
HAL Id: hal-00811481
https://hal.science/hal-00811481

Submitted on 10 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a real-time tracking of dense point-sampled
geometry

François Destelle, Céline Roudet, Marc Neveu, Albert Dipanda

To cite this version:
François Destelle, Céline Roudet, Marc Neveu, Albert Dipanda. Toward a real-time tracking of dense
point-sampled geometry. 19th IEEE International Conference on Image Processing (ICIP), Sep 2012,
Orlando, United States. pp. 381-384, �10.1109/ICIP.2012.6466875�. �hal-00811481�

https://hal.science/hal-00811481
https://hal.archives-ouvertes.fr

TOWARD A REAL-TIME TRACKING OF DENSE POINT-SAMPLED GEOMETRY

F. Destelle, C. Roudet, M. Neveu, A. Dipanda

LE2I Laboratory UMR-CNRS 5158, University of Burgundy

ABSTRACT

In this paper, we address the problem of tracking temporal

deformations between two arbitrary densely sampled point-

based surfaces. We propose an intuitive and efficient reso-

lution to the point matching problem within two frames of a

sequence. The proposed method utilizes two distinct space

partition trees, one for each point cloud, which both are de-

fined on a unique discrete space. Our method takes advantage

of multi-resolution concerns, voxel adjacency relations, and a

specific distance function.

Experimental results obtained from both simulated and real

reconstructed data sets demonstrate that the proposed method

can handle efficiently the tracking process even for very large

point clouds. Moreover, our method is easy to implement and

very fast, which provides possibilities for real-time tracking

applications.

Index Terms— Computer Vision, 3D Processing

1. INTRODUCTION

Recovering the temporal evolution of arbitrary deformable

objects offers a large variety of applications in computer vi-

sion, ranging from the motion capture of human or animal

bodies to the analysis of complex dynamic systems. Motion

tracking yields temporal correspondences between captures

of the moving objects at several instants, because it pro-

vides correspondences between the scene captures at several

instants. Nowadays, acquisition systems usually produce

dense point-sampled representations of an observed scene

at high rates.

Existing markerless motion capture methods differ mostly

in the prior knowledge of the observed shapes and in the

nature of the input data sets. Numerous works focus on mo-

tion analysis of specific subjects, namely human bodies [1]

or faces [2]. These approaches benefit from a strong prior

knowledge by using a reference model, e.g. an articulated

skeleton.

In contrast, non knowledge-based methods try to build a

displacement field between different frames without any

assumption on the observed 3D scene. Among these, point-

based approaches consider a sequence of point clouds as

input, usually without any other additional information such

as photometric measures or shape reference. Recently, many

works have focused on a large temporal sequence of cap-

tures [3, 4], involving densely sampled time-varying data

sets. Applications of these methods can be ranged from data

reconstruction to consistent temporal shape tracking. Al-

though especially robust, these techniques are not designed

to interactively handle the tracking of large point clouds.

Another kind of method aims to establish a correspondence

between only two subsequent frames of a sequence. Within

this context, Vedula et al. initially introduced the 3D scene

flow [5] as a generalization of the classical two-dimensional

optical flow and proposed to apply this method on 3D colored

voxels [6]. The motion of each point in a cloud is described

with local differential methods, thus limiting the analysis of

small displacements between successive frames. De Aguiar

et al. [7] proposed a volume decomposition technique based

on ellipsoidal shells, each one containing a set of voxels. The

tracking method is then assured by a matching of these ellip-

soids between two frames. Cmolik et al. [8] presented several

morphing techniques applied to point-sampled surfaces. The

authors introduced a system based on a spatial clustering of

the scene relative to principal component analysis of points

contained in each voxel. However, some problematic cases

cannot be handled, depending of the object geometry and the

space clustering.

In this paper, we present a general point cloud tracking

method without any prior knowledge on the observed 3D

scene. We propose a voxel-based method suited to the ef-

ficient tracking of deformable shapes over small-time step

captures. This framework is designed to handle the tracking

of arbitrary dense point clouds. We show in Figure 1 an

overview of the main steps of our algorithm. The system

expects two point clouds as input, which are acquired from

a dynamic 3D scene. In the first step, the point clouds are

embedded in a common voxel discrete space. We consider

two regular octrees as space partition structures. Then, cor-

respondences between voxels are established by means of a

dynamic programming method, the voxel matching algorithm

(Section 2). We eventually refine this flow using a regular-

ization step (Section 3) which employs simple and efficient

algorithms. Finally, we handle a point correspondence as-

signment step (Section 4), related to the ICP algorithm [9],

in order to generate a dense scene flow that describes the

movement of each point of the sampled surface over time.

