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Capacitive Micromachined Ultrasound Transducers (CMUT) is a promising alternative to piezo-electric
transducers for medical imaging. CMUT generally comprises more than 10 thousand unitary cells. When
immersed in a fluid the cells are strongly coupled by the fluid, leading to cross talk effects. Accurate simulation
tools that take into account properly all these coupling are very much CPU time consuming. From an engineering
point of view it will be interesting to use simplified models to conduct parametric studies. We propose in this
paper to evaluate various simplified models in term of accuracy. As a test case, we chose a typical 1D CMUT
array in which groups of 80 cells, called elements, are electrically connected. The reference model takes into
account explicitly the contribution of all the cells to compute, in the harmonic domain, the displacement field
on the transducer surface and the radiated pressure. A parametric study has been conducted on the interaction
radius to compute the acoustic coupling terms. Also kinematic constraints have been investigated to reduce the
computational cost.

1 Introduction
The numerical simulation of the radiated pressure of a

CMUT array is often conducted by approximate methods,
due to the huge number of membranes that have to be taken
into account. Simple CMUT design tools, used piston like
analytic solutions and simplified coupling hypothesis, as
described in [6]. Commercial Finite Element Software
are also currently used to study the radiation of a single
membrane. Some authors [3], [4] have used ANSYS to
study cross talk effects on models limited to a few number of
membranes. The use of periodic conditions as in [1] is exact
only for infinite arrays. Other models take acoustic coupling
into account with various simplification hypothesis [8], [7].

We present here a method where all the membranes are
taken into account explicitly in the simulation. Computation
time is reasonable, because acoustic couplings are calculated
by the Rayleigh integral and membrane displacements are
projected on mechanical mode shapes. We present first the
model, then the 1D CMUT array that will serve as test case
and then we will discuss various simplification hypothesis.

2 Model
A CMUT array is composed of many cells organized

as an array. Each cell comprises a small membrane over a
sealed vacuum cavity. Electrodes are deposited at the bottom
of the cavity and on the membrane to permit electrostatic
actuation. Electrical connections allows to apply the same
electrical tension to a group of cells called element. We
suppose that the membranes are coupled by the semi infinite
acoustic medium but not by the mechanical substrate. The
objective of our method is to predict first the displacement of
all the membranes of the network. Then radiated pressures
and directivity diagrams can be deduced from the velocities
of all the membranes.

2.1 Cell electro-mechanical model
Each membrane, is statically deflected by bias voltage

Udc. We suppose that the alternating voltage Uac is small
compared to Udc. In this case the alternating electrostatic
forces Fdyn can be linearized around the static deflection of
the membrane wdc. We thus can write :

Fdyn = ε0U2
dc

∫
S

w
(hgap − wdc)3 dS (1)

+ ε0UdcUac

∫
S

1
(hgap − wdc)2 dS (2)

where S is the surface of the electrode, hgap the
initial electric effective gap and w the dynamic membrane
deflection.

2.2 Acoustic model
The CMUT is flat and each membrane can be considered

as baffled. Thus the pressure P(r, ω), in the frequency
domain, radiated at the point M of coordinates r, by the
membrane of surface S m, can be expressed by the Rayleigh
integral :

P(r, ω) = −
ω2ρ0

2π

∫
sm

W(r′, ω)e− jk|r−r′ |

|r−r′|
dS ′ (3)

where W(r′, ω) is the harmonic deflection of the
membrane current point with w(r′,t) = Re[W(r′,ω)e jωt], ρ0
is the mass per unit volume of the fluid and k = ω

c0
is the

wave number with c0 the speed of sound in the fluid.
The Rayleigh integral will be use in a first step to

compute the acoustic direct and mutual impedances on
the membranes. Then in a second step, it will be used to
compute the pressure radiated by the network.

2.3 Cell mechanical model
The dynamic membrane deflection w can be projected on

the first M modes shapes ϕk of the membrane in vacuum and
clamped on its edge [5].

w =

M∑
k=1

ϕkqk (4)

where qk is the generalized coordinate associated with
mode number k. We will further consider an harmonic
domain approach where

qk(t) = Re[Qk(ω)e jωt] (5)

In addition, for each mode k, we will introduce a
mechanical modal viscous damping.

