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Gelatine has often been used as an analogue material to model the propagation of magma-filled fractures in the Earth's brittle and elastic crust. Despite this, there are few studies of the elastic properties of gelatine and how these evolve with time. This important information is required to ensure proper scaling of experiments using gelatine. Gelatine is a viscoelastic material, but at cool temperatures (T r ∼5-10 • C) it is in the solid 'gel' state where the elastic behaviour dominates and the viscous component is negligible over short to moderate timescales. We present results from a series of experiments on up to 30-litres of maximum 30 wt% pigskin gelatine mixtures that document in detail how the elastic properties evolve with time, as a function of the volume used and gel concentration (C gel ). Gelatine's fracture toughness is investigated by measuring the pressure required to propagate a pre-existing crack. In the gel-state, gelatine's Young's modulus can be calculated by measuring the deflection to the free-surface caused by an applied load. The load's geometry can effect the Young's modulus measurement; our results show its diameter needs to be 10% of both the container diameter and the gelatine thickness (H gel ) for side-wall and base effects to be ignored. Gelatines Young's modulus increases exponentially with time, reaching a plateau (E ∞ ) after several hours curing. E ∞ depends linearly on C gel , while T r , H gel and the gelatine's thermal diffusivity control the time required to reach this value. Gelatine's fracture toughness follows the same relationship as ideal elastic-brittle solids with a calculated surface energy γ s = 1.0 ±0.2 J m -2 . Scaling laws for gelatine as a crustal analogue intruded by magma (dykes or sills) show that mixtures of 2-5 wt% gelatine cured at ∼5-10 • C ensure the experiments are geometrically, kinematically and dynamically scaled.
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Abstract

Gelatine has often been used as an analogue material to model the propagation of magma-filled fractures in the Earth's brittle and elastic crust. Despite this, there are few studies of the elastic properties of gelatine and how these evolve with time. This important information is required to ensure proper scaling of experiments using gelatine. Gelatine is a viscoelastic material, but at cool temperatures (T r ∼5-10 • C) it is in the solid 'gel' state where the elastic behaviour dominates and the viscous component is negligible over short to moderate timescales. We present results from a series of experiments on up to 30-litres of maximum 30 wt% pigskin gelatine mixtures that document in detail how the elastic properties evolve with time, as a function of the volume used and gel concentration (C gel ). Gelatine's fracture toughness is investigated by measuring the pressure required to propagate a pre-existing crack. In the gel-state, gelatine's Young's modulus can be calculated by measuring the deflection to the free-surface caused by an applied load. The load's geometry can effect the Young's modulus measurement; our results show its diameter needs to be 10% of both the container diameter and the gelatine thickness (H gel ) for side-wall and base effects to be ignored. Gelatines Young's modulus increases exponentially with time, reaching a plateau (E ∞ ) after several hours curing.

E ∞ depends linearly on C gel , while T r , H gel and the gelatine's thermal diffusivity control the time required to reach this value. Gelatine's fracture toughness follows the same relationship as ideal elastic-brittle solids with a calculated surface energy γ s = 1.0 ±0.2 J m -2 . Scaling laws for gelatine as a crustal analogue intruded by magma (dykes or sills) show that mixtures of 2-5 wt% gelatine cured at ∼5-10 • C ensure the experiments are geometrically, kinematically and dynamically scaled.
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Research Highlights

• 2-5wt% gelatine mixtures at 5-10 • C are good crustal analogues for dyke or sill experiments

• The Young's modulus gelatine solutions evolves with time to a plateau

• This Young's modulus plateau correlates linearly with gelatine concentration

• The time to plateau depends on the room temperature, gelatine thickness and its thermal diffusivity

• Gelatine's fracture toughness has a surface energy of γ s = 1.0 ± 0.1 Jm -2

A C C E P T E D M A N U S C R I P T

iments that meet these criteria can be considered a laboratory-scale version 6 of the natural counterpart. In this paper we detail a series of experiments 7 carried out to document the properties of gelatine, a widely used analogue for 8 the Earth's crust.

9

Gelatine is an ideal analogue for those modelling homogeneous, isotropic and 10 elastic materials, for example it has been used by mechanical engineers (e.g.Crisp 11 (1952); Richards and Mark (1966)) and as a biological tissue analogue in the 12 medical sciences (e.g. Righetti et al. (2004)). The use of gelatine in geological 13 sciences has taken advantage of both its elastic and viscous properties, prov-14 ing especially fruitful in developing our understanding magmatic intrusions 15 (dykes and sills) of volcanic feeder systems and their propagation dynamics 16 in the Earth's brittle and elastic crust (e.g. Fiske and Jackson (1972); Pol-17 lard (1973); Pollard and Johnson (1973); Maaløe (1987); Hyndman and Alt 18 (1987); [START_REF] Mcguire | Location and orientation of eruptive fissures 707 and feeder dykes at Mount Etna; influence of gravitational and regional 708 tectonic stress regimes[END_REF]; Takada (1990); Heimpel and Olson (1994);

19 Takada (1994); [START_REF] Mcleod | The growth of dykes from magma chambers[END_REF]; Takada (1999); Dahm (2000); Muller -Murphy, 1992;[START_REF] Nelson | Dynamic mechanical analysis using complex wave-725 forms[END_REF][START_REF] Mezger | The Rheology Handbook[END_REF]. For 78 gelatine, this marked change in mechanical properties can be brought about 79 by changing the extent of deformation (strain) or temperature; the gel-point 80 itself depends on time, temperature and concentration [START_REF] Askeland | The Science and Engineering of 643 Materials[END_REF]81 Di Giuseppe et al., 2009).

