
HAL Id: hal-00811281
https://hal.science/hal-00811281

Submitted on 23 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A spectral-envelope synthesis model to study perceptual
blend between wind instruments

Sven-Amin Lembke, Stephen Mcadams

To cite this version:
Sven-Amin Lembke, Stephen Mcadams. A spectral-envelope synthesis model to study perceptual
blend between wind instruments. Acoustics 2012, Apr 2012, Nantes, France. �hal-00811281�

https://hal.science/hal-00811281
https://hal.archives-ouvertes.fr


A spectral-envelope synthesis model to study perceptual
blend between wind instruments

S.-A. Lembke and S. McAdams

CIRMMT, McGill University, Schulich School of Music, 555 Sherbrooke St. W., Montreal,

Canada H3A 1E3

sven-amin.lembke@mail.mcgill.ca

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

1031



Wind instrument sounds can be shown to be characterized by pitch-invariant spectral maxima or formants. An

acoustical signal-analysis approach is pursued to obtain spectral-envelope descriptions that reveal these pitch-

invariant spectral traits. Spectral envelopes are estimated empirically by applying a curve-fitting procedure to a

composite distribution of partial-tone frequencies and amplitudes obtained across an instrument’s pitch range. A

source-filter synthesis model is designed based on two independent formant filters with their frequency responses

matched to the spectral envelope estimates. This is then used in perceptual experiments in which parameter vari-

ations of the synthesis filter are manipulated systematically to investigate their contribution to the degree of per-

ceived blend between the synthesized sound and a recorded instrument sound. The perceptual relevance is assessed

through two tasks in which participants either produce the best attainable blend by directly controlling synthesis

parameters or rate the degree of blend for 5 parameter presets. Behavioral data from both experiments suggest the

utility of this formant-based model for correlating pitch-invariant acoustical description with perceptual relevance,

as both formant frequency and magnitude appear to affect perceived blend.

1 Introduction
Research in auditory perception has for a long time re-

lied on sound synthesis methods for the creation of controlled

stimuli that allow a systematic investigation of parametrized

acoustical factors. In the perceptual study of timbre blending

between instruments, agreement of pitch-invariant spectral

traits has been argued to contribute to perceived blend be-

tween concurrent instrument sounds [1]. Previous acoustical

investigations have confirmed the existence of these pitch-

invariant spectral maxima [2, 3], with these maxima being

termed formants, by analogy with the acoustic properties of

the human voice.

With regard to our investigation of perceived timbre blend

between two concurrently sounding instruments, a capabil-

ity was sought to parametrically vary the spectral shape of

a synthesized instrument. The spectral shape is based on a

pitch-invariant spectral envelope representation, which was

operationalized in terms of being expressed as a combina-

tion of formant regions whose perceptual relevance could be

tested.

The following sections describe the development of a stim-

ulus production environment enabling concurrent presenta-

tion of a synthesized and recorded sampled instrument and

how the technical infrastructure was used in the perceptual

investigation.

2 Stimulus production
An essential requirement for the design of a synthesis

method to model wind instruments was its reliance on a spec-

tral envelope representation derived from estimates based on

real instruments. Therefore the following section will first

present the technique for obtaining the spectral envelopes

and establish concepts related to their description, before dis-

cussing the technical infrastructure of the synthesis model

and stimulus presentation environment.

2.1 Spectral-envelope description
Past considerations of the description of formants or other

pitch-invariant spectral traits for instruments have called for

a comprehensive assessment to encompass a whole range of

pitches of an instrument [4]. In order to validate previous

claims of pitch invariance as well as confirm their relevance

to our set of instruments (e.g. bass trombone, horn, trumpet,

bassoon, clarinet, oboe, flute), an acoustical characterization

aimed at obtaining spectral-envelope descriptions of our in-

strument sample database was conducted.
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Figure 1: Spectral envelope estimate for bass trombone

(line) and distribution of partial tones (dots).

Similar to past approaches [3, 5], an empirical estima-

tion of the pitch-invariant spectral envelope of wind instru-

ments was pursued. This involved the initial computation of

power density spectra for sustained portions of sounds for

up to 40 pitches per instrument, followed by a partial tone

detection routine. A curve-fitting procedure employing a so-

called smoothing spline applied to the composite distribution

of partial tones yielded the spectral envelope estimates, as

shown in Figure 1.