2.4 Array model
If we use M mode shapes to represent the displacements

of the membrane number i, for i = 1,N, the unknown vector
for the membrane i is

{
Qi

}T
=

{
Qi

1, ...,Q
i
M

}
and the unknown

vector for the entire network is {Q}T =

{{
Q1

}T
, ...,

{
QN

}T
}
.

The momentum equation for the unknown {Q} is obtained
after projection of the forces on the modal vectors ϕi

k, for
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i = 1,N and k = 1,M. It leads to the following linear system
of size N × M to be solved in the frequency domain :

(−ω2[M] + jω[C] + [K]− [Kelec] +
ω2ρ0

2π
[A(ω)]){Q} = {Felec}

(6)

Where :

• [M], [C], [K] are the diagonal structural mass,
damping and stiffness matrices

• [Kelec] is the linearized electrostatic softening matrix
evaluated from (1)

• {Felec} is the linearized electrostatic forces vector
evaluated from (2)

• [A(ω)] is the acoustic coupling matrix evaluated from
(3)

Most of the physics is thus included in the model for small
amplitude responses. Only two parameters have to be
chosen; the number of modes and the radius out of which
acoustic interactions between membranes are neglected.

The model has been validated on various analytical test
cases involving piston motions, and ANSYS simulations.
The more complete validation test case was composed
of an hexagonal array with 7 circular membranes and is
described in [2]. The agreement with ANSYS simulations
were excellent, both for membranes velocities and radiated
pressures.

3 Test case

3.1 Description
We consider a single generic CMUT cell made of a poly

silicon membrane of 1,5 µm thickness and 25 µm radius. The
electrode radius is 20 µm and the air gap height is 0, 3 µm.
Collapse voltage has been calculated to 106 V and the bias
voltage Udc is equal to 95 V (90% of the collapse voltage).
Alternating voltage Uac is equal to 1 V. Water is the acoustic
radiation medium. A modal viscous damping ratio of 0.5%
has been taken for all the mechanical modes. The first five
eigen frequencies (for the first six modes) of this membrane
in vacuum are given on table1.

Table 1: First five Eigen Frequencies of the membrane in
vacuum

Frequency Multiplicity Nb. of nodal Nb. of nodal
MHz diameters circles
9.9 1 0 0

20.7 2 1 0
33.9 2 2 0
38.7 1 0 1

The cells are arranged according to a 1D array with 16
elements shown in figure 1. Each element is composed of
4 x 20 cells. The spacing between two adjacent elements
is 30 µm. As the diameter of each cell is 60 µm, the pitch
between element centers is d = 270 µm.

50 µm

Element 8Element 1

Figure 1: 1D array of 16 x 4 x 20 cells
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Figure 2: Velocity for all cells of element 8

3.2 Reference solution and analysis
We simulated, with the aforementioned model, the

vibroacoustic response of the array subject to a 1V
alternating voltage Uac, applied to all elements without
phase shift. We retained the first six membranes modes in
the mechanical model and considered an interaction radius
of 910 µm to compute the acoustic coupling terms. This
means that each membrane is acoustically coupled with its
fifteenth closest neighbors in each direction (in the case
where the spacing between membranes is 10 µm). This
leads to compute, for each frequency, 559 × 6 × 6 different
coupling terms to build the matrix [A(ω)]. As the number of
modes and the interaction radius seems reasonably large, we
called this model the reference model. We will analyze the
results of this reference model simulations in the rest of this
paragraph.

The mean velocity modulus per cell of the 80 cells of
element 8 are represented on figure 2. Between 2 MHz and
4 MHz we see a lot of sharp peaks, with no superposition
of the curves, which is characteristic of underlying localized
array modes. In contrast between 4MHz and 30 MHz, we
can see that the velocities are much homogeneous across the
element. The oscillation of the frequency response curve
indicates the presence of global array modes.

The modal contributions are shown for a cell in the
middle of element 8 (cell 610) on figure 3.

We can see that the localized array modes between 2 and
4 MHz involve the first membrane mode. This is confirmed
by figures 4 and 5. Moreover the response between 4 and
19Mh is mainly dominated by the first mode. The smooth
peaks of the response curve are due to global array modes
involving the first membrane modes. This is illustrated,
as an example by the velocity field for the 4.9 MHz peak
represented figure 6.

