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Ultrasonic non destructive testing consists in emitting an acoustic wave in a material and then locating the reflected

echoes produced by impedance changes, due to flaws or medium discontinuities. In some cases, echoes can overlap

in the A-scan (typically for layered materials), yielding a difficult analysis: techniques such as matched filtering

may fail and advanced techniques are necessary to locate the echoes. Sparse deconvolution methods have been

recently applied to such problems. The challenge is to estimate a sparse sequence describing the echoes locations

(times of flight) and amplitudes. Usually, deconvolution is addressed by restoring a discrete signal at the sampling

period of the data. This limits the precision of the spike location and may cause spike splitting. In this paper, we

consider a super-resolution formulation of the deconvolution problem with a more precise restoration grid. To do

so, we extend a recently proposed approach which minimises a data misfit least-square criterion, penalised by a

L0-norm term. The method is evaluated on synthetic data, revealing possible improvements in the estimation of

times of flight.

1 Introduction
Nondestructive testing (NDT) aims at locating flaws and

characterising the geometry in materials. The standard pro-

cedure uses an ultrasonic probe in a pulse-echo mode thanks

to high impedance contrasts in industrial parts [1]. The elec-

tronic system sends a short pulse to the transducer that gen-

erates an acoustic motion in the material. The wave propa-

gates then in the material, creating an echo at each impedance

change. The signal received by the transducer (the A-scan)

is finally the superposition of all echoes. If the reflectors are

point targets and if no diffraction is considered, a convolution

model can be formulated [2]. When the echoes are clearly

separate, a diagnostic by eye can easily be obtained or the

well-known matched filter can be employed. For more diffi-

cult cases (close flaws, multi-layered materials, etc.), echoes

may overlap and advanced techniques are required to sep-

arate the contributions of each echo. The goal is then to re-

store, by deconvolution, a sparse sequence (called reflectivity

sequence) that locates the material discontinuities. Usually,

such a sequence is estimated at the data sampling frequency,

limited by the electronic system [3, 4]. This paper studies

the possibility of increasing the location precision by a super-

resolution (SR) approach.

Deconvolution techniques have been studied for NDT pur-

poses, where the solution is defined as the minimiser of a

composite criterion, composed of a data fitting term and a

penalisation term [3, 4, 5]. The penalisation strengthens the

sparse nature of the solution. In the literature cited above, a

L1-norm is usually used. Recently, L0-penalisation has been

studied for sparse deconvolution [8]. Here, we consider the

extension of these works to the super-resolution formulation.

The paper is organised as follows. In Section 2, we build

the super-resolution discrete model based on the description

of the physical model. Then, Section 3 extends the Single

Best Replacement algorithm introduced in [8] to perform SR

deconvolution. Section 4 presents simulation results with a

simple example and NDT-like synthetic data. Finally, con-

clusions and perspectives are addressed in Section 5.

2 Signal Model

2.1 Physical model
The pulse-echo signal received by the transducer may be

considered as the sum of the echoes coming from the point

scatterers [2]. The output voltage y(t) depends on the electric

excitation u(t) through a set of transfer functions. If we do

not consider any diffraction effect, no flaw signature and no

frequency-dependent attenuation, the signal received by the

transducer reads [6] :

y(t) = u(t) ∗ hea(t) ∗ x(t) ∗ hae(t), (1)

where hea(t) and hae(t) are respectively the electro-acoustical

and acousto-electrical responses of the transducer. The signal

x(t) is a sparse reflection sequence that describes the material

inhomogeneities [6], which synthesises the coherent summa-

tion of the echoes. If we consider a set of reflectors indexed

by i, the reflectivity sequence is composed of the times of

flight ti such that :

x(t) =
∑

i

aiδ(t − ti), (2)

where ai is the amplitude of the i-th echo that models the

frequency-independent attenuation or the reflective coefficient

of a flaw. Sequence x(t) has a spatial interpretation :

R(r) =
∑

i

aiδ(r − ri), (3)

where r is the vector of coordinates of any point of the space

and ri are the positions of the reflectors. R(r) is the scalar

reflectivity at position r having non-zero values at ri. If the

speed of sound c is constant (i.e., if a uniform material is

considered), ri is the distance corresponding to the time of

flight ti such as |ri| = tic/2.