Common space Level 2 Level 5 3D Scene flow

Fig. 1. Major steps of our tracking algorithm computed from the red point cloud (a plane) to the blue one (a wave) : we first

generate the common discrete space. We then make use of a multiresolution regular voxel grid (illustrated for the levels 2 and 5)

on which we compute a discrete scene flow to obtain a dense point-to-point matching which can describe complex deformations.

2. OUR VOXEL MAPPING ALGORITHM

The first step of our method is the discretization of the ob-

served scene. In contrast with previous works [7, 8] we pro-

pose to build a common and regular voxel space. This unique

discrete space allows to benefit from consistent adjacency

relations and the application of several filtering processes

described in Section 3.

Notations Let Ni, i ∈ [[1, N]], be the point cloud sequence,

where each point cloud contains ni points in R
3. Considering

two particular clouds N1 and N2, we aim to estimate a path

from the former to the latter. Let O1 and O2 be two regular

octrees defined respectively by the voxel sets Un and Vn for

each resolution n, where the root cells U0 and V0 correspond

to the bounding box of the point sets N1 and N2. We further

embed the cloud N1 into the first space partition O1, and N2

into O2. These octrees are said regular regarding their subdi-

vision process, we use the center of a cell as the cut point. As

a result, the voxels of each octree share the same geometric

sites but they do not contain the same data set. Now consider

a subdivision level s ∈ [[0, S]], and let (Us,Vs) be the level

s non-empty cells of (O1,O2). We define the level s voxel

mapping as Ms : Us → Vs. The maximum level S is kept

user defined, we have fixed S = 6 for all our tests.

2.1. Voxel Distance Function

We define the mapping Ms by minimizing a distance mea-

sure between the two voxel sets (Us,Vs). Data voxeliza-

tion implies the mapping of a surface defined locally by the

points contained in each voxel. In order to describe a piece

of surface, we compute in each voxel a tangent plane that

approximates the point cloud. This estimation is performed

by a momentum analysis. In this framework, the compari-

son of two piecewise linear surfaces contained in the voxels

(u, v) ∈ (Us,Vs) is equivalent to the evaluation of two cou-

ples (point-vector). For a couple of voxels (u, v), we consider

two centers of mass (gu, gv) and two tangent plane normals

(nu, nv). Our distance measure is defined as ∆(us, vs) =
δ(us, vs) + ϕ(us, vs), where:







δ(u0, v0) = ‖ −−→g0g0 ‖
δ(us, vs) = | ‖ −−→gugv ‖ − δ(us−1, vs−1) |
ϕ(us, vs) = 1− | nu . nv |

.... (1)

We added an important hierarchical flow penalization: a

flow computed for a subdivision level s is not supposed to

highly deviate from the coarser level s − 1 flow. Aside this

voxel-based hierarchical concern, this measure is related to

several others described in [9].

2.2. Discrete Scene Flow

We aim to build a set of vectors Xs which defines the voxel-

to-voxel flow: Xs : {xu = −−→gugv | (u, v) ∈ Ms}, considering

the center of mass of each voxel. Our approach is based on

a bipartite graph resolution, thus we choose to apply a slight

variation of the well-known Hungarian algorithm.

As stated beforehand, this algorithm is based on hierarchical

concerns and voxel adjacency relations. In the first step, the

two root cells u0 and v0 are paired: X0 = {−−−−→gu0
gv0

}. Then, for

an octree subdivision level s, each cell us needs to be mapped

with a cell vs. The candidate cells vs we chose are defined

by a constant spatial area in the octree O2. This area is com-

posed of two sets in Vs:

1. Adjacent neighbors of us in O2, thus among 27 cells vs.

2. Assuming that us−1 has been mapped with vs−1, we con-

sider v1s−1
as the 1-neighborhood of vs−1. The second set is

composed by the cells issued from the subdivision of v1s−1
.