The participation of the second membrane mode is very
localized around 10.2 MHz and 11.8 MHz. The velocity
field for 10.3 MHz is represented figures 7 and 8. The
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Figure 3: Modal contributions for cell 610

 

 

50 µm Velocity − cell mean modulus (µm/s) − Frequency :  3.440 (MHz)
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Figure 4: Velocity field at 3.44MHz - Mean velocity
modulus per cell

Figure 5: Zoom Velocity field (Imaginary Part) at 3.44 MHz
for the upper part of element 1
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Figure 6: Velocity field at 4.9 MHz - Mean velocity
modulus per cell

 

 

50 µm Velocity − Cell Mean Modulus (µm/s) − Frequence : 10.300 (MHz)
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Figure 7: velocity field at 10.3 MHz - Mean velocity
modulus per cell

Figure 8: Zoom Velocity field (Real Part) at 10.3 MHz for
the upper part of element 8

participation of the fourth membrane mode is also localized
around 20.3 MHz. The is confirmed by figure 9. All the
other modes have a negligible participation in the response.

The pressure modulus, at the distance of 3 cm
perpendicular to the center of the array is presented
figure 3. All the pressure peaks correspond to maximum
of velocity on the array. The localized velocity patterns
between 2MHz and 4 MHz do not correspond to the highest
pressure peak. Instead, the maximum pressure peak for
4.9MHz, correspond to a more global velocity pattern
represented figure 6. It is also not surprising to notice that
the membrane modes 2 and 4 are poor acoustic radiators.

The directivity diagram at 3 cm from the array is
represented for frequencies 2.44MHz and 4.9 MHz on figure
11.
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Figure 10: Pressure modulus in front of the array at 3 cm.

Figure 9: Zoom Velocity field (Imaginary Part) at 20.4 MHz
for the upper part of element 1
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3.3 Coupling radius influence
The same simulation as with the reference model has

been perform, but with interaction radius respectively equals
to 10 µm, 100 µm and 300 µm. The number of coupling
terms to compute for each frequency is respectively equal
to 1 (for 10 µm), 6 (for100 µm), 63 (for 300 µm) and 559
(for 910 µm). The mean velocity modulus for cell 610 is
compared for all cases to the reference model on figure 12.
The pressure modulus at the distance of 3 cm perpendicular
to the center of the array is also compared for all cases
to the reference model, on figure 13. We can see that the
interaction radius plays a very important role. It strongly
affects the dynamics of the array, thus modifying the radiated
acoustic pressure. The participation of the higher membrane
modes as well as the localized array modes around 3
MHz can be approach with a relatively small interaction
radius as 300 µm. However, the global array modes can
only be correctly predicted with large interaction radius.
Unfortunately, the highest level of radiated pressure are
associated with the global array modes.
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Cell 610 rinter = 910
Cell 610 rinter = 10
Cell 610 rinter = 100
Cell 610 rinter = 300

Figure 12: Cell 610 - mean velocity modulus for various
interaction radius

3.4 Kinematic constraints on membranes
displacements

We propose here to simplify the initial model by applying
a kinematic constrain on the displacement of the cells. We
forced all the membranes of an element to have the same
displacement. From the computational point of view this
hypothesis can reduce drastically the size of the system to
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Figure 13: Pressure modulus for various interaction radius
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Cell 610 rinter = 300,  constrain elements  

Figure 14: Cell 610 mean velocity modulus with kinematic
constrain

be solved. The effect of this constrain on the cell 610 mean
velocity modulus and on the radiated pressure are shown on
figure 14 and 15. These constraints have more an effect on
the localized modes than on the global arrays modes. They
can thus provide reasonable approximation for the prediction
of radiated pressure.
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Figure 15: Pressure modulus computed with kinematic
constrain

4 Conclusion
We developed a model able to predict the vibroacoustic

response of CMUT arrays. The model represent explicitly
all the membranes and most of the physics is taken into
account. The number of membranes modes and interaction
radius are the only parameters to be chosen by the user.
The model has been successfully applied to a representative
1D CMUT array of 1280 membranes. A parametric study
on the interaction radius has been conducted, that shows
that relatively large interaction radius have to be chosen.
Also kinematic constraints can be useful to approximate the
radiated pressures for very large arrays.
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