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Time domain modelling offers many advantages for room acoustics investigations. It directly generates the 

efficient for broadband calculations over a short time duration. The most common room acoustics modelling 
method is currently based on geometrical room acoustics in the time domain. It is efficient and provides practical 
approximations. However, its accuracy is ultimately limited by its approximation of wave behaviours. Wave 
based models, which are more accurate but expensive, have been gaining interests due to more efficient 
numerical schemes. One example is the finite difference time domain method. This paper gives some examples 
of developments in this method for room acoustics. Another example is the time domain boundary element 
method. Although it is harder to implement, it has an advantage that a change in source or room does not require 
complete recalculation of the interaction matrix. This is useful for time variant simulation or auralisation. Here 

efficient time domain wave based modelling method. 

1 Introduction 
Sound naturally occurs in the time domain. In room 

acoustics the key feature that determines the acoustic 
quality is the room impulse response, which is a time 
domain feature. Time domain modelling should therefore 
be a more logical way to study room acoustics than 
conventional frequency domain methods. The room 
impulse response is also the pre-requisite for post-
processing such as auralisation, which has become a 
common tool for architectural acoustics design in practice. 
Compared with frequency domain method, time domain 
modelling allows a one-pass broadband calculation. It can 
be said that time domain methods offer a distinct advantage 
in room acoustics design, and in fact in many other areas 
that involve interaction of waves with objects. Current 
commercial room acoustic simulation software almost 
exclusively approximates the propagation of sound 
geometrically - early reflections are typically evaluated 
deterministically using a variant of the ray tracing/image 
source method, which operates in the time domain. It is 
however somewhat ironic that results from these models are 
often presented in the frequency domain, in terms of room 
acoustic parameters in difference octave frequency bands. 
Part of the reason is that these models mostly trace the 
energy arrivals at the receiver, thus creating a histogram of 
reflections, rather than the true impulse response. Ignoring 
wave effects allows efficient computation algorithms at the 
expense of accuracy. 

The application of energy-based geometric modelling to 
large space acoustics is well established nowadays. Its 
accuracy has been tested through a series of international 
round robin tests, e.g. [1, 2], and it has been accepted by 
many architectural consultants as a design tool. Over the 
last 2 decades, many improvements have been made to 
allow it to handle certain wave effects. Scattering 
coefficients and diffuse reflection algorithms were 
introduced to approximate non-specular reflections [3].  
Diffraction can also be supported by implementing wedge 
diffraction formula [e.g. 4] or stochastic scattering of rays 
next to diffraction edges [5], although these often result in a 
substantial increase in computation costs as multiple order 
of diffraction are simulated. It is also possible to include 
phase information in the ray tracing processing or in the 
image method [6] to allow for wave interference effect to 
be modelled, but the extent that this can approximate 
complex boundary conditions is still not tested in realistic 
room conditions. 

Methods that directly model wave effects, such as 
boundary element and finite element methods, offer better 
accuracy, especially at lower frequencies or in smaller 
rooms, at the expense of computational cost. These 
methods are traditionally applied in the frequency domain. 
One key reason for this is that the problem is much easier to 
formulate by breaking down the sound field and the 
boundary condition into their frequency components. The 
frequency domain boundary condition in particular is much 
more established than its time domain equivalent. It could 
be argued that a time domain solution is only an inverse 
Fourier Transform away from a frequency domain solution. 
However this will not be an efficient process if only the 
early part of the impulse response is needed. In such cases a 
direct time domain solution will be desirable. This paper 
will look at some of the popular time domain modelling 
methods, namely the finite difference time domain method 
and the time domain boundary element method, and 
introduces the new aims 
to bridge the gap between wave and geometric models. 