82

The focus of this paper will be on the ideal-elastic behaviour of gelatine.

83

When a 2.5 wt% gelatine mixture at 10 

A C C E P T E D M A N U S C R I P T E = M L g(1 -ν 2 ) D L w , ( 2 
)
121
where D L is the diameter (m) of the cylindrical load, M L is its mass (kg), w 122 is the displacement (m) caused, and g is the gravitational acceleration. base. The blade measured 20 cm in length with a 1 cm thickness at its base.

178

Once the gelatine had solidified, the blade was carefully removed thus creating 179 an empty edge-crack in the gelatine solid. Both the crack and the remaining 180 part of the tank were then filled with water, and the tank was overturned so 181 that in its final position the crack was oriented vertically and at the bottom 182 of the gelatine solid (Figure 2a). An outlet enabled water to bleed off any needed to propagate the initial crack was recorded, as summarised in Table 3.

205

The fracturing of the gelatine solid was analysed within the Linear Elastic 

S xx = (x -x) 2 S yy = (y -y) 2 S xy = (x -x)(y -y), (4) 
256 σ z = σ 0 1 - 8z 3 (1 + 4z 2 ) 3/2 , ( 5 
)
257
where z has been normalised by the diameter of the load D L . Following this 258 expression, the stress induced by the load at a depth ten times its diameter is 259 only 0.4% of that imposed by the load at the surface.

260

We therefore recommend that both the lateral and vertical dimensions of the 261 container be at least ten times the diameter of the load to avoid both container 262 sidewall and base effects. , 2003), where the relative error is expressed as:

267 ∆E E = ∆M M 2 + ∆D L D L 2 + ∆w w 2 , ( 6 
)
268
where:

269 w = β + X 1 -X 0 . ( 7 
)
270 β is the thickness of the load, X 0 is the distance to the unloaded surface and X 1 271 is the distance to the surface of the applied load (both X 1 and X 0 are measured 272 relative to a fixed point of reference). Values of M, D L , β, X 1 and X 0 used in 273 the calculation are averages of three separate and successive measurements. based on a total of 294 measurements of X 0 and X 1 . In order that all the 290 measurements for each experiment could be considered in the analysis, a data 291 weighting process was carried out.

292

To account for the uncertainties associated with each Young's modulus mea-293 surement, the data were weighted (W ) taking into account both the precision 294 of the measurement and also the applied load used to take the measurement.

295

Table 4 shows the quantitative weightings (depending on the uncertainty in 296 E; W ∆E ) and qualitative weightings (depending on the applied load used; 297 W ∆Load ).

298

Weighting the Young's modulus data was straightforward, with high precision 299 data (∆E/E <5%) being weighted most highly (W ∆E = 8). In comparison, 300 weighting the applied loads could only be done qualitatively. Loads 1, 2 and 301 8-11 had low weightings (W ∆Load = 1 or 2) as these had the highest D L /D C 302 values and so their data were most likely to suffer from container sidewall ef-303 fects (see Figure 3). Loads 6 and 7 were also weighted poorly (W ∆Load = 2 and 304 4, respectively), as their relatively high thicknesses causing stability issues).

305

Load 5 exerted the lowest pressure and so inflicted only a small deflection to 306 the gelatine surface; this deflection became increasingly small (and so mea-307 sured with higher uncertainty) as the gelatine's Young's modulus increased 308 during cooling. Therefore, Load 5 was weighted relatively low (W ∆Load = 4). with loads 3-8, so that in these experiments the height of gelatine was at 345 least 2.7 times as large as the greatest load diameter. Therefore, according to The thermal diffusivity of gelatine is assumed to be that of its solvent, that 406 is water: κ = 1.4 10 6 m 2 s -1 . The different containers used in the Young's 407 modulus experiments were made of PMP, PP or Perspex (PMMA), and the 408 thermal diffusivity for these thermoplastic polymers is about 10 -7 m 2 s -1 , one 409 order of magnitude lower than that of gelatine. Therefore, to a leading order, 410 a gelatine solid cools down by conducting its heat through its upper surface, 411 and the time t needed for thermal equilibrium is:

333 E = E ∞ (1 -e -t τ ), (9 
412 t = H 2 gel κ , ( 10 
)
413
where H gel is the height of the gelatine solid in the container. Figure 8 The stress intensity factor K I at the tip of a two-dimensional, edge crack of 424 height h can be expressed as: and Das, 1971;Lawn, 1993;[START_REF] Menand | The propagation of a buoyant liquid-filled fissure 718 from a source under constant pressure: an experimental approach[END_REF], and

425 K I = α ∆P √ πh, ( 12 
) 426 A C C E P T E D M A N U S C R I P T boundary (Sneddon

428

∆P denotes the averaged excess pressure within the crack:

429 ∆P = 1 h h 0 ∆P (z) dz, ( 13 
)
430
where z is the vertical distance with origin at the reservoir-gelatine interface 431 (Figure 2a). Determining the value of α is a mixed problem, which simplifies 432 when the edge of the elastic solid is a free boundary (Sneddon and Das, 1971),

433
as was the case in our experiments. We measured the value of the coefficient α 434 using the method of Sneddon and Das (1971), summarized in the Appendix.

435 Griffith (1921) and Irwin (1957) showed that the fracture toughness K c of 436 an ideal elastic and brittle solid is related to its Young's modulus E by the 437 following theoretical relationship:

438 K c = 2γ s E, ( 14 
)
439
where γ s is the surface energy of the solid. This is the energy required to create 440 a unit surface area within that solid, and is thought to depend only on the 441 composition and temperature of the solid (Griffith, 1921).