For clarity purposes, we consider h(t) = u(t)∗hea(t)∗hae(t)
as the transducer impulse response since it is the response of

a point target depending only on the transducer properties.

From Eq. (1) and due to the properties of the convolution

operation, the direct model can be formulated by :

y(t) = (h ∗ x)(t) =
∫ +∞
−∞

h(τ) x(t − τ)dτ. (4)

In this paper, we suppose that h(t) is known. To obtain this

response experimentally, it is possible to measure the echo-

field on a rigid wall placed in the far field in order to min-

imise the diffraction effects. The problem is that the signal-

to-noise ratio is weak at this distance [6]. Another method,

based on a similar measurement but in the near field, is to

deconvolve the received signal from the corresponding radi-
ation coupling function [7].

2.2 Discrete model
In practice, available data take a discrete form, which cor-

responds to sampling y(t) in Eq. (4). If TS is the sampling pe-

riod, yn is the discrete-time signal corresponding to the con-

tinuous signal y(t) such that yn = y(nTS ). Numerical methods
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then usually consider a discretised version of the right-hand

term in Eq. (4), at the sampling period TS of yn. It leads

consequently to the well-known discrete convolution model:

yn =

M−1∑
m=0

hm xn−m + en. (5)

where hm = h(mTS ). We introduce here an error term en

which describes the perturbations, the sampling errors and

the model errors (in particular, diffraction, frequency-

dependent attenuation, flaw signatures are not considered).

For the sake of convenience, the discrete signals yn, hn, xn

and en are respectively concatenated to build column vectors

y, h, x and e. Eq. (5) then reads:

y = Hx + e, (6)

where H is a convolution matrix whose lines are delayed

versions of the reversed discrete wavelet hT or, equivalently,

whose columns are delayed versions of h.

Note that this formulation, where the discretisation of the

convolution model is considered at the sampling frequency,

appears in all deconvolution problems in NDT up to our

knowledge [3, 4]. The contribution of this paper is precisely

to consider a finer discretisation of the convolution terms in

Eq. (4). This seems coherent since the reflectivity sequence

x(t) is sparse and hence has high frequency components. Let

us consider that h(t) and x(t) are discretised at TS /K with K
integer. The discrete convolution model in Eq. (5) becomes:

yn =

P−1∑
p=0

hsr
p xsr

nK−p + en, (7)

where n is the index of the data samples and p is the index

for the super-resolution restored signal. One then has P =
KM and hsr

p = h(pTS /K), where h(t) is the continuous-time

wavelet in Eq. (4). Compared to the data yn, the sampling

period of hsr
n and xsr

n is now divided by K. In practice, since

h is measured at the sampling rate of the data, the original

discrete wavelet has to be up-sampled by factor K to form hsr.

This can be done by time interpolation. From the model in

Eq. (7), the sequence xsr will be restored at super-resolution

rate TS /K, increasing K times the precision. With hsr and xsr

the super-resolution versions of h and x, the problem can be

written in matrix form:

y = Hsr xsr + e, (8)

where each line of Hsr is formed by the reversed wavelet[
hsr

P−1
. . . hsr

0

]
with nK zeros inserted at the beginning. An

example is given for K = 2 :

Hsr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hsr
P−1
· · · · · · hsr

0
0 0 0 0 · · ·

0 0 hsr
P−1
· · · · · · hsr

0
0 0 · · ·

0 0 0 0 hsr
P−1
· · · · · · hsr

0
· · ·

0 0 0 0 0 0 hsr
P−1
· · · · · ·

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(9)

This matrix corresponds to K interleaved convolution matri-

ces. Equivalently, the model can be written as the sum of K
discrete convolutions as :

yn =

K−1∑
k=0

⎛⎜⎜⎜⎜⎜⎜⎝
M−1∑
m=0

hk
m xk

n−m

⎞⎟⎟⎟⎟⎟⎟⎠ + en, (10)

where hk, k = 0 . . .K − 1 are K sub-wavelets with sampling

period TS , such that hk
m = h(kTS /K + mTS ) and xk, k =

0 . . .K − 1 are the corresponding sparse sub-sequences with

M points. The decomposition in matrix form hence gives :

y =
K−1∑
k=0

Hk xk + e, (11)

with Hk the sub-matrices obtained by taking every K columns

of Hsr. The pulse-echo signal can therefore be modelled as a

super-resolution convolution written in Eq. (8) (which is not

a discrete convolution), or equivalently as the superposition

of K discrete convolutions in Eq. (11).