2 Finite Difference Time Domain 
Method 

In recent years, the finite difference time domain 
(FDTD) method has become a popular wave based time 
domain method in room acoustics. A significant advantage 
of the method is that the basic FDTD equations for 
acoustics, whether they are based on the first order Euler 
and continuity equations or the single second order wave 
equation, are fairly straightforward and easy to implement, 
and therefore allow a model to be quickly established. The 
calculation can also be easily accelerated via parallelization 
such as through the use of GPGPU. However, there are 
several aspects that required improvements for the method 
to become practical for room acoustic simulation. The 
modelling of frequency dependent boundary conditions, the 
control of dispersion errors, and the implementation of 
sources are among the main issues of concern in the current 
development of the FDTD method in the acoustic field. The 
dispersion error, which appears as the spherical wave is 
propagated through a rectangular grid, needs to be 
suppressed by either a very fine mesh, with tens of 

highest frequency of interest, or by a high order 
interpolation scheme.  This raises the computation cost, 
although this can be somewhat offset by GPGPU 
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acceleration. Among the other issues, the ability to handle 
frequency dependent boundary impedance on irregular 
boundary geometry is fundamental to room acoustics 
applications. Also, the problem of source excitation has not 
received much attention compared to others, although the 
implementation of the source has a significant impact on 
the time response produced by the simulation particularly in 
room acoustics. In here, we will look at some recent 
developments in these two areas. 

2.1 Simple transparent source 
In FDTD simulation, being in the time domain, an 

excitation pulse can simply be assigned to a pressure node 
where the source should be. In terms of implementation, 
there are different implementation methods that are referred 
to by terms that are also frequently used in electromagnetic 
field - 

for determining the system response to a pre-defined 
excitation without suffering from numerical artefacts 
created by other source types. However, a transparent 
source implementation requires knowledge of the grid 
impulse response, which has to be pre-calculated. In a room 
with boundaries, the grid response requires a very large 
computational domain to avoid reflections from the 
boundaries from interfering with the source node. It is 
therefore rather impractical due to the long calculation time 
required. 

In a soft source implementation, the driving function is 
simply superimposed on the source node's normal response 
due to the FDTD update equations. However, the added 
changes give rise to a pressure function at the source node 
that is different from the intended excitation. It is therefore 
necessary in such an implementation to 'measure' the 
response at the source node, and use that to normalise the 
results at other nodes. This may be why soft source 
excitation has not seen much use in existing acoustics 
literature. 

 

Figure 1 Time response in a rectangular room calculated by 
FDTD method using a Gaussian pulse with different pulse 

widths and a hard source implementation. 

The simplest way to excite a FDTD grid is to impose a 
prescribed driving function on the source node. This source 
implementation is known as the hard source 
implementation, as the source node is not affected by the 
surrounding fluid (or nodes). Unfortunately, when the 
source is implemented in this way, an abrupt change is 
created between the update equations used by the source 
node and the surrounding nodes that could give rise to 
massive artifacts in the numerical results [7]. Fig.1 shows 

an example of such an artifact created by a hard source. The 
low frequency modulation seen in the time response is 
caused by holding the source node at zero after the initial 
Gaussian pulse, which caused in a build up of net 
overpressure that oscillates within the grid. 

Obviously, it will be desirable to construct a source 
implementation that has the characteristic of a transparent 
source but has the simplicity of a hard or soft source. In 
Ref.[7], it was shown that such a construction is possible by 
a suitable choice of the source pulse, and allow the source 
node to revert from a hard source node to a soft source node 
after the main pulse has ended. 

Since the occurrence of the low frequency modulation is 
linked to the lack of rarefaction at the end of the Gaussian 
pulse, the first logical step to take to eliminate the problem 
is to use a more realistic pulse shape. In this context a sine 
modulated Gaussian pulse, gs(t), is a suitable choice. 

gs =
0
2

2 2 sin 0 0  
 

Using this pulse in a hard source implementation 
eliminates a large part of the low frequency modulation 
seen in Fig.1. However, some errors still persists, because 
the source node is still held at zero after the main pulse has 
ended, rather than following the normal FDTD update wave 
equations as in the surrounding nodes. A further step to 
remedy this is therefore taken to allow the source node to 
follow the update equation a short time after the main pulse, 
essentially reseting the source from a hard source to a soft 
source. 