442

The calculated values of gelatine fracture toughness are shown in Figure 9.

443 Despite some scattering, we find that equation 14 fits reasonably well these 444 values, and that our best fit is:

445 K c = (1.4 ± 0.1) √ E. ( 15 
)
446 This equation and Figure 9 show that provided the viscous behaviour of gela-447 tine solids is negligible and deforms essentially elastically, gelatine solids be- 

451

We find a best estimate for the gelatine surface energy:

452 γ s = 1.0 ± 0.2 J m -2 . ( 16 
)
453

Remarkably, this value is similar to the surface energy of brittle monocrystals 454 such as diamond (γ s = 6 J m -2 ), silicon (γ s = 1.2 J m -2 ), silicon carbide 455 (γ s = 4 J m -2 ), silica (γ s = 1 J m -2 ), sapphire (γ s = 4 J m -2 ), magnesium 456 oxide (γ s = 1.5 J m -2 ), or lithium fluoride (γ s = 0.3 J m -2 ) (Lawn, 1993).

457

We note, however, that in principle γ s should depend on the composition and and tip (Lister and Kerr, 1991;Taisne and Tait, 2009). In this case the reduced 498 gravity (g ) is the relevant parameter for scaling the dyke driving force:

499 g = ∆ρ ρ solid g. ( 18 
)
500

The timescale for the experiments is obtained by combining L b (equation 17)

501
and g (equation 18): and from this the dyke velocity scale follows easily:

502 T = L b g = ρ 1 2 solid K 1 3 c (∆ρg) -5 6 , (19) 
504 U = L b T = (∆ρg) 1 6 K 1 3 c ρ -1 2 solid . ( 20 
)
505

This approach provides the appropriate scales (length, time and velocity) for 506 each experiment, as one varies one parameter or another, and so provides the 507 appropriate scaling factors L * = L l Ln , T * = T l Tn and U * = U l Un :

508

L * = K * c ∆ρ * 2 3 , ( 21 
) 509 T * = ρ * 1 2 solid K * 1 3 c (∆ρ * ) -5 6 , ( 22 
) 510 U * = (∆ρ * ) 1 6 K * 1 3 c ρ * -1 2 solid , ( 23 
)
511
where * refers to the ratio of the parameter values measured at the laboratory 512 (subscript l) and natural (subscript n) scale.

513

A C C E P T E D M A N U S C R I P T P b = ∆ρgL b , ( 24 
)
515 which leads to deformation of the host medium around the head of the dyke.

516

The elastic pressure scale (P e ) associated with this deformation is:

517

P e = E 2(1 -ν 2 ) ψ L b , ( 25 
)
518

where E and ν are the Young's modulus and Poisson's ratio of the elastic host, 519 respectively, and ψ is the thickness (i.e. the opening) of the dyke head. These 520 two stress scales balance each other during dyke propagation (e.g. Lister and 521 Kerr (1991)), which gives:

522 E = 2(1 -ν 2 )∆ρg L 2 b ψ . ( 26 
)
The Poisson's ratio for gelatine solids is ν 0.5, whereas that of rocks lies to n linear equations:

628 Λ(x i ) - n j=1 w j L(x i , x j )Λ(x j ) = 2 π x i 0 f (s) ds x 2 i -s 2 , (i = 1, 2, ..., n), ( 37 
)
629 to be solved in order to determine the values Λ(x 1 ), Λ(x 2 ), ..., Λ(x n ), using 630 the values x 1 , x 2 ,..., x n and their respective weights w 1 , w 2 , ..., w n (as listed in Table 52.8 from [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]). The value of α is then:

632 α = Λ(1) = 2 π 1 0 f (s) ds √ 1 2 -s 2 + n j=1 w j L(1, x j )Λ(x j ). ( 38 
)
633

The gelatine fracture toughness K c was then equated with the stress intensity Table 3: The values of gelatine fracture toughness K c determined from eight successful experiments. z l is the level of the air-water interface within the crack just prior to its propagation; z l = 0 when the crack is full of air. ∆P is the corresponding averaged excess pressure. The gelatine and water densities, ρ g and ρ w , were both measured to within 4 kg m -3 and 1 kg m -3 , respectively, and the air level z l to within 2.5 mm. The crack was initially 5.0 ± 0.2 cm high in all experiment, except in experiment 129 where it was 10 cm high. 2) and five container sizes (Table 1). In the region D L /D C >10% (unshaded) each experiment individually shows a positive correlation between E and D L /D C (see legend for Pearson product-moment correlation coefficients), indicating interaction between the load and container could produce artificially high calculated Young's moduli. Where D L /D C 10% (shaded) there appears to be no correlation between E and D L /D C , and here sidewall affects can be neglected. When no error bars can be seen, the error is smaller than the symbol size. 2). Error bars show the uncertainty in E increases with time.

Figure 5. Young's modulus evolution with time of 4-litres of 2.5 wt% gelatine stored at 5 • C (Experiment 25). The Young's modulus was calculated from the deflection caused to the gelatine surface by a range of applied loads (loads 3-8; see Table 2). An exponential relationship best fits the data (E = E ∞ (1e -t τ )), where E ∞ =7003 Pa and τ =19 hr). E increases with time to an "effective plateau" (0.9E ∞ ) of 6300 Pa after 44 hours curing (t 0.9E∞ ). The best-fit model (solid line) takes into account all measurements weighted according to ∆E/E and the load used (see Table 4). The outliers at ∼55 hours and ∼98 hours are from Load 7; these data have low weighting on the fitted trend due to this load having high thickness and small diameter that caused stability issues. (Experiments 16,(25)(26)(27)(28). Each test volume was 4-litres and was kept at 5 • C (T r ) in an equivalent container. The best-fit model indicates there is a positivelinear correlation (R 2 = 0.9992) between E ∞ and C gel . More concentrated gelatine mixtures reach a higher Young's modulus plateau.