This set of candidates relies heavily on the octree hierarchy.

This concern allows the definition of a constant research area

for any subdivision level s, implying a very low computa-

tional complexity. Moreover, this search area can be far away

from the current voxel us, thus a high subdivision level s does

not limit our method to low amplitude deformations.

3. SCENE FLOW REGULARIZATION

Evaluation and Filtering It is a difficult problem to evaluate

the overall quality of a scene flow. We propose to use the

gradient magnitude as a local quality measure related to the

vector flow homogeneity (or regularity). This gradient G(u)
is computed like the classical image gradient operator for our

3D vector field xu ∈ X ,

G(u) = xu − 1

|u1|

∑

w∈u1

xw , (2)

(a) (b) (c)

Fig. 2. Our algorithm implies that every cell of the first oc-

tree (red color) is mapped with a cell of the second one (blue

color). (a) Reverse mapping algorithm is a mirrored version

of (b). (c) The two coupled flows form a complete bipartite

correspondence between two frames.

where the voxels u1 constitute the 1-neighborhood of u. This

value highlights locally the sites where a mapping vector acts

as an outsider, denoting a probable failure of our algorithm.

Hence we propose to detect and filter these sites of high gra-

dient magnitude. The filtering threshold can be determined

automatically, but we assume in this work that it is kept user

defined.

Diffusion Process The result of our algorithm is not supposed

to find a map for every cell us. This concern is significant,

since our algorithm, casted on an octree subdivision level s,

relies on the results obtained for the precedent level s − 1,

see Section 2.1. Our diffusion process allows to assure the

mapping of each cell of a subdivision level before progressing

to the next one. It is defined by a simple operation: for each

cell us for which our algorithm has not found any map, we

search the best candidate ws among the cells mapped with its

1-neighborhood which minimize ∆(us, ws), (u
1

s, ws) ∈ Ms.

The reverse Mapping Application of our algorithm implies

a state where every voxel of O1 is mapped with a voxel of

O2. Besides this concern, we need to assure that each voxel

of O2 is reached by at least one mapping vector. Unless this

assumption, we face problematic cases where some parts of

the target shape could not be described by a deformation of

the initial one. To tackle this problem without adding much

complexity to our method, we propose to mirror the mapping

process, see Figure 2. Once is performed our first mapping

step, we apply the same voxel mapping algorithm from O2

to O1. In consequence, our double vector flow implies that

several voxels us ∈ Us can be mapped with a single voxel

vs ∈ Vs, and several voxels vs can be mapped with a unique

voxel us.

4. MOTION TRACKING

Once our voxel mapping algorithm has built the global voxel-

to-voxel vector mapping X , the final step of our framework

is to define the dense point-to-point 3D scene flow Mp. Our

system uses an efficient approach involving a local geometric

warping by a noniterative quaternion transform [10]. For each

voxel, we consider the local point set orientation given by

the momentum analysis computed in Section 2.1. We project

each point from a voxel uS on the local basis oriented by the

point set of its associated voxel vS , (uS , vS) ∈ MS . From

this point, we apply the same Hungarian algorithm we used

in Section 2.2 to map each point of the couple (uS , vS). This

step of our algorithm considers only the last octree subdivi-

sion level S, thus we can easily afford this naive mapping

approach since we assume that uS does not contain a large

amount of points.

5. RESULTS AND DISCUSSION

We present here an application of our tracking algorithm

framework throughout the temporal up-sampling of point

cloud sequences. Such application can be used to realize

slow motions for a dynamic capture, or to enhance the overall

fluidity of an animation. We used both computer generated

scenes and real reconstructed scan data sets. In Figure 3, our

input data set is composed of two frames of the sequence

Samba from the MIT CSAIL group: the frames 120 and 124.

The morphing between these two frames was handled by a

linear interpolation of the first point cloud along the dense 3D

scene flow produced by our algorithm. We show here four

incremental morphing steps from 0% (first frame) to 100%
(second frame). In Figure 4, we present the same kind of

morphing on the synthetised model Hand. Results show vi-

sually plausible oversampled frames, although some defects

can be seen. In Figure 3, the red square highlights an impor-

tant global topology change. Our system handled these cases

by the creation of two holes in the point cloud, where each

frontier is morphed to the other. In Figure 4, the red squares

show that, despite a correct behavior of our technique, a sim-

ple linear interpolation cannot handle well the large non-rigid

deformations.

We present a quantitative evaluation in Table 1. In order to

evaluate the quality of our tracking, we use the Hausdorff

distance between each oversampled frame taken at 50% mor-

phing and a ground truth. In Figure 3 the ground truth is

the known frame 122, and we have generated the second

one in Figure 4. In our tests, the mean error is inferior to

one percent of the model height. Our framework achieves

very high computational performances compares to the pre-

vious point-based and mesh-based tracking methods. All

reported running times are for a C implementation running

on a 2.40GHz Intel Xeon processor. We stand that simple

code optimizations, e.g. involving parallel computing, can

orient our framework toward a real-time application.

Our algorithm is highly flexible, easy to implement, and can

handle relatively large non-rigid deformations. The extreme

generality of this method presents inherent limitations, but

it can profitably orient a more complex tracking framework,

e.g. a skeleton-based approach. Our future works will focus

on this concern, the use of our method as a fast preprocessing

step to a more robust and complete tracking method.

Frame 120 20% 40%

Frame 124 80% 60%

Fig. 3. MIT CSAIL model Samba: up-sampling from the

frame number 120 to the frame 124 by 20% morphing incre-

ments.

Mapping Error

Model Size Voxels Points Max Mean

Samba 215588 260 370 5.3% 0.83%
Hand 634694 430 640 7.7% 0.98%

Table 1. Performance benchmark of several scene tracking

displayed in Figures 3,4. Values are in milliseconds.

6. ACKNOWLEDGMENTS

This work was supported by the Regional Council of Bur-

gundy within the PARI SSTIC5 project.

7. REFERENCES

[1] Thomas B. Moeslund and Erik Granum, “A survey of

computer vision-based human motion capture,” Com-

puter Vision Image Understanding, vol. 81, pp. 231–

268, March 2001.

[2] Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly,

“Realtime performance-based facial animation,” ACM

Transactions on Graphics (Proceedings SIGGRAPH

2011), August 2011.

[3] Michael Wand, Bart Adams, Maksim Ovsjanikov,

Alexander Berner, Martin Bokeloh, Philipp Jenke,

Frame 1 20% 40%

Frame 3 80% 60%

Fig. 4. Generated frames of the Hand: an open surface model.

We morphed the frame 1 to the frame 3, and kept the frame 2
as a ground truth for the distance evaluation test.

Leonidas Guibas, Hans-Peter Seidel, and Andreas

Schilling, “Efficient reconstruction of non-rigid shape

and motion from real-time 3D scanner data,” ACM

Transactions on Graphics, vol. 28, no. 2, pp. 15:1–

15:15, 2009.

[4] Will Chang and Matthias Zwicker, “Global registra-

tion of dynamic range scans for articulated model recon-

struction,” ACM Transactions on Graphics, to appear,

vol. 30, no. 3, 2011.

[5] Sundar Vedula, Simon Baker, Peter Rander, Robert T.

Collins, and Takeo Kanade, “Three-dimensional scene

flow,” in International Conference on Computer Vision,

1999, pp. 722–729.

[6] Sundar Vedula, Simon Baker, Steven Seitz, and Takeo

Kanade, “Shape and motion carving in 6d,” in IEEE

Conference on Computer Vision and Pattern Recogni-

tion, 2000, pp. 592–598.

[7] Edilson de Aguiar, Christian Theobalt, Marcus Magnor,

Holger Theisel, and Hans-Peter Seidel, “M3: Marker-

free model reconstruction and motion tracking from 3d

voxel data,” in Proceedings of Pacific Graphics 2004,

2004, pp. 101–110.

[8] Ladislav Cmolı̀k and Miroslav Uller, “Point cloud mor-

phing,” in Proceedings of the 7th Central European

Seminar on Computer Graphics, 2003, pp. 97–105.

[9] Szymon Rusinkiewicz and Marc Levoy, “Efficient vari-

ants of the ICP algorithm,” in Third International Con-

ference on 3D Digital Imaging and Modeling (3DIM),

june 2001.

[10] Shinji Umeyama, “Least-squares estimation of transfor-

mation parameters between two point patterns,” IEEE

Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 13, pp. 376–380, April 1991.