7]. As long as the 
time limit is set after the main pulse has ended, the transit 
does not cause significant errors and the source appears as a 
true transparent source. Fig.2 shows the frequency response 
corresponding to Fig.1 but with this TLSGH 
implementation, with the time limit set at times when the 
pulse has decayed to less than 0.03% of its peak value. The 
FDTD results are compared with that calculated by the 
frequency domain boundary element method, which does 
not have the source implementation problem. Clearly the 
low frequency error has completely disappeared. In another 
word, the pulse response and frequency spectrum produced 
by the TLSGH are exactly those created by a true 
transparent source with the same pulse shape. At the same 
time, the TLSGH has the same computation efficiency as 
simple hard and soft source implementations. 

 

Figure 2 Frequency response at receiver of Fig.1 but 
calculated by the TLSGH source technique in FDTD, 

compared with BEM. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Time (s)

S
o
u
n
d
 P

re
s
s
u
re

 (
P

a
)

 

 

=0.0004
=0.0002
=0.0001

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

603



 

2.2 Frequency dependent boundary 
condition on irregular surfaces 

The modelling of the interaction of sound wave with a 
boundary is a more challenging subject in the time domain 
than in the frequency domain. To implement proper 
boundary conditions in a time domain method, we first 
require a representation of the acoustical property of 
common wall surfaces, which is commonly defined in 
terms of impedance, reflection coefficient or absorption 
coefficient. Since most of these quantities are defined or 
measured in the frequency domain, we will need to 
determine how to transform these data into the time 
domain. This needs to be done carefully, since it has been 
shown that not all frequency domain surface impedance 
models are causal. In theory, the boundary condition can be 
presented as an impulse response to be convoluted with the 
FDTD update equations. Unfortunately, this is a rather time 
consuming process, especially so considering the large 
number of reflections involved in room acoustics.  

There are various approximations [8-10] that can be 
used to speed up the calculation. For frequency dependent 
boundary condition, the impedance ZB, as a function of the 

rational function to ensure causality and stability. A 
convenient means of achieving this is to derive an 
approximation using a multi-degree-of-freedom (DOF) 
mechanical system representation. For low to mid 
frequency calculations, up to about 500Hz, a 2 DOF system 
proves to be effective for common fibrous type materials. 
Once approximated, the impedance condition equation can 
be transformed into the Z-domain using bilinear transform, 
and then incorporated into the FDTD scheme.  

While the implementation of frequency dependent 
boundary conditions has received much attention in FDTD 
modeling, the problem of irregular boundary geometry has 
not received as much attention. If the boundary geometry 
does not fit into the regular mesh grid used for the FDTD 
calculation, a straightforward standard approach is to 
approximate the boundary using stepwise, stair-step type 
edges/patches that fit the mesh grid. For boundary 
conditions that are hard, the error appears to decrease 
significantly when nominally 40 points per wavelength is 
used [11]. However, for absorptive conditions that have 
large phase changes, the error in stair-step approximation 
could remain significant even at high grid resolutions. In 
addition, the existence of multiple reflections off the 
surface in a room acoustics setting may also compound the 
error. There is, however, no published work analyzing the 
accuracy of this stair-step approach for room acoustic 
simulations.  

A more accurate means of dealing with arbitrary 
geometry is to use a conformal algorithm. A locally 
conformal technique that was used for electromagnetic 
FDTD modelling has been adopted for rigid surfaces in 
acoustics FDTD simulation [11]. Here, this approach is 
extended to include frequency dependent impedance 
surface, and will be used to analyze the error due to a stair-
step approximation in a room acoustics setting. 

The basic conformal formulation can be developed from 
an integral equation formulation. By integrating the 
acoustics governing differential equation over a volume V, 
which is bounded by a surface S, and then using the 
divergence theorem, one obtains, 

= 0
2 = 0

2  

 
The integration can be applied to a cell in the FDTD 

that is intersected by an arbitrary boundary. Fig.3 shows a 
nominal intersected cell. It is assumed that the pressure 
node at (i,j,k) in the figure is located at the centre of the 
undistorted cell, and the pressure is constant over the entire 
volume of the cell, regardless of whether the centre is inside 
or outside the intersecting boundary. 