The obtained spectral envelope estimates served as the

basis for qualitative identification and categorization of two

formants that were implemented in the synthesis model of the

instruments. The main formant represented the most promi-

nent spectral maximum with decreasing magnitude towards

both lower and higher frequencies or if not available, the

most significant plateau along the magnitude decrease to-

wards high frequencies.1 The secondary formant was the

next most prominent spectral maximum or plateau. Further-

more, pitch-invariant descriptors for the main formant were

formulated that described the frequencies of the formant max-

imum fmax as well as upper and lower bounds at which the

power magnitude decreased by either 3 dB or 6 dB relative

to the maximum.

2.2 Spectral-envelope synthesis model
Inspired by previous formant synthesis approaches which

had mainly focused on voice synthesis [6, 7], a source-filter

1The latter case only applied to the spectral envelope estimate of the

flute.
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model was adopted in which a composite filter structure de-

scribes the pitch-invariant spectral envelope and is grouped

into two independent formant filters. During synthesis, the

filter structure is fed a broadband, harmonic source signal

that can be varied in fundamental frequency. In order to

fulfill the requirements for its subsequent use in perceptual

tests, the synthesis had to meet several criteria. The indepen-

dent formants were required to be controllable with respect to

frequency location and relative magnitude or gain. Further-

more, a real-time functionality was sought that exhibited in-

stantaneous response to parameter changes and could handle

discontinuous parameter value changes. The implementation

was made in Max/MSP 5, which fulfilled all requirements

and provided the flexibility of modelling the required digital

source signals and filter structures.

2.2.1 Source signal

As the motivation behind the creation of controlled stim-

uli focused on partial tones outlining the spectral envelope

in a region relevant to the occurrence of formants, the ex-

citation source signal was implemented as being limited to

5 kHz and not containing any noise components. As a result,

the source signal s[n] comprised harmonics of the fundamen-

tal frequency f0 and equal amplitudes as shown in Equation 1

for the sampling period Ts. The number of harmonics H was

chosen to limit the bandwidth based on f0 as illustrated in

Equation 2.

s[n] = a ·
H∑

h=1

sin (2π n h f0 Ts) (1)

H = �5000 Hz
f0

� (2)

With regard to the temporal amplitude envelopes for iso-

lated notes, the attack and decay portions were modelled as

linear ramps of 100 ms duration. Although this by no means

represents an accurate modelling of instrument-specific at-

tack and decay properties, this equality of temporal envelope

characteristics across different synthesized instruments aided

the desired primary focus on spectral properties.

2.2.2 Formant filters

Each of the two formant filters (index i) was modelled

as two cascaded second-order all-pole filters (index j), with

both formant filters implemented as a parallel structure. The

composite filter transfer-function H(z) is defined in Equa-

tions 3 to 6.2 Each component all-pole filter is defined by

a set of coefficients for their individual bandwidths Bi j, cen-

ter frequencies fi j and gains gi j.

H(z) =

2∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣
2∏

j=1

Gi j

1 − 2 Ri j cos
(
θi j

)
z−1 + R2

i j z−2

⎤⎥⎥⎥⎥⎥⎥⎦ (3)

Ri j = e−πTsBi j (4)

2Despite the parallel implementation of the formant filters, their individ-

ual contributions to H(z) are not independent. As a result, relative magni-

tude differences are greater than the individual parameter variations suggest.

Since no quantification of exact magnitude differences (e.g., determination

of perceptual thresholds) is sought, this does not compromise our investiga-

tion.
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Figure 2: Modelled filter frequency response (solid) and

spectral envelope estimate (dashed) for bassoon.

θi j = 2 πTs

(
fi j + ΔFi

)
(5)

Gi j = 10 ΔLi/20 ·
(
1 +
ΔFi

fi j

)
gi j (6)

The independent control parameters for each formant fil-

ter were implemented as absolute deviations from the ideal

(zero) for frequency ΔFi in Hz and gain ΔLi in dB.3

2.2.3 Modelling of instruments

Each of the instruments was modelled by using their re-

spective spectral envelope estimates as a reference and match-

ing each formant filter to the identified formants, as shown in

Figure 2. The modelling involved manual adjustments of the

sets of component-filter coefficients Bi j, fi j and gi j, with the

result being termed the ideal filter response, i.e. the case

for which the control parameter deviations ΔFi and ΔLi are

zero. The achieved closeness in spectral shape between mod-

els and estimates was not meant to deliver realistic emula-

tions of the instruments per se but instead to reduce spectral

differences not associated with identified formants and as a

result to improve a selective evaluation of their perceptual

relevance.