3 The Super-Resolution deconvolution
algorithm

According to Eq. (6), the goal of deconvolution is to find

a solution x knowing the data y and matrix H (or wavelet

h). Deconvolution of ultrasonic pulse echoes is an ill-posed

problem especially because the solution is unstable in the

presence of noise: the best least-squares fit leads in partic-

ular to unacceptable noise amplification [5]. Moreover, in

the SR formulation, the solution is not unique since the num-

ber of unknowns is (K times) larger than the number of data.

In order to overcome such difficulties, it is necessary to use

regularised methods. A well-known method is the minimisa-

tion of a penalised least-square criterion. For the problem in

Eq. (6), such a criterion reads:

J(x, μ) = ‖y −H x‖2 + μφ(x), (12)

where μ > 0 manages the trade-off between data fitting and

regularisation. The solution x̂ is then defined as the min-

imiser of J(x, μ). In the context of sparse deconvolution, reg-

ularisation aims to favour zero values in x̂. Many contribu-

tions to sparse deconvolution in NDT choose φ as a L1-norm

(for example, [3, 4]). The convexity of this norm and the

resulting criterion J leads to efficient optimisation strategies.

In this paper, we follow [8] and handle L0 regularisation

where the L0-pseudo-norm ‖x‖0 is the number of non-zero

elements in x. The data misfit criterion hence becomes in a

super-resolution approach:

J(xsr, μ) = ‖y −Hsr xsr‖2 + μ ‖xsr‖0 . (13)

Optimisation is more complex for this norm because it is

mainly a combinatorial problem. The number of possible

combinations can be very large and it is numerically

intractable to test all the combinations. The algorithm used

here is the Single Best Replacement (SBR) algorithm [8].

It is an iterative algorithm that starts from a zero-signal and

gradually adds or removes elements one by one, selecting

the replacement that most decreases the criterion. Although

such strategy is not theoretically ensured to converge to the

global minimum of (13), satisfactory results were obtained

for sparse deconvolution at ”normal” resolution, outperform-

ing other usual sparsity-based algorithms and the

L1-penalisation approach, especially at high SNR [11].

Initial works introducing the SBR algorithm proposed a

generic implementation, where matrix H is not necessarily a

convolution matrix. For low dimension problems, it is pos-

sible to build the matrix Hsr in Eq. (8) and use this generic
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version. On the other hand, for large problems, it is no more

possible to store matrix Hsr. Therefore, we have developed a

specific implementation based on the formulation in Eq. (11)

that only requires to store the K sub-wavelets hk.

Tuning parameter μ in Eq. (13) is crucial, since it con-

trols the sparsity degree, that is, the number of spikes, in the

solution. Let z = HsrT y and note hsr
k the k-th column of ma-

trix Hsr. It can be shown that for μ > μmax with μmax =

maxk z2
k/
∥∥∥hsr

k

∥∥∥2, the solution is identically zero. A contin-
uation version of SBR was proposed in [9], which enables

one to compute the set of minimisers obtained for all μ ∈
[μmin, μmax], for few additional cost compared to the solution

obtained for μmin. Optimal parameter μ can then be estimated

from all solutions by informational criteria such as Minimum

Description Length or Akaike’s Information criterion [10].

4 Application to synthetic examples
This section presents the results of standard and super-

resolution deconvolution applied to synthetic data. For the

sake of clarity, we call Data-Resolution (DR) the resolution

of the data. In the first example, the problem of time of flight

estimation of a single echo is treated. Secondly, we will ap-

ply deconvolution with the SBR algorithm to a synthetic A-

scan signal from a thin plate. Lastly, we study the case of

two close flaws provoking strongly overlapping echoes.