 

Figure 3 A nominal rectangular FDTD grid cell intersected 
by an arbitrary boundary. 

Carrying out this integration within the cell results in an 
appropriate equation in FDTD format. The area Ab and the 

b are associated with the boundary 
b can be 

calculated with the impedance formulated as a Z-domain 
filter. 

 

Figure 4 FDTD predictions against analytical solution of 
pulse reflection from a single inclined plane with constant 

admittance of 0.03. 

The case of reflection from a simple inclined plane 
surface is used to test the accuracy of the conformal 
mapping method against the standard stair-step 
approximation. The inclination is about 26° from the 
horizontal. The source and receiver are arranged to give an 
incident angle of about 50°. The rectangular FDTD grid is 
deliberately aligned with the horizontal and the vertical, so 
that the inclined surface is approximated by either stair-
steps or conformal mapping. About 34 points per 
wavelength at the upper  frequency limit of 500 Hz is used 
in the stair-step approximation, which has been found to be 
sufficient for rigid surfaces in published literature. The 
surface impedance is assumed to be frequency independent, 
so that the analytical solution from Ref.[12] can be used to 
test the accuracy of the FDTD calculations. The first case 
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uses a reflective condition, with the surface admittance 
equals to 0.03. The result is shown in Fig.4. As expected, 
both FDTD approximations give good agreement with the 
analytical solution. 

 

Figure 5 FDTD predictions against analytical solution of 
pulse reflection from a single inclined plane with constant 

admittance of 0.5. 

A second test is done with a soft surface condition, with 
the admittance raised to 0.5. The result is shown in Fig.5. 
With a soft surface, the error of the stair-step approximation 
becomes apparent, while the conformal mapping maintains 
excellent agreement with the analytical solution. Further 
testing suggests that the error from the stair-step 
approximation tends to increase with softer surface, and at 
larger (more near glazing) incident angles.  

 

Figure 6 Test room with a tilted boundary that has a 
frequency dependent impedance. 

In order to analyze the effect of the stair-step 
approximation in modeling room acoustics, a simple room 
with a tilted boundary is used, see Fig.6. The spatial 
resolution again gives about 34 points per wavelength at 
500Hz. The TLSGH source implemented was used for the 
calculations. To simplify the comparison of the results, only 
the tilted boundary had a frequency dependent impedance. 
All other wall surfaces were fairly hard, with a constant 
admittance of 0.004. The frequency dependent impedance 
on the tilted boundary was simulated as rigidly backed 

the material were varied to give different absorptive 
properties. Figure 6 shows the calculated results for a fairly 
soft 32k Pa/m2 and depth=100mm. The 
magnitude of the reflection coefficient from this boundary 
drops slowly to about 0.5 at the highest frequency tested, 
500Hz, with the phase change remains within about 20°. 

-2DOF-
-MP-

corresponds to an approximate impedance obtained from 
augmenting an equivalent absorption coefficient with a 

minimum phase to simulate practical cases where only 
absorption coefficient rather than impedance is known. The 

-step 
approximation. All are compared with the result from a 
boundary element calculation. Even with just one 
absorptive surface in the room, the stair-step approximation 
shows significant errors throughout the entire frequency 
range. 

 

Figure 7 Comparison of FDTD calculated frequency 
responses with an absorptive titled boundary against BEM. 

These test cases clearly show that using conformal 
mapping for complex boundary conditions in FDTD 
modelling has very good accuracy  comparable to that 
produced by the BEM. It is far more accurate than the stair-
step approximations, which becomes more inaccurate when 
the boundary becomes more absorptive. 

For FDTD calculations, we have shown that a simple 
formulation, namely the TLSGH, can be used to produce 
transparent source characteristics, and that stair-step 
approximation should not be used to model absorptive 
irregular boundaries. Instead a conformal mapping method 
shows excellent accuracy in all test cases. The combination 
of TLSGH and conformal mapping should make FDTD a 
lot more applicable to room acoustics calculations. 
However, FDTD calculation remains time consuming 
because of the high grid and time step resolution required to 
suppress dispersion errors. GPGPU acceleration would help 
to reduce computational cost, but it would still be very 
expensive relative to standard geometrical models. The 
conformal mapping approach also requires intrigue 
handling of geometry. Hence it is still necessary to look at 
alternative time domain modelling techniques. 