Figure 7. Relationship between the modelled Young's modulus plateau (E ∞ ±∆E ∞ ) and gelatine mixture volume V gel for 2 wt% gelatine mixtures cured at 5 • C (Experiments 13-19). The mean E ∞ (dashed line) is shown and is most closely modelled by the 4-litre experiment (Experiment 16). The Pearson product-moment correlation coefficient (r = 0.64) indicates there is little or no correlation between E ∞ and V gel . Gelatine mixtures of the same concentration (C gel ) evolve to the same E ∞ ±500 Pa independent of volume.

Figure 8. Comparison of the time t 0.9E∞ needed to reach 90% of the Young's modulus plateau E ∞ , with the conductive cooling time H 2 gel /κ given by equation 10. Data points correspond to experiments 13 to 19 and 25 to 28 (Table 1). These experiments had gelatine concentrations between 2wt% and 5wt%, and were all cured at 5 • C. The plateau time appears to correlate linearly with the cooling time: the curve is the best linear fit, t 0.9E∞ (29.0 ± 8.7) + (2.6 ± 1.2) )LJXUH

20

  photoelastic properties of gelatine have been of particular use to experimental 26

107

  quired to produce a clear and transparent mixture which hinders bacterial 108 growth, which would otherwise produce a cloudy appearance to the gelatine 109 solid. This hot mixture was then poured into a specified container and any 110 bubbles were removed from the surface using a spoon. To prohibit the for-111 mation of a toughened 'skin' on the gelatine surface by water evaporation, a 112 thin layer of vegetable oil was poured on top. The container was then placed 113 into a temperature-controlled cold room at 5-10 • C (T r ), and the mixture 114 temperature (T 0 ) and time were recorded. The gelatine was left in the cold 115 room for several hours until the mixture temperature had equilibrated with 116 the surroundings. 117 One way of calculating the gelatine's Young's modulus is to measure the de-118 flection imposed by a load applied to the gelatine's surface (Timoshenko and 119

183

  excess pressure in the lower part of the tank, and so ensured the water pres-184 sure balanced precisely with the weight of the overlying gelatine. Thus there 185 was no excess pressure within the crack. Moreover, the initial state of stress 186 within the gelatine solid was hydrostatic. (The gelatine solid adheres to the 187 tank walls and so there is no horizontal strain, x = y = 0. Using Hooke's law, 188 the relationship between the three stress components isσ x = σ y = ν (1-ν) σ z ;189 and given that gelatine has a Poisson's ratio ν = 0.5, σ x = σ y = σ z .) 190 These fracture toughness experiments were carried out at a room temperature 191 of 19 ± 2 • C. At the beginning of an experiment, the Young's modulus of the 192 gelatine was measured as described in Section 3.1 (using a load with diameter 193 approximately one tenth of the tank width). The crack excess pressure was 194 A C C E P T E D M A N U S C R I P T the crack (Figure 2b). During this injection of air, any excess water bled off 196 ensuring that only the crack buoyancy increased; the excess pressure in the 197 other water-filled part of the tank remained nil. As more air entered the crack, 198 its buoyancy increased until it was sufficient to fracture the gelatine at the tip 199 of the crack (Figure 2c). The process was recorded by video camera, and 200 from this video record the exact amount of air that was present within the 201 crack just prior to the gelatine fracture was measured. The Young's modulus 202 of the gelatine was systematically varied between experiments, by changing 203 the concentration of gelatine used during preparation, and the amount of air 204

206FractureFigure 3

 3 Figure3shows the relationship between the calculated Young's modulus and 229

238

  and x and y are experimentally determined variables (in this case E and 239 D L /D C ). The correlation coefficient ranges from -1 to +1; r=+1 indicates 240 a positive linear correlation, r=-1 suggests a negative linear correlation, and 241 A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT r=0 when no correlation is found. In the region D L /D C >10% the results 242 show a strong positive correlation (r 0.65), implying interaction between the 243 applied load and container walls is producing artificially high Young's modulus 244 calculations (an exception is experiment 3, where r=0.38). However, when 245 D L /D C <10% the correlation is poor and in this region the experimentalist can 246 be confident of avoiding sidewall effects. Providing this is the case, equation 2 247 holds and can be used to calculate the Young's modulus of the gelatine. Note 248 that from the experiments shown, only experiments with a larger volume (20-249 30 litres) with Young's modulus measured with loads 3-8 fall into this category. 250 The Young's modulus measurements may also be affected by the distance to 251 the base of the experimental container. If we assume the gelatine is semi-252 infinite and behaves as a purely elastic solid, we can estimate the stresses 253 variation with depth induced by a load applied to the surface. The largest 254 stress component induced by a load σ 0 is the vertical component σ z , which 255 can expressed as (Timoshenko and Goodier, 1970):

  263 A C C E P T E D M A N U S C R I P T The uncertainty associated with the Young's modulus (equation 2) was cal-265 culated according to the principles of the 'Propagation of Errors' (Bevington 266 and Robinson

  274 β, X 1 and X 0 have independent random errors such that calculated values of 275 w have an absolute error (∆w): 276 ∆w = ∆β 2 + ∆X 1 the 'compound uncertainty' associated with each measurement 278 of w is calculated as ±0.3 mm. As the Young's modulus of the gelatine in-279 creases with time, correspondingly the deflection caused by the applied load 280 decreases. Therefore the magnitude of w relative to ∆w increases with time, as 281 does the compound uncertainty associated with E (∆E/E). This is illustrated 282 by the increasing size of the Young's modulus error-bars with time (Figure 4).