4.1 Time of flight estimation of a single echo
The wavelet h(t) is simulated as a sine wave with a Gaus-

sian envelope. The wavelet is then time-shifted by a delay t0
so that the signal received by the transducer is :

y(t) = h(t − t0). (14)

The goal is then to estimate the time delay t0. The central

frequency of the transducer is 5 MHz and the sampling fre-

quency of the electronic system is 50 MHz (TS = 20 ns).

The up-sampling parameter is K = 4, meaning that the SR

sampling frequency is 200 MHz (i.e. a time resolution of 5

ns). In this toy example, the deconvolution process is need-

less since only one spike is searched. Therefore, the result is

identical to a matched-filter or cross-correlation operation.

In Figure 1, results of both DR and SR processing are

presented for two values of time-shift : t0 = 2010 ns and

t0 = 2012 ns. The first value belongs to the SR discretisa-

tion grid whereas the second does not. Both values of t0 do

not belong to the DR grid. We consider noise-free data and

10 dB noise corrupted data, where the Signal-to-Noise Ratio

(SNR) is defined as the ratio between the power of x ∗ h over

the power of noise e. One can notice that, when t0 fits the SR

grid, the result of SR estimation obviously gives the exact

solution. Concerning the DR approach, it returns the closest

sampling time, yielding an error of estimation that can reach

TS /2. In the same sense, if t0 is not on any restoration grid,

the time estimation is the closest time reference, giving ad-

vantage to the SR approach, since the maximum error is then

TS /2K. Similar results are achieved with noise-corrupted

data. Nevertheless, the estimated location of t0 may vary,

depending on the noise random realisation. It is accordingly

interesting to observe the time-of-flight estimation distribu-

tion obtained for a large number of noise realisations.

Figure 1: Results of time of flight estimation for a single

echo. Left: noise-free case, right: SNR = 10 dB. Top: data,

centre: t0 = 2010 ns, bottom: t0 = 2012 ns. Truth (◦),
estimation at DR (�) and estimation at SR with K = 4 (�).

Monte-Carlo runs enable to test this at a given SNR. Fig-

ure 2 reveals the distribution of time of flight estimations us-

ing DR and SR deconvolution for SNR = 0 dB. We can ob-

serve that the distribution of the spike location estimated at

DR spreads over two values, on both sides of the true time

delay. Such error can reach half the sampling frequency. On

the other hand, for SR deconvolution, the distribution shows

less dispersion around the true delay. We note that such dis-

persion is of the same order of magnitude as the minimum

variance obtained for typical time delay estimation (TDE)

problems. For example, in [12], the minimum variance on

the TDE is approximated by:

σ2 ≥ 3

8π2T
1

SNR

1

f 3
2
− f 3

1

, (15)

where T is the observation time, f1 and f2 are the lower and

higher bounds of the signal bandwidth. In our example, the

empirical standard deviation in Figure 2 is coherent with such

theory. In practice, this may give a guideline in order to se-

lect the value of the SR factor K: it is indeed unnecessary

to sample the time axis at a much higher resolution than the

intrinsic dispersion on the TDE due to the presence of noise.

4.2 Deconvolution from a thin plate
In this section, results from NDT simulations are pre-

sented. A model of plane waves is used to describe the elastic

propagation in layered materials [13]. This method enables

to model compression and shear waves in anisotropic parts.

The test piece is an aluminium plate immersed in water. The

simulation aims to model the signal received by the trans-

ducer placed normally to the surface. The goal is to deter-

mine the thickness of the plate from an A-scan, by locating

the echoes. The central frequency of the probe is 2.17 MHz,

therefore the wavelength of longitudinal waves in aluminium

is 2.92 mm. The sampling frequency imposed by the elec-

tronic system is 20 MHz. Figure 3 shows the pulse-echo

wavelet for a normal incidence used for deconvolution (top

panel) and the corresponding data for a 2 mm thick plate with
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Figure 2: Histograms of time of flight estimation of a single

echo (SNR = 0 dB). (a): DR, (b): SR with K = 20. True

delay (dotted line), histograms of TDE (vertical bars). The

error bar represents the standard deviation ±σ in Eq. (15).

Dashed vertical lines refer to DR and SR discretisation

grids.

30 dB SNR (centre panel). In this case, the thickness is less

than the wavelength, leading to a prohibitive overlapping.