3 The Boundary Element Method 

The Boundary Element Method (BEM) has been studied 
in detail by the acoustics research group at Salford for 
nearly twenty years.  It has the advantage of requiring fewer 
degrees of freedom than volumetric methods such as 
FDTD, since it only requires the boundary between the air 
and obstacle to be modelled, and this reduced 
dimensionality has the potential to provide substantial cost 
savings for large and/or high frequency problems.  Schemes 
for efficiently representing and evaluating these highly 
oscillatory problems are attracting substantial research 
interest [13] and the dense interaction matrices may be 
compressed using the Fast Multipole Method. 
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Most BEMs assume time-harmonic excitation but this 
assumption may be dropped leading to the time domain 
BEM.  This approach was first published in 1962 but 
computational cost and stability issues plagued the method 
and only in the last decade or so has the rate of progress 
increased and commercial implementations appeared.  In 
particular the following have been implemented: the 
Combined Field Integral Equation (CFIE) [14], being the 
time domain equivalent of the Burton and Miller 
formulation to addresses the non-uniqueness of the 
complementary interior problem; Fast Multipole style 
acceleration [15]; Galerkin schemes, which have been 
proven to have unconditional stability [16,17]; Convolution 
Quadrature method [18], which offers both a rigorous 
mathematical analysis and excellent computational cost 
scaling.  At Salford we have focussed upon the more 
practical aspects of transferring some of our frequency 
domain models of acoustic treatments to the time domain. 
This has required development of representations of: bodies 
with welled sections, using a delayed reflection boundary 
condition [19]; bodies which comprise both thick sections 
and thin fins [20]; bodies with arbitrary frequency 
dependent surface impedance, using digital reflectance 
filters [21]. 

In summary it can be seen that although FDTD is 
currently the dominant time domain wave method in use in 
computational room acoustics, BEM research is very active 
and the advances being made, particularly in the applied 
maths field, may well allow the time domain BEM to 
finally mature and become widely used in acoustic 
simulation. 

4  

This section of the paper describes a prototype time 

acoustic scattering; as a sum of geometrically reflected and 
diffracted components with the former being dominant at 
high frequencies.  We believe time domain BEM a good 
place to start in a search to unify wave and geometric 
approaches since both classes of algorithm work with 
surface geometry and analytically compute how elementary 
sound sources propagate through the media unobstructed, 
so the problem is one of computing the reflections and 
scattering from obstacles. The main difference between the 
algorithms is that BEM attacks the problem by numerical 
discretisation of the total field whereas geometric methods 
trace reflections individually according to a high-frequency 
asymptotic approximation.   

Ideally we would like to retain the positive 
characteristics of both algorithms.  Geometric methods are 
efficient because they trace a relatively small number of 
sound propagation paths; this is equivalent to seeking great 
sparsity in BEM interaction matrices.  However they offer 
no way to re-unite sound energy arriving at a surface from 
different propagation paths, so suffer from an exponential 
increase in the number of propagation paths with each order 
of reflection; this is particularly severe when edge 
diffraction terms are included [4]. Time domain BEM in 
contrast uses a constant number of degrees of freedom 
versus time and any sound wave arriving at the surface is 
mapped onto a weighted sum of interpolating functions. 

 

In the following sections we will show that, given 
appropriate interpolation functions, the scattering integral 
over a surface which is large with respect to wavelength 
may be stated as a geometric term plus a diffracted term 
involving only a 1D edge integral.  Then we will examine a 
Gallerkin testing integral, discuss its motivation, 
interpretation and how it might be evaluated efficiently 
with the proposed interpolation scheme, and finally show 
results that suggest that doing so produces interaction 
matrices with a very small number of significant 
coefficients.  Despite the fact that this paper concerns 
developments in time domain modelling many of the 
statements which follow will be given in the frequency 
domain.  This is because the frequency domain BEM 
formulation is more succinct and familiar to a wider 
audience, plus the numerical test case was implemented 
using harmonic functions.  How the algorithm might be 
implemented in the time domain is outlined alongside. 