  283 A C C E P T E D M A N U S C R I P T At each time interval, E was calculated using the deflection caused by each 285 individual load (an average of three successive measurements). So for example, 286 the complete dataset from experiment 25 (4-litres of 2.5 wt% gelatine; Figure 287 5) comprised 14 time intervals at which the Young's modulus was measured 288 by loads 3-8 (where possible). The Young's modulus calculations were thus 289

  309A C C E P T E DM A N U S C R I P T most favourable balance between causing a deflection of the gelatine surface 311 that could be measured to high precision, whilst experiencing minimal inter-312 action with the container sidewalls.313The sum of the weights (W ∆E +W ∆Load ) was used to give an overall weighting 314 for each datum. This procedure enabled the 'best' data to have the strongest 315 influence on the modelling results, whilst enabling all the data to be included 316 in the analysis process. deflection caused by a load applied to the surface of the 320 solidified gelatine, we have been able to document the evolution of the gela-321 tine's Young's modulus relative to a number of parameters. These will now be 322 considered separately.

Figure 5

 5 Figure5shows the Young's modulus evolution with time of a 4-litre 2.5 wt% 325

  346 equation (5), the stress at the base of the gelatine layer induced by the loads 347 was less than 5% of their value, and the potential effect of the base of the tank 348 on these values of Young's modulus plateau was neglected. 349 It should be noted that both the use of deionised water and the storing of the 350 gelatine mixtures in a cold room (set at 5-10 • C) led to the inhibition of bac-351 terial growth in the media. Thorough cleaning of the experimental container 352 was also vital. Following these methods, our data shows that once the gelatine mixtures have reached their plateau in Young's modulus they can maintain 354 this up to 140 hours after the initiation of the experiment.355 A C C E P T E D M A N U S C R I P T

  Figure7). The small discrepancy between modelled values of E ∞ is assumed to 395

  reach the Young's modulus plateau value appears to correlate 402 well with the time needed for the gelatine to cool down to T r , and so we 403 can use this correlation to predict the time an experimentalist would have 404 A C C E P T E D M A N U S C R I P T

  modulus E follow the theoretical relationship (equation 14) 450 expected for such solids.

458

  temperature of the solid(Griffith, 1921), and so the exact value of γ s may 459 vary from one type of gelatine to the other. But given the rather small range 460 of values for brittle monocrystals, which are also similar to that for gelatine, 461 we believe γ s = 1.0 ± 0.2 J m -2 is a fair estimate for acid, pig-skin derived 462 gelatine with Bloom values between 200 and 260. Experiments carried at lower 463 temperatures than reported here will either result in higher Youngs moduli 464 or take less time to reach their Youngs modulus plateau, but their fracture 465 toughness will scale correspondingly following equation 15. al. (2009) summarise the application of gelatine as an analogue 468 material for studying tectonic scale processes. They concluded low concentra-469 tion gelatine mixtures (∼2.5 wt%) could be an appropriate analogue for upper 470 crustal deformation experiments. Complementary to this, we now present scal-471 A C C E P T E D M A N U S C R I P T derstand the behaviour of the natural system. Others workers have presented 481 simple scalings for the use of gelatine in its elastic-state as a crustal analogue 482 for studying the propagation dynamics of magma-filled fractures (Acocella 483 and Tibaldi, 2005; Cañón-Tapia and Merle, 2006). We now expand on these 484 to present a comprehensive guide for scaling gelatine for this type of geological 485 experiment. 486 Unlike tectonic processes, which occur on a length scale comparable with the 487 thickness of the crust, dyke propagation is characterised by a much smaller 488 length scale. This characteristic length scale is the buoyancy length L b , as 489 defined by Taisne and Tait (2009), which is the length over which magma 490 buoyancy driving ascent balances resistance from rock fracture: is the length of the buoyant head region of the propagating dyke, 493 K c is the fracture toughness of the intruded medium and ∆ρ is the density 494 A C C E P T E D M A N U S C R I P T is determined by a local buoyancy balance in the inflated head region of the 496 dike, independent of the total buoyancy of the magma column between source 497