Deconvolution results are shown in the bottom panel. The

surface echo, which has a large amplitude due to high

impedance contrast between water and aluminium, is well

identified by both methods at approximately 0.8 μs. Besides,

the DR deconvolution creates double spikes for the second

echo: since the restoration grid is not precise enough, the so-

lution with only one spike does not fit well the data, so that

the solution contains another close spike, with opposite am-

plitude, in order to compensate the error. SR deconvolution

does not produce spike splitting thanks to the better precision

of its sampling grid. It consequently returns a better location

of the times of flight and can lead to a better thickness mea-

surement. SR deconvolution hence gives acceptable results

of amplitudes and times of flight, despite the difficulty of the

problem.

Let us now examine the influence of the up-sampling fac-

tor K. Results of SR deconvolution, from the three first peaks,

for K = 2, 4 and 8 are plotted in Figure 4. Results with K = 2

have obviously the worse time resolution. Furthermore, we

can see that the precision is not increased from K equal 4

to 8. It is then useless to work at a higher up-sampling fac-

tor than 4. This limit is depending on the bandwidth of the

transducer and the SNR, as we have seen in § 4.1.

4.3 Deconvolution from two close flaws
We consider here two overlapping echoes in the same

conditions as in § 4.1. The simulations use DR and SR de-

convolution to estimate the two times of flight (599 ns and

751 ns), which are not on the two restoration grids. This

case simulates two close point flaws as described in Eq (3).

Figure 5 shows the spike positions obtained by the SBR al-

gorithm, against the parameter μ in Eq. (13). Globally, as

μ increases, the number of spikes decreases, because of the

growing importance of penalisation.

DR deconvolution does not give satisfactory results: so-

lutions with only two or three detected spikes (for example,

with μ = 10−1) show an important error on the spike loca-

tions. Indeed, the difference between the detected locations

Figure 3: Deconvolution of an A-scan from an aluminium

plate of thickness 2 mm with 30 dB SNR data. Top: DR and

SR wavelets used for deconvolution (K=8). Centre: data.

Bottom: results of DR and SR deconvolution.

and the true ones is approximately half the frequency of the

wavelet. Such solutions also yield a relatively low value of

the data misfit term in criterion (13), but lead to strong con-

fusion in the detection of the echoes. Solutions obtained for

lower values of μ may detect the two spikes with better pre-

cision, but show a high number of artefacts.

On the contrary, SR deconvolution gives relevant solu-

tions (i.e. two spikes), very close to the true solution, for a

large range of μ (10−1 ∼ 10−3). It evidently reveals the in-

terest of using a higher resolution rate. Such results illus-

trate the importance of using more precise discretisation in

the data attachment model, especially for an L0-based de-

convolution approach with the SBR algorithm. Since L0 op-

timisation only performs local optimisation, it is sensitive to

local minima. Increasing the resolution then makes it easier

for SBR to find better solutions.

5 Conclusion
A method of sparse deconvolution with a super-resolution

approach was presented. Simulations with simple synthetic

data revealed that this approach can improve the precision

of the echo locations. Using a more precise model was also

shown to improve the deconvolution results of the L0-

penalisation approach in the case of strongly overlapping

echoes, whereas the usual formulation at the data resolution

may lead to erroneous spike detections. In the context of

layer localisation in non-destructive testing, we have shown

from simulations that precision was increased by the super-

resolution approach. Standard deconvolution creates dou-

ble spikes when the true echoes are far from the restoration

grid, whereas super-resolution estimation does not. Such

improvements can be interpreted by considering that super

resolution allows better data fitting, which favors the ability
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Figure 4: SR deconvolution from an aluminium plate of

thickness 2 mm for different values of K. True (◦) and

estimated (�) spikes. Top: K = 2, centre: K = 4,

bottom: K = 8.

of the Single Best Replacement algorithm to retrieve satis-

factory solutions. On the contrary, with lower resolution,

such algorithm is more likely to fall into local minima of

the objective function. We have seen that the up-sampling

parameter of the super-resolution does not need to be too

large since the restoration precision is limited by the pres-

ence of noise. This limit is actually related to the minimum

variance of time delay estimation problems, which depends

on the signal-to-noise ratio and on the transducer bandwidth.

This point would deserve more attention in order to automat-

ically tune the up-sampling parameter.
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