4.1 Choice of interpolating functions 

A BEM to model scattering of sound by an obstacle has 
three distinct phases depicted in Figure 8.  First the incident 
sound  arriving the obstacle from the sources is 
calculated, then the total sound  at the surface of the 
object is solved for by considering the mutual interactions 
between parts of the obstacle, and finally the scattered 
sound  at any receivers is calculated from this total 
surface sound.  The total sound on the surface is 
approximated by a weighted sum of a set of interpolation 
functions  and the primary objective is to solve for 
the set of weights : 

 
 

 
In most BEM formulations the surface is partitioned 

into elements which are small with respect to wavelength 
and only a small number of interpolation functions will be 
non-zero on each element.  Each interpolation function has 
an associated testing function  used to evaluate what 
component of the incoming sound should be mapped onto 
its coefficient; in a Galerkin scheme these are typically the 
adjoints of the interpolation functions and in a collocation 
scheme they are delta functions located at the collocation 
points.  In both cases the objective is to achieve a scheme 
where the function pairs are orthogonal over the surface : 

 

 

 

Figure 8 Solution process in a BEM model 

Incident sound 

Obstacle 

Scattered sound 

Sound scattered back to obstacle 

Testing integral maps arriving 
sound onto obstacle 

Scattering integral sums sound 
radiated from obstacle 
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There are however other families of orthogonal 
functions which could satisfy this criteria.  One option 
which has attracted attention for the frequency domain 
BEM is the use of oscillatory interpolation functions 
[22,23], since these might be able to capture some of the 
behaviour of the solution allowing larger elements for the 
same accuracy.  However because the oscillatory functions 
are multiplied by polynomial interpolators it is unclear how 
the integral transform described in the next section might be 
applied, so in this test case we instead apply a 2D Fourier 
series decomposition to the sound on each face of the 
obstacle.  The interpolation functions are easiest to state if 
four summation indices are used: 

 
 

 

 

 
Here the  refers to the th face , defined by a corner 

vertex  and two perpendicular edge vectors  and .  
 and  are the indices of the Fourier Series on the surface, 

so may take any integer value, and .  The surface 
normal unit vector  is uniform over  and points into the 
medium.  The wave direction vectors  are given by: 

 

 
 
The first two terms of the wave vectors define the 

Fourier series decomposition over .  The right-most term 
is zero on  (since ) and exists 
for the purpose of making the interpolation function satisfy 
the wave equation; the motivation for this will become 
apparent in the next section.  The wave vectors therefore 
define a family of propagating plane waves in the medium, 
commonly known as a wavenumber spectrum, and the 

interpolation functions are 
snapshots through them on the 
surface hence can capture 
oscillations at wavelengths 
which at first do not appear to 
match the wavelength in air 
(see inset).  The term  is 
necessary to distinguish 

between the two possible waves which may cause the same 
surface pressure; one with  travelling out of the 
obstacle and one with  travelling in to the obstacle.  
It is worth noting that for large magnitudes of  and  the 
term inside the square root may become negative and the 
surface normal component of   become imaginary; these 
are evanescent wave terms and valid parts of the solution. 

The physical interpretation of the above scheme as a 
family of travelling plane waves makes it easy to imagine a 
time domain equivalent, where the variation of the waves 
with time and/or propagation direction is no longer strictly 
harmonic and phase lag manifests as delay hence 

 is replaced by , 
where  is some arbitrary interpolating function in time.  
The Fourier series decomposition over the surface works 
neatly because the frequency domain formulation implies 

that a Fourier decomposition has already been applied in 
time.  To create a transient version of the scheme we would 
therefore look to a system of non-periodic orthogonal basis, 
such as wavelets, and apply those to both space and time in 
an equivalent manner. 