  503

524EA

  usually between 0.25 and 0.3. As a result, the factor 2(1-ν 2 ) varies by 15-20% 525 between nature and laboratory experiments, and the Young's modulus scale field measurements made on the geometry of fossilised dykes 529 inform only on the final static state once solidification has taken place, and not 530 on the geometry of propagating dykes. The discrepancy between the propa-531 gating and the final static geometry will certainly be important for those 532 dykes that reached the surface because their thickness will decrease as magma 533 erupts at the surface and elastic deformation of surrounding rocks is released. 534 However, because of mass balance the discrepancy should be marginal for 535 A C C E P T E D M A N U S C R I P T notwithstanding potential volume change due to solidification, the volume of 537 a propagating dyke should be the same as the volume of a static dyke. This 538 caveat aside, we can use the geometrical measurements made on solidified 539 dykes as proxies for their geometry during propagation. 540 The aspect ratio ψ L b of solidified dykes in nature is typically of the order of 541 10 -4 -10 -3 (e.g. Gudmundsson (2011); Kavanagh and Sparks (2011)), and 542 on the order of 10 -2 -10 -1 in gelatine experiments. Taking the following 543 values as representative for natural dykes: K c = 10 7 Pa m 1 2 , ∆ρ = 100 kg 544 m -3 , ρ solid = 2800 kg m -3 , and for experimental conditions: K c = 100 Pa m kg m -3 (air) or ∆ρ = 10 kg m -3 (water), ρ solid = 1000 kg m -3 , * = 10 -6 -10 -5 (air) or E * = 2 × 10 -6 -2 × 10 -5 (water). (31) 551 In the experiments, L l 5 cm with air or 1 m with water; this corresponds in 552 nature to L n 500 m, which seems reasonable. Likewise, a velocity of a couple 553 of mm/s (water) or cm/s (air) in the experiments would give dyke velocities 554 on the order of 0.1-0.5 m/s in nature, in good agreement with estimates of 555 dykes velocities (White et al., 2011). As for elastic deformation, the Young's 556 modulus of rocks typically lies in the range E n = 10 9 -10 10 Pa, and so properly 557 scaled experiments should involve gelatine solids with Young's modulus in 558 the range E l = 10 3 -10 5 Pa when air is used as a magma analogue, or 559 A C C E P T E D M A N U S C R I P T values that have typically been used in dyke and sill experiments, and the 561 data presented in this paper shows that 2-5 wt% of gelatine is sufficient to 562 reach this range of Young's modulus plateau (Figure 6). 563 These calculations suggest gelatine experiments for magmatic intrusion prop-564 agation (dykes or sills) carried out at ∼5-10 • C and with gelatine concenfrom a series of experiments that quantify the evolution of 569 the elastic properties of gelatine with time. At 5-10 • C gelatine is in the 'gel-570 state', over the range of stresses and strain rates presented here, and behaves 571 like a solid, with almost ideal-elastic deformation. The Young's modulus of 572 gelatine evolves with time, modelled best by an exponential relationship, with 573 E evolving to a plateau value that would theoretically be achieved after an 574 infinite amount of time. At low gelatine concentrations (<5 wt%) the plateau 575 Young's modulus depends linearly on the concentration of gelatine, and differ-576 ent volumes of equally concentrated gelatine evolve to the same plateau value. 577 The method we use to measure the Young's modulus of the gelatine requires 578 that the diameter of the load is 10% the diameter of the experimental con-579 tainer and thickness of the gelatine solid in order for side-wall and base effects 580 to be avoided; larger dimensions relative to the gelatine solid will affect and 581 lead to artificially high calculated values. Fracture toughness measurements 582 show the K c of gelatine follows the same relationship as ideal elastic-brittle 583 A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT solids: it is proportional to the square-root of the Young's modulus multiplied 584 by twice its surface energy, which was calculated experimentally as 1.0 ± 0.2 585 J m -2 . 586 The transparent nature and photoelastic properties of gelatine mean deforma-587 tions can be easily visualised and monitored, giving the experimental geologist 588 insight into the propagation dynamics of magmatic intrusions. However, cau-589 tion needs to be taken when using gelatine as an analogue for the Earth's 590 elastic crust. These type of experiments are best carried out at 5-10• C in 591 order for the viscous component of gelatine's deformation behaviour to be 592 negligible. At these temperatures gelatine is a good analogue for magmatic in-593 trusion propagation in Earth's elastic crust; using gelatine concentrations from 594 2-5 wt% will ensure gelatine is adequately scaled geometrically, kinematically 595 the support of a Monash University Margaret 598 Clayton Women in Research Postdoctoral Fellowship, and a Leverhulme grant 599 awarded to R.S.J. Sparks and J. Blundy at Bristol University's Geophysical 600 Fluid Dynamics Laboratory where the Young's modulus experiments were 601 carried out. The fracture toughness experiments were carried out at Institut de 602 Physique du Globe de Paris in 1998 during TM's PhD, and the valuable help of 603 Steve Tait and Gérard Bienfait is acknowledged. KAD acknowledges a NERC 604 consortium grant. This is Laboratory of Excellence ClerVolc contribution n • 605 29. E. Di Giuseppe, M. Diez and N. Le Corvec are thanked for thought-606 provoking discussions that inspired this work. B. Taisne and an anonymous 607

  634factor (12), using the average excess pressure ∆P measured just prior to the 635 crack propagation and the corresponding value of α (equation 38).

Figure 3 .

 3 Figure 3. Young's modulus (E) of 2.5 wt% gelatine solids, after approximately 22 hours curing at 10 • C, plotted against the diameter of the applied load relative to the diameter of the container (D L /D C ) for loads 1-8 (Table2) and five container sizes (Table1). In the region D L /D C >10% (unshaded) each experiment individually shows a positive correlation between E and D L /D C (see legend for Pearson product-moment correlation coefficients), indicating interaction between the load and container could produce artificially high calculated Young's moduli. Where D L /D C 10% (shaded) there appears to be no correlation between E and D L /D C , and here sidewall affects can be neglected. When no error bars can be seen, the error is smaller than the symbol size.

Figure 4 .

 4 Figure 4. Young's modulus evolution with time of 4-litres of 3 wt% gelatine stored at 5 • C (Experiment 26). The Young's modulus was calculated from the deflection caused to the gelatine surface by Load 3 (see Table2). Error bars show the uncertainty in E increases with time.

Figure 6 .

