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This paper deals with modeling of the ultrasound axial transmission technique for in vivo cortical long bone which

is known as being a anisotropic solid medium with functionally graded porosity. The bone is modeled as an

anisotropic poroelastic medium using the Biot’s theory. We develop a hybrid spectral/finite element formulation

to obtain the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed two fluid

halfspaces. The numerical method is based on a combined Laplace-Fourier transform which solves the problem in

the frequency-wavenumber domain. In the spectral domain, as radiation conditions may be exactly introduced in

the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analyzed using finite element method.

Several numerical tests are presented showing very good performances of the proposed approach. A preliminary

study on the FAS (First Arrived Signal) velocities computed by using equivalent elastic and poroelastic models

will be presented.

1 Introduction
In recent years, quantitative ultrasound (QUS) techniques

for assessing the properties of bone have received much

attention due to its potential in estimating bone fragility

and/or fracture risk. For measuring in vivo material

properties of cortical long bones, a so-called “axial

transmission” (AT) technique has been developed [1].

The AT technique uses a set of ultrasonic transducers

(transmitters and receivers) linearly placed in the same side

of the investigated skeletal site along a direction close to

the long bone axis. The transmitter emits an ultrasound

pulse wave (around 250 KHz-2 MHz) that propagates along

the cortical layer of bones. The analysis of the signals

received at the receivers serve for estimating the geometrical

parameters as well as mechanical characteristics of the

cortical bone at the measured skeletal site.

Mechanical modeling of this experiment deals with

describing a vibro-acoustic problem of a solid waveguide

(which represents cortical bone) coupled with two fluid

media (which represents soft tissues such as skin or

marrow). Assessment of the bone’s material properties

requires careful analysis of the reflections, conversion

modes and interferences of waves within the bone structure.

However, current development of ultrasound techniques is

still limited since the interaction between ultrasound and

bone remains poorly understood due to the complex nature

of bone which has a porous microstructure spanning many

length scales.

From the point of view of mechanics, cortical bone is

a heterogeneous, anisotropic and porous material. At the

macroscopic scale, porosity in the radial direction (defined

in the bone’s cross-section plan) is heterogeneous. As the

macroscopic mechanical properties of bone have been shown

to strongly depend on its porosity [2], cortical bone may

naturally be considered as a functionally graded material.

Many of the past studies have focused on the modeling

of guided waves in long bones by using fluid-loaded

homogeneous/multilayer/functional graded plate models.

The understanding of wave phenomena involved in

multilayer structures has been studied by many authors

in the frequency-domain [3] or in the time-domain [4, 5].

In these studies, the cortical bone material has been

considered as an equivalent (visco-)elastic medium of

which the effective macroscopic mass density and effective

macroscopic elasticity tensor are estimated from its porosity.

The presence of the interstitial fluid, which was considered

in many works for the analysis of the behavior of cortical

bone tissue under low frequency loading (e.g. [6, 7]) or of

ultrasonic wave propagation through cancellous bones (e.g.
[8, 9]), has usually been neglected when studying ultrasonic

wave propagation in cortical bones.

In order to solve the time-domain wave propagation

problem in the multilayer structures, there are mainly

two approaches. The first one involves using (semi-

)analytical methods (e.g. [10]). The second one involves

using numerical methods such as the finite difference

method (FDM) [4] or the finite element method (FEM)

[11]. Numerical methods are often more efficient to

treat problems with inhomogeneous materials or complex

geometries. However, most numerical methods require

important computational costs, especially for problems in

the high-frequency domain. Moreover, absorbing boundary

conditions are required for considering unbounded domains

[4, 11]. Alternatively, when considering waveguides with

constant geometrical and mechanical properties along one

direction, semi-analytical/finite element techniques have

been employed (see e.g. [12, 13, 14]).

This paper presents a numerical procedure to simulate

the ultrasonic wave propagation in bone plate immersed in

fluid. The bone plate is not modeled as an equivalent elastic

medium but as a functionally-graded anisotropic poroelastic

medium. The numerical method is based on the hybrid semi-

analytical/finite element technique. The key point of this

method consists in using a hybrid algorithm which begins

by employing the Laplace-Fourier transform (with respect to

time and to the longitudinal direction of the