Most of the instruments considered are well-characterized

by the formant representation, with the flute and clarinet rep-

resenting the least appropriate cases. For instruments for

which only a single formant appeared to characterize the spec-

tral envelope significantly, the other formant filter served an

entirely technical function of complementing the main for-

mant’s frequency response to adequately model the entire

spectral envelope estimate. Furthermore, since the spectrum

of the clarinet is characterized by the well-known attenuation

of the lowest even-order partials, which notably also varies

as a function of pitch, the modelled filter structure for the

clarinet intentionally diverged from the obtained estimate.

As our study aimed at finding a relevance of pitch-invariant

properties, the clarinet was modelled to describe only the

identified formant (located above low-order partials) and the

remaining spectral envelope towards higher frequencies, thus

excluding its pitch-variant frequency region.

3In Equation 6 the ΔFi-dependent weighting of gains gi j becomes nec-

essary to achieve a quasi-constant gain across variations of ΔFi.
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Figure 3: Sources and receivers in acoustical room

simulation model.

2.3 Stimulus presentation environment
Although the synthesis presented a central part of the

stimulus production infrastructure, the perceptual investiga-

tion of blend still required it to be paired with the concur-

rent presentation of a recorded instrument sample. A stim-

ulus presentation was chosen that would recreate a listening

environment likely encountered in listening to instrumental

music. As a result, the synthesized and sampled instruments

were simulated as spatially distinct sources in an acoustical

room simulation model, shown in Figure 3, employing real-

time convolution. Two receiver locations simulate a common

time-delay-based stereophonic AB main-microphone setup

to be presented over a standard stereo loudspeaker listening

configuration. The loudness balance between the instruments

presented another control parameter that concerned the in-

vestigation, being implemented as a linear crossfade between

the amplitudes of the two sources prior to convolution with

the room model. Sounds for both instruments were triggered

synchronously and due to the instrument samples’ limited

duration of about 5 s, repeated throughout an experimental

trial.

3 Perceptual investigation
Given the developed synthesis model and the overarch-

ing stimulus presentation environment, the subsequent per-

ceptual investigation aimed to investigate the possible per-

ceptual relevance of the pitch-invariant formants. Applied to

the spectral-envelope synthesis model, this concerned study-

ing if and how the formant control parameters ΔFi or ΔLi

were related to perceived blend. Furthermore, pitch invari-

ance would only be deducible if a certain trend could be con-

firmed across several different pitches. The original hypothe-

sis of a perceptual relevance of formants argued for perceived

timbre blend to be related to a coincidence of formant fre-

quencies between instruments [1], which in our case would

correspond to finding no significant deviations from the ideal
formant parameter values. Two behavioral experiments were

conducted to investigate these assumptions.

3.1 Experimental design
The two experiments differed in the experimental tasks

that were employed, with the second also aiming to provide

further validation and clarification of findings from the first

experiment. The synthesized instruments were paired with

recorded samples of the same instruments at selected pitches.

All instruments except for the bass trombone were included

as stimuli in the main experiments. With respect to multifac-

torial statistical hypothesis tests, both experiments adopted a

within-participants design.

3.1.1 Experiment A: Blend production

The first experiment employed a production task and was

conducted with 17 participants, recruited as musically expe-

rienced listeners. Across 66 trials (22 conditions × 4 repe-

titions) participants were given the task to adjust either ΔFi

or ΔLi directly in order to achieve the maximum attainable

blend. User control of the stimulus production environment

was provided via a two-dimensional graphical interface, with

controls for the investigated formant parameter and the loud-

ness balance between instruments. ΔFi was investigated for

the main formant of all instruments, with the secondary for-

mant only being tested for oboe. ΔLi for the main formant

was only tested for instruments prominently characterized by

formants, namely, horn, bassoon and oboe. The latter also

served as the only case the secondary formant gain was in-

vestigated.

3.1.2 Experiment B: Blend rating

The second experiment was based on a simplified and

less time-consuming rating task and involved 20 participants,

again recruited as experienced listeners. Across 120 trials

(30 conditions × 4 repetitions) participants were asked to rate

the relative degree of blend for a total of 5 sound dyads per

condition. A continuous relative blend rating scale was used,

spanning from most blended to least blended. Across 5 dyads

the same instrument sample formed pairs with varying for-

mant parameter value presets for ΔF1 or ΔL1, with only the

main formant (i = 1) being considered.4 For both parameters

one of the presets presented the zero-deviation ideal case.

The remaining 4 presets comprised moderate deviations be-

low (-mod) and above (+mod) the ideal and likewise, a pair

of extreme deviations (-ext and +ext). The presets were based

on generalizable formant properties which allowed compar-

isons between instruments to be made on a common scale of

spectral-envelope description.

For ΔF1 the 4 non-ideal preset values were derived from

formant descriptors (see Section 2.1) and defined as the dif-

ference between a frequency fpreset, expressed in terms of

formant bounds, and the identified formant maximum, as

shown in Equation 7. More specifically, moderate devia-

tions fpreset(±mod) fell 10% within both 3 dB-bounds rela-

tive to their frequency width. fpreset(−ext) corresponded to

4The presets included predetermined values for the loudness balance be-

tween instruments and also had been equalized for loudness between presets.
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the higher of the two values between 80% of the lower 6 dB-

bound or 150 Hz. Whereas fpreset(+ext) was identical to the

upper 6 dB-bound. All instruments were considered for this

formant parameter.

ΔF1 = fpreset − fmax (7)

For ΔL1 the moderate deviations represented values ob-

tained from the behavioral findings of Experiment A paired

with values mirrored relative to the ideal. The extreme de-

viations were defined as being 60% more extreme than the

moderate ones. The instruments included the same ones in

Experiment A plus trumpet, with the missing behavioral ref-

erence value for the latter being substituted by the average

behavioral values of the other instruments.

Apart from the direct blend ratings, additional measures

were also formulated to quantify the preferred parameter de-

viations. These were derived from rating-weighted measures

of parameter values based on the two highest ratings per trial,

and were defined as weighted average and standard devia-

tion, serving as descriptors for central tendency and spread

of parameter values across within-participant repetitions.

3.2 Behavioral findings
Both experiments motivated a broad range of statistical

tests, generating a large quantity of reportable data. Due to

space constraints, only the most meaningful behavioral find-

ings with respect to the synthesis model are reported for both

experiments. This limitation concerns only reporting results

for the main formant for which clear indications have be-

come apparent, arguing for its dominant role in explaining

perceptual blend.

Experiment A yielded results for the scenario in which

participants themselves determined the parameter values lead-

ing to the best perceived blend. For relative parameter devia-

tionsΔF1/ fmax, a common trend to slightly underestimate the

ideal by about 10% was found, as is shown in Figure 4. For

4 instruments, the underestimations were statistically signif-

icant (*), determined through a single-sample t-test against

a sample mean of zero.5 Notably, the horn and bassoon did

not differ significantly from the ideal formant frequency. The

absolute deviations ΔL1 showed a clear trend to relative am-

plification of the main formant contributing to best blend,

results for all considered instruments being significantly dif-

ferent from the ideal.

Experiment B aimed to confirm tendencies found in Ex-

periment A and investigate whether they exhibited pitch in-

variance across a set of representative pitches. Each formant

parameter was tested at 2-4 pitches per instrument, includ-

ing the original conditions from the previous experiment. In-

stead of finding the best blend along a continuum of param-

eter deviations as in Experiment A, participants compared

the relative degree of perceived blend between presets, which

could, and in fact did, lead to some differences in the results.

With regard to frequency deviations ΔF1, the preferred (i.e.

highest-rated) presets were not only oriented toward the ideal

value and moderate underestimations (-mod), but included

the extreme underestimation (-ext) as well. Conversely, the

lowest ratings were obtained for overestimations of the ideal

value (+mod and +ext), which agrees with the general trend

5All reported statistically significant results are based on a significance

level: α = .05.
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Figure 5: Main and interaction effects for the factors

‘preset’ and ‘pitch’ (s: significant, ns: not sig.).

of underestimation found in Experiment A. Given a similar

preference of frequency deviations at and below the ideal,

the relative rating-weighted measures showed clearer under-

estimations than in Experiment A, on the order of 20%. Yet,

even in this case the bassoon and horn only yielded signifi-

cantly different results from the ideal in about half the com-

parisons. For gain deviations ΔLi, amplification of the main

formant could again be confirmed for the same instruments

as in Experiment A, with nearly all comparisons being sig-

nificantly different from the ideal. However, the trumpet did

not show a clear trend for main formant amplification.

With the reported tendencies for both formant parameters

being in strong agreement across the direct rating and rating-

weighted measures, several multifactorial Friedman tests and

ANOVAs were conducted to investigate whether the findings

argue for a pitch-invariant constancy of ΔF1-ratings. The

analysis rationale involved testing for main effects for the

factors ‘preset’ and ‘pitch’. Significant main effects for ‘pre-

set’ would confirm that ratings could be considered as a re-

liable indicator of perceptual differences. Furthermore, the

finding of significant interaction effects between the factors

‘preset × pitch’ would argue against pitch invariance, as the

profile of blend ratings across presets would be shown to vary

as a function of pitch.6 As summarized in the table shown in

Figure 5, all instruments yield statistically significant main

effects for ‘preset’ but not for ‘pitch’. Significant divergence

from pitch-invariant performance was only found for the flute

and the clarinet, which interestingly are also the instruments

that are the least-well represented by the formant representa-

tion.

Although both experiments display somewhat different

results concerning the perceptual relevance of exact overlap

of the formants, they both support the hypothesis that per-

ceived blend is achieved around and below the ideal formant

6Due to violations of the assumption of normality for about half the pre-

sets, main effects were tested with a non-parametric 2-way Friedman test.

As no non-parametric test was available to test for interaction effects, this

was done through a repeated-measures 2-way ANOVA, after ensuring that

both tests yielded similar tendencies for the main effects.

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

1035



−mod ideal −ext +mod +ext
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Cluster analysis

di
ss

im
ila

rit
y

Figure 6: Dendrogram displaying clustering based on effect

size from post-hoc analyses for ‘preset’.

location and is clearly reduced above this value. To further

elucidate this tendency across instruments for which pitch in-

variance could be assumed, a cluster analysis was conducted

with the rating differences between preset levels being in-

terpreted as a dissimilarity measure. This measure consid-

ered squared effect sizes (r) of statistically significant non-

parametric post-hoc analyses for pairwise comparisons be-

tween presets (Wilcoxon signed-rank test).7 The complete-

linkage clustering algorithm considered dissimilarity data av-

eraged across 15 independent sets of effect sizes for oboe,

trumpet, horn and bassoon. As shown in Figure 6, the over-

estimations of ΔF1 (+mod and +ext) are maximally dissim-

ilar to a compact cluster associating deviations centered on

and below the ideal formant location (ideal, -mod and -ext).

4 Conclusion
The development of the spectral-envelope synthesis model

has been an essential tool in allowing a selective and focused

investigation of the acoustical spectral-envelope properties

related to the perception of blend between wind instruments.

We have shown that localized formant regions are per-

ceptually relevant to blend for the main formant parameters

describing relative magnitude and frequency location. As

concerns the latter, the theory of formant coincidence [1]

does not appear to hold across both investigated experimen-

tal tasks. Instead, it becomes clearly apparent that the role of

formants in the perception of blend may function as a criti-

cal frequency boundary. The degree of perceived blend de-

creases markedly whenever the relative location of formants

exceeds the frequency boundary of a reference formant. As

the reference formant in our investigation was predetermined

by the static sampled instrument, it remains to be studied how

this would apply to musical practice, in which musicians per-

form blend in an interactive relationship.

Pitch invariance is suggested by both the acoustical de-

scription and perceptual findings for most of the investigated

wind instruments, its perceptual relevance being meaningful

to the development of realistic renditions of wind-instrument

synthesis. It may be assumed that an accurate physical mod-

elling synthesis of these wind instruments would exhibit the

same pitch-invariant relationships described here. Given the

7Dissimilarity was assumed zero for non-significant differences.

perceptual role attributed to formants and their apparent pitch-

invariant relevance, it can be assumed that pitch-invariant de-

scriptors describing the frequency boundary may be able to

serve as acoustical predictors of perceived blend.

As to the utility of the model to individual instruments,

the flute and clarinet have been found to deviate from a pitch-

invariant behavior and would thus need to be treated as spe-

cial cases. This would likely limit their musical usage to not

serving as candidates for non-unison blended combinations.

By contrast, the bassoon and horn display a strong robustness

across pitch and are centered on the ideal formant location.

Apart from being commonly used in orchestration practice

to achieve blend, their lower pitch ranges, could furthermore

support a hypothesis of ‘darker’ timbres generally leading to

more blend [8]. With this hypothesis having being derived

from an acoustic description based on a global spectral aver-

age (e.g., spectral centroid), our investigation has contributed

further by delivering more differentiated explanations based

on a more local spectral origin.
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