 6 Figure 6. Modelled plateau Young's modulus (E ∞ ) of a range of gelatine concentrations C gel(Experiments 16,(25)(26)(27)(28). Each test volume was 4-litres and was kept at 5• C (T r ) in an equivalent container. The best-fit model indicates there is a positivelinear correlation (R 2 = 0.9992) between E ∞ and C gel . More concentrated gelatine mixtures reach a higher Young's modulus plateau.

  11, R 2 = 0.3211); 95% confidence limits are indicated by dashed lines.

Figure 9 .

 9 Figure 9. The fracture toughness K c of gelatine solids as a function of their Young's modulus E. The curve is the best fit through the data: K c = (1.4 ± 0.1)√ E (equation 18 , R 2 = 0.8196), with the 95% confidence limits (dashed lines).

Table 1

 1 

). Pearson product-moment correlation coefficients 234 (r) were calculated for each experiment: 235 r = S xy S xx S yy , (3) 236 where 237

  ∞ (the Young's modulus plateau; Pa) and τ (hr) are both empirically 335 based constants determined from the exponential fit, and t is time (hr). The 336 values of E ∞ and τ vary depending on V gel , T r and C gel (see Table5). As

)

334 where E 337 it is not feasible to wait for E ∞ to be reached during the timescale of an 338 experiment, we define 0.9E ∞ as an "effective" Young's modulus plateau and 339 t 0.9E∞ as the time taken to reach within 10% of E ∞ . These values are provided 340 as a guide for the experimentalist in Table

5

. The only effects of decreasing 341 the room temperature from 10 • C to 5 • C were to increase the rate of Young's modulus increase with time and so decrease t 0.9E∞ .

343

The values of Young's modulus plateau reported on Table 5 were all measured 344

  Coefficient of Determination R 2 = 0.9992), as shown in Figure6for 359 equal V gel and H gel(Experiments 16,(25)(26)(27)(28). Values of E ∞ were calculated ac-

	357	For low concentrations ( 2 wt% and <5 wt%), the Young's modulus plateau
	358	(E ∞ ) of gelatine is linearly correlated with the concentration of the mixture
	(with a 360
	361	cording to models fit to weighted Young's modulus data for a range of applied
		loads (see Section 4.1.1). It is unclear whether or not this linear relationship
	376	
	377	Young's moduli for each experiment (Experiments 29-33); these were averaged
	378	from measurements taken from the time when the gelatine was deemed to have
	379	reached its Young's modulus plateau, an assumption verified by the lack of
		correlation between Young's modulus and time (indicated by a low r; see Table

362

can be extrapolated to more highly concentrated gelatine mixtures.

363

Highly concentrated mixtures of gelatine ( 5 wt%) proved difficult to work 364 with, both in terms of preparing the experiments and then measuring their 365 Young's moduli during the gelification process. During preparation of the mix-366 tures, difficulties were encountered dissolving such highly concentrated mix-367 tures and also removing all bubbles from the highly viscous solution was un-368 achievable so that creating a homogeneous solid was not possible. Once the 369 mixtures were in the 'gel-state' additional problems arose when attempting to 370 measure their Young's moduli. When the loads were applied to these very rigid 371 solids they were insufficient to cause a deflection of the gelatine surface that 372 could be measured precisely; even the heaviest applied loads (Loads 9-11, see

373

Table

2

) caused such small deflections that the calculated Young's modulus 374 value would have very large errors.

375

Due to the problems associated with these experiments we present only average 380 6). The results suggest that more strongly concentrated gelatines have a higher

Table 1 :

 1 Exp. C gel M gel V gel H gel D C T r ( • C) T 0 ( • C) Table of experimental conditions. C gel = gelatine concentration (wt%), M gel = mass of tested gelatine plus water mixture (kg), V gel = volume of tested gelatine plus water mixture (litres), H gel = thickness of gelatine mixture (±0.5 cm), D C = container diameter (±0.1 cm), T r = cold room temperature, T 0 = starting temperature of gelatine mixture (±0.5 • C). Experimental containers were circular in cross-section, except those indicated by * which were square (measuring 40 cm x 40 cm) and † which were oblong (measuring 50 cm x 30 cm). H gel was calculated retrospectively from the container surface area and tested volume.

		ACCEPTED MANUSCRIPT
	1	2.5	4	4	17.0 17.3	10	34.5
	2	2.5	3	3	12.7 17.3	10	35.0
	3	2.5	2	2	8.5 17.3	10	35.5
	6	2.5	20	20 12.5 40.0*	10	36.0
	7	2.5	30	30 18.8 40.0*	10	38.0
	8	2.5	0.5 0.5 4.1 12.5	10	35.5
	9	2.5	0.5 0.5 6.4 10.0	10	34.5
	10	2.5	0.5 0.5 8.7	8.6	10	34.5
	11	2.5	20	20 12.5 40.0*	5	34.0
	12	2.5	30	30 18.8 40.0*	5	34.5
	13	2	2	2	16.4 12.5	5	37.5
	14	2	1	1	8.2 12.5	5	37.5
	15	2	3	3	12.7 17.3	5	38.0
	16	2	4	4	17.0 17.3	5	38.0
	17	2	10	10 19.6 25.5	5	37.0
	18	2	20	20 27.0 30.7	5	38.5
	19	2	30	30 20.0 30.2*	5	44.5
	25	2.5	4	4	17.0 17.3	5	40.5
	26	3	4	4	17.0 17.3	5	39.5
	27	3.5	4	4	17.0 17.3	5	39.0
	28	4	4	4	17.0 17.3	5	38.0
	29	5	4	4	17.0 17.3	5	35.0
	30	5	4	4	17.0 17.3	5	64.0
	31	10	4	4	17.0 17.3	5	60.0
	32	20	4	4	17.0 17.3	5	65.0
	33	30	4	4	17.0 17.3	5	56.0

Table 2 :

 2 Properties of the experimental loads: β = thickness (±0.1 mm), M L = mass of load (±0.1 g), D L = diameter of load (±0.1 mm). In all cases the data are mean averages of three measurements. Loads are cylindrical.