4.2 Efficient computation of scattering 

The scattering integral evaluates the scattered sound  
at location  due to the total sound distribution  on  and 
is used to evaluate the sound scattered from the obstacle 
both to receivers and back to the obstacle itself.  It is given 
here in the frequency domain but the time domain statement 
is identical except that   and  are time variant and the 
multiplications between them are replaced by convolutions: 

 

  is the free space 
describes how sound travels from a point source at  to an 
observer at  and intuitively comprises a propagation delay 
and a reduction in magnitude with distance .  In 
the frequency domain this is written as a phase lag, so 

vary with ,  and in the time domain it appears as a 
retarded delta function so .  
Sound is given as velocity potential , a non-physical 
quantity but one which is useful as pressure and particle 
velocity may be found from it by  and . 
The operator  denotes the component of 
the gradient in the direction of the surface normal vector at 

 and is often called the surface normal derivative. 
It is well know that when using planar elements and 

piece-wise constant spatial interpolation functions the 
scattering integral may be transformed to a contour integral 
around the edge of each element plus a singularity term 
[24-26] allowing efficient evaluation. It appears to be less 
well known that this is just the  term in the 
interpolation scheme above and every term in the scheme 
may be integrated in this way [27]: 

 

 
Here  and  if a line 

starting from the observation point  and pointing in the 
direction  passes through , otherwise it is zero; 
this describes the geometric propagation zone of .  
The contour integrand contains the interpolation function, 

-  and describes the 
diffracted wave.  Once again the time domain statement is 

function are replaced by their time domain equivalents and 
multiplication becomes convolution.  The integration 
process is efficient, particularly for high frequency waves, 
compared to 2D surface integration since the geometric 
term can be evaluated analytically and the diffracted term 
requires only a 1D edge integral to be evaluated. 

surface 

air 
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As is often the case, visualisation in the time domain 
makes the process easier to understand so this is depicted in 
Figure 9 for scattering by a thin square plate.  First the 
incident wave (b) is mapped onto an incoming wave and it 
scatters into the medium behind the surface section causing 
the necessary shadow effect (c,d).  The incoming wave term 
is then coupled to a matching outgoing term (e,f) by a 
frequency and angle dependent reflectance function (as in 
[21]) giving a reflected wave whose spectral content has 
been modified according to the surface impedance of the 
scattering object.  The next challenge is to efficiently match 
an arbitrary incident wave onto a family of interpolation 
wave functions; this will be discussed in the next section. 

4.3 The testing integral 

Because the interpolating functions overlap with one 
another collocation testing is not appropriate and Galerkin 
testing integrals must be evaluated over the entire surface 
section.  Here we follow the ideas presented in 16 and 17. 

The instantaneous energy of an acoustic wave is: 
 

 

 
Because our test case uses complex-valued harmonic 

functions we must be careful to respect the modulus 
operators and use complex conjugates: 

 

 

 
Acoustic power flux is more commonly known as 

acoustic intensity: 
 

Since  and  satisfy the wave equation they are related 
by the Energy flux relation  so the divergence 
theorem may be applied: 

 

 
Ultimately the aim is to integrate this with respect to 

time and define an energy norm over  (as is done in 16 
and 17), but since our test case is in the frequency domain 
we may simply use the fact that energy is constant versus 
time hence  and by substitution: 

 

 

 

Noting that  has  time dependence whereas  has 
 so we have: 

 

  
The similarity of this statement to the scattering integral 

is quite striking; if  is replaced by  then the integrals are 
identical.  The suggests an interesting interpretation of the 
scattering integral, that instead of representing a sum of 
monopole and dipole sources on  it is instead measuring 
the common energy between the wave  and a convergent 
spherical wave  which coalesces at .   

applied at  since  is singular when .  Crucially this 
similarity also suggests that it might also be possible to 
evaluate the testing integral using Stokes theorem, since the 
primary requirement for it to be applied was that the waves 
involved both satisfy the wave equation, which  and  do.  
This would mean that the testing integral could also be 
evaluated as a 1D contour around the edge of the testing 
face, greatly reducing integration cost particularly for 
oscillatory integrands.  It is also interesting to note that a 
boundary condition equivalent to the CFIE [14] arises if  
is replaced by , being the conjugate of a plane wave 
travelling into the obstacle. 

To form a BEM scheme we will substitute each of the 
testing functions  (which are the conjugates of the 
interpolation functions) into  and use , where 

 will be computed using the scattering integral.  This 
result is the numerical scheme which may be readily solved 
by collapsing the indexes into a matrix equation: 

 
 

 

 

 

 

 

(a) (b) (c) (d) (e) (f) 

Figure 9: First order scattering by a square plate illuminated by a plane wave at 45°: a) Total; b) Incident;  
c) Shadow (geometric); d) Shadow (diffraction); e) Reflection (geometric); f) Reflection (diffraction). 
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4.4 Interactions Coefficients 

In what follows we consider evaluation of the  
coefficients for a test case scheme which uses planar 
rectangular surface sections.  We are interested in whether 
the wave matching method will start to behave like a 
geometric method as the frequency is increased. Because 
the interpolation functions form a spatial Fourier series over 
the surface sections the double surface integral may be 
quickly evaluated using a four-dimensional FFT.  We may 
also substitute the following relations where the scalar 
product terms are constant over the surface sections and 
may be brought outside the integrals: 
 

 

 

 

 
Our test case is to evaluate the interactions between the 

interpolation functions on two 1m squared planar surface 
sections spaced 1m apart (see Figure 10).  Their interaction 
was evaluated using both conventional piecewise-constant 
elements and the plane wave interpolation functions 
described above so that comparisons might be made.  In 
both cases 32 elements or FFT nodes were used in each 
direction giving 32 × 32 × 2 = 2,048 degrees of freedom on 
each panel (the 2 is to account for the upward and 
downward wave directions) and 2,0482 = 4,194,304 
interactions between them. 

The histogram below shows the magnitudes of the 
interaction coefficients computed using elements (red) and 
the new wave matching scheme (green), each normalised in 
magnitude (horizontal axis) to their largest value, computed 
for , so four oscillations in 1m.  The main result 
here is that the magnitudes of the element interactions are 
all bunched around a similar range, so almost all of them 
are required to give an accurate representation of the 
interaction from to , whereas the vast majority of the 

wave matching interaction coefficients are over 100 times 
smaller than the largest.  Figure 12 shows a zoomed in view 
of the bottom left of Figure 11 (without the element 
interactions) so the very small number of significant wave 
matching interactions can be seen.  Only 106 interactions 
are larger than one tenth of the largest, and only 5806 are 
larger than one hundredth. Compared to the total number of 
interactions in the matrix (4,194,304) these are very small 
numbers.  In contrast the element based discretisation has 
around 1,000,000 interactions larger than one tenth of the 
largest, and almost all are larger than one hundredth.   

 

 

Figure 12: Zoom in on bottom right of Figure 11. 
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Figure 11: Histogram of the magnitude of interaction coefficients normalised to their larges value. 
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Figure 10: Numerical test case.  Two 1m2 
parallel planar surface sections spaced 1m apart. 
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This is very positive result for the wave matching 
scheme.  In addition the largest coefficients all satisfy 

, , and , so the scheme has 
correctly matched the components that have a strong 
geometric similarity (  and  must both be positive since 
the scheme is looking for waves travelling upwards from 

to ).  Ideally this characteristic will also mean that the 
number of significant interactions rises slowly with 
frequency, as the number of waves with a strong geometric 
overlap will remain small.   

Figure 13 depicts 

It can be seen that the number of significant interactions 
does rise with frequency; a numerical fit shows this to be 
approximately with .  This is perhaps unsurprising since 
the wavenumber spectrum will become more densely 
spaced in angle as  increases, meaning more interpolation 
modes will geometrically radiate onto the other surface 
section.  However it still performs vastly better than the 
standard  interactions trend that conventional surface 
elements dictate, suggesting it would be much more suited 
to simulating high frequency scattering than standard BEM 
methods are. 
 

 

Figure 13: Number of significant interactions versus 
frequency 

5 Conclusion 
Here we have given an overview of time domain 

modelling for Room Acoustics, including the Finite 
Difference Time Domain method and a new variant of the 

these are likely to gain further popularity as acoustic 
prediction tools. 
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