro and micro DOF in one space direction, respectively. We can see in Table 4
that the H1 and L2 errors for the two methods decay with the same rates which is consistent
with the a priori estimates. However, the RB-FE-HMM has a considerably reduced computa-
tional cost for fine meshes (up to two orders of magnitude in this example). Next we present

Table 4: Comparison between the RB-FE-HMM and the FE-HMM.
RE-FE-HMM FE-HMM

DOF H1 error L2 error online time (s) H1 error L2 error time cost (s)

5× 5 0.3727 0.0471 0.08 0.3724 0.0481 0.26
9× 9 0.2086 0.0176 0.23 0.2082 0.0167 1.59

17× 17 0.1053 0.0058 0.90 0.1052 0.0056 11.49
33× 33 0.0632 0.0013 3.82 0.0631 0.0012 160.20
65× 65 0.0316 3.15e-04 19.83 0.0316 3.03e-04 2802.68

129× 129 0.0159 7.89e-05 146.75 0.0159 7.61e-05 49260.89
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in Table 5 a comparison that takes into account the computational overhead from the offline
stage for the RB-FE-HMM. Here we have tofflineRB = 1300s and we denote the total offline and
online time by ttotalRB . We see that the FE-HMM is still significantly more expensive except for
coarse macroscopic meshes. This indicates that even for one computation, the RB-FE-HMM
can provide an important computational speed-up.

Table 5: CPU comparison between the RB-FE-HMM and the FE-HMM.
DOF tonlineRB /tFE−HMM ttotalRB /tFE−HMM

33× 33 2.38% 813.87%
65× 65 0.69% 47%

129× 129 0.3% 2.9%

6.2 Stationary Richards problem

We consider the stationary Richards equation for describing the fluid pressure in an unsatu-
rated porous media

−∇ · (Kε(x, uε(x))∇(uε(x)− x2) = f(x) in [0, 1]2. (75)

with a nonlinear permeability tensor Kε(s) similar to the one in [21, Sect. 5.1] written as

Kε(x, s) = (200αεe−(s−2−x2)2αε(x) + (x1 − 0.3)2 + x2
2 + 2)I, αε(x) =

0.005

2 + 1.8 sin(2π x2ε − 6π x1ε )
.

Notice that this problem can be cast in the form (1) by using the change of variable vε(x) =
uε(x)−x2. We set f = 1 and consider Dirichlet conditions on the top boundary of the domain
and Neumann conditions on the rest of boundaries, that is

uε(x) = 1− 1.9x2
1, on [0, 1]× {1},

n ·
(
Kε(x, uε(x))∇(uε(x)− x2)

)
= 0, on [0, 1]× {0} ∪ {0, 1} × [0, 1].

Offline stage. The parameters are given in Table 6. Similarly as explained for the previous
example, we determine an a priori range for the homogenized solution U = [0.9, 3.93]. As
the permeability tensor Kε does not have an affine representation (22), we need to apply the
EIM, which introduces another error term rEIM in rHMM , as discussed in [3] (this term can
be controlled by the prescribed tolerance tolEIM [14]).

Online stage. We plot in Fig. 2 the online solution uH,RB on a uniform 65 × 65 macro
mesh for the P1 RB-FE-HMM (left picture) and the FE-HMM (right picture). We observe
that the two solutions are very similar as expected.

We notice that the range of uH,RB is [−2.9,−1] which safely lies in our a priori range
[−3.1,−0.8]. Therefore, the offline output can be successfully used for the online computation.
In Table 7, we present the errors of the Newton method iterations and the corresponding CPU
times. Due to the quadratic convergence rate of the Newton method, only four iterations are
needed in all considered cases to reach the machine precision.
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Table 6: RB offline settings and output for the nonaffine test problem (75).
Parameter space [0, 1]2 × [−3.1,−0.8]
Training set size 4400

Mesh 1000× 1000

tolEIM 1e-6
EIM basis number 5

EIM CPU time 550.19s

tolRB 1e-9
Solver P1-FEM

RB Basis number 4
Offline CPU time 912.73s
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Figure 2: Richards stationary problem (75). The RB-FE-HMM solution and the FE-HMM
solution on a 65× 65 macro mesh.

Table 7: Richards stationary problem (75). Online CPU times and Newton iteration errors
for the RB-FE-HMM.

DOF CPU time Iteration 1 err Iteration 2 err Iteration 3 err Iteration 4 err

5× 5 0.15 2.78 0.0053 4.87e-8 1.78e-15
9× 9 0.2 2.80 0.0047 5.76e-8 5.77e-15

17× 17 0.8 2.81 0.0046 5.78-8 1.46e-14
33× 33 3.13 2.82 0.0045 5.71e-8 1.42e-14
65× 65 14.72 2.82 0.0045 5.70e-8 3.02e-14

129× 129 55.56 2.82 0.0045 5.70e-8 4.39e-14

7 Appendix

The proof of Theorem 4.1 relies on the following lemma taken from [9] and based on the
analysis for standard FEM with numerical quadrature from [11]. It is a reformulation of the
statement of Theorem 3.1 in [9], its proof is thus omitted.

Lemma 7.1. Consider u0 the solution of problem (3). Assume the assumptions of Theorem
4.1. Then, there exist r0 > 0 and H0 > 0 such that, for all tensor ã(x, s) satisfying (4), (2)
and continuous on Ω × R, for all H ≤ H0, and for all solution ũH of the nonlinear FEM
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problem

∑
K∈TH

J∑
j=1

ωK,j ã(xKj , ũ
H(xKj ))∇ũH(xKj )·∇wH(xKj ) =

∫
Ω
f(x)wH(x)dx, ∀wH ∈ S`0(Ω, TH),

(76)
provided

QH := sup
K∈TH ,xKj∈K

∥∥ã(xKj , u
H(xKj ))− a0(xKj , u

H(xKj ))
∥∥
F
≤ r0,

we have the H1 and L2 error estimates

‖u0 − ũH‖H1(Ω) ≤ C(H` +QH) if µ = 0, 1

‖u0 − ũH‖L2(Ω) ≤ C(H`+1 +QH) if µ = 1,

where C is independent of H,QH and the tensor ã.

The proof of Theorem 4.5 relies on the following result which is a reformulation of Lemma
4.11 in [9].

Lemma 7.2. Assume that the hypotheses of Lemma 7.1 hold. Assume further that ã(x, s)
is twice continuously differentiable with respect to s with derivatives continuous and bounded
on Ω× R. Then, there exists H0, R0, ν > 0, such that for

QH ≤ H ≤ H0, Q′H := sup
K∈TH ,xKj∈K

∥∥∂sã(xKj , u
H(xKj ))− ∂sa0(xKj , u

H(xKj ))
∥∥
F
≤ R0,

for all ũH solution of 7.1 and for all for all uH0 ∈ S`0(Ω, TH) satisfying

σH‖uH0 − ũH‖H1(Ω) ≤ ν,

the sequence {uHk } of the Newton method (20) applied to the problem (76) with initial value
uH0 is well defined and ‖uHk+1 − ũH‖H1(Ω) ≤ CσH‖uHk − ũH‖2H1(Ω), where C is a constant
independent of H,h, k.

Finally, for the proof of Theorem 4.3, we need to prove the Céa inequality (56) for the
problem (28)-(31).

Lemma 7.3. Assume (2) and (29). Then (56) holds with constant C0 in (57).

Proof. We denote ê = ψ̂i,sN ,Kj − ψ̂
i,s
l,Kj

and ∂sê = ∂sψ̂
i,s
N ,Kj − ∂sψ̂

i,s
l,Kj

. Considering the problem

(28)-(31) with test functions in Sq(Y,N )2 and Sl(Y ), respectively, and subtracting, we deduce
for all (zl, ζl) ∈ Sl,

b(∂sê, ζ̂l) = −
∫
Y

∂saxKj ,s(y)∇ê(y) · ∇ζ̂ldy, (77)

where the symmetric bilinear form b(·, ·) is defined in (24). Using

b(∂sê, ∂sê) = b(∂sê, ∂sψ̂
i,s
N ,Kj − ζl) + b(∂sê, ζl − ∂sψ̂i,sl,Kj ),

we obtain from the Cauchy-Schwarz inequality and (77),(29),

b(∂sê, ∂sê) ≤ b(∂sê, ∂sê)1/2b(∂sê− ζl, ∂sê− ζl)1/2 + Λ2‖ê‖W(‖∂sψ̂i,sN ,Kj − ζl‖W + ‖∂sê‖W).
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We deduce from the Young inequality and (2),

λ‖∂sê‖2W ≤ b(∂sê, ∂sê) ≤ Λ1‖∂sψ̂i,sN ,Kj − ζl‖
2
W + 2Λ2‖ê‖W‖∂sψ̂i,sN ,Kj − ζl‖W + 2Λ2‖ê‖W‖∂sê‖W

Using again the Young inequality yields

‖(ê, ∂sê)‖2W×W ≤ (1 +
2Λ1

λ
)‖∂sψ̂i,sN ,Kj − ζl‖

2
W + (1 +

8Λ2
2

λ2
)‖ê‖2W .

Finally, the application of the Céa lemma to (28) yields ‖ê‖W ≤
√

Λ1
λ infzl∈Sl(Y ) ‖ψ̂

i,s
N ,Kj−zl‖W

which permits to conclude the proof.
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3(7):13–51, 1981.

[19] S. Boyaval. Reduced-basis approach for homogenization beyond the periodic setting. Multiscale
Model. Simul., 7(1):466–494, 2008.

[20] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici. A priori convergence of the
greedy algorithm for the parametrized reduced basis. ESAIM: M2AN, 46:595–603, 2012.

[21] Z. Chen, W. Deng, and H. Ye. Upscaling of a class of nonlinear parabolic equations for the flow
transport in heterogeneous porous media. Commun. Math. Sci., 3(4):493–515, 2005.

[22] Z. Chen and T. Y. Savchuk. Analysis of the multiscale finite element method for nonlinear and
random homogenization problems. SIAM J. Numer. Anal., 46(1):260–279, 2007/08.

[23] M. Chipot. Elliptic equations: an introductory course. Birkhäuser Advanced Texts: Basler
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