			ACCEPTED MANUSCRIPT	
	Exp.	ρ g	ρ w	E	z l	∆P	K c
		(kg m -3 ) (kg m -3 )	(Pa)	(cm)	(Pa)	(Pam 1/2 )
	123 124 125 126 127 128 129 131	1062.0 1072.3 1079.3 1063.3 1072.7 1079.3 1025.5 1015.6	1000.0 1000.0 1000.0 1000.0 1001.0 1000.6 1000.3 999.4	1449 ± 14 3969 ± 100 1.25 156 ± 26 2.25 89 ± 27 7603 ± 125 1.00 176 ± 26 103± 15 59± 18 93± 15 1877 ± 36 3.10 54 ± 29 40± 21 3906 ± 161 3.15 65 ± 29 48± 21 7328 ± 116 0.00 270 ± 25 148± 14 10959 ± 354 4.00 189 ± 27 175± 25 M A N U S C R I P T 2254 ± 57 2.20 85 ± 27 57± 18
		A C C E P T E D			

Table 4 :

 4 Weightings (W ) used to quantify the quality of Young's modulus measurement data. Quantitative-based weightings consider the uncertainty in ∆E/E, whereas the effect of the load used to take the measurements could only be weighted qualitatively based on the results from Figure2. The combined weightings (W ∆E + W ∆Load ) are then used in the subsequent data analysis.

	ACCEPTED MANUSCRIPT
	Quantitative W ∆E/E (%)	W ∆E
		<5	8
		5-10	7
		10-15	6
		15-20	5
		20-30	4
		30-50	3
		50-100	2
		>100	1
	Qualitative W	Applied Load W ∆Load
		Load 1	1
		Load 2	1
		Load 3	8
		Load 4	8
		Load 5	4
		Load 6	4
		Load 7	2
		Load 8	2
		Load 9	1
		Load 1 0	1
		Load 1 1	1

Table 5 :

 5 Model results showing E ∞ and τ values (correct to the nearest hour) for an exponential best-fit model E = E ∞ (1e -t τ ) of calculated gelatine Young's moduli against time for a select group of experiments with the same T r (5 • C). As E ∞ can not be reached within the timescale of an experiment, we define 0.9E ∞ as an "effective" Young's modulus plateau. t 0.9E∞ is the time taken (correct to the nearest hour) to reach within 10% of E ∞ . See Table1for experiment settings.

		ACCEPTED MANUSCRIPT	
	Experiment	29	30	31	32	33
	wt%	5	5	1 0	2 0	3 0
	E St. Dev. r n	2.9×10 4 3.6×10 4 1.5×10 5 7.1×10 5 4.5×10 5 1.4×10 4 2.0×10 4 1.6×10 4 1.4×10 6 5.6×10 5 0.40 0.32 -0.11 0.10 -0.55 M A N U S C R I P T 36 9 12 13 13
	A C C E P T E D			

Table 6 :

 6 Average Young's modulus of highly concentrated ( 5 wt%) gelatine mixtures. An average of 'n' measurements of the Young's modulus is shown (E, correct to 2 s.f.), measurements were taken periodically using a range of applied loads for several hours after 16.5 hours curing at 5 • C. Calculated standard deviations (St. Dev.) indicate a high degree of uncertainty. The low Pierson Product-Moment Correlation Coefficients (r) suggests no correlation between the Young's modulus measurements and time, supporting the assumption that the measurements were all made when the Young's modulus had plateaued.Figure1. Schematic illustration of the Young's modulus measurement procedure on a gelatine solid able to support an applied load. The deflection caused by a load placed on the surface of the solidified gelatine is measured, and this information is combined with the properties of the load to calculate the Young's modulus of the material.Figure2. Three successive photographs taken during a fracture-toughness experiment. (a) An edge-crack is initially created at the base of a gelatine solid, and filled with water. The initial reservoir pressure matches exactly the weight of the overlying gelatine solid. (b) Air is injected through a capillary and within the crack. Any potential reservoir excess pressure is released, so that only the crack buoyancy increases during air injection (see text). (c) When the crack buoyancy is high enough, the air-filled crack fractures the gelatine and propagates vertically.
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of the data were so large we were unable to evaluate whether this relationship 383 continues the linear trend identified in Figure 6.

384

The experimental setup and method described here to measure the Young's 385 modulus of gelatine solids proved unsuitable for highly concentrated mixtures.

386

In order to quantify the Young's modulus of highly concentrated gelatine 387 mixtures ( 5 wt% gelatine mixtures, where the Young's modulus 20,000 388 Pa), equipment more often associated with measuring the strength of rocks 389 would be required. These tests are however beyond the scope of this study. 

where z l is the level of the air-water interface within the crack (z l = 0 when 615 the crack is full of air), ρ g and ρ w are the density of the solid gelatine and 616 water, respectively. The density of air ρ a is assumed to be negligible. Following 617 Sneddon and Das (1971), by expressing this crack excess pressure as ∆P (z) =

618

∆P f(z), the value of α in equation ( 12) is then determined by calculating the 619 value Λ(1), where Λ is the solution of the following integral:

where z has been normalised with respect to the crack height h, u and s are 622 integration variables, and:

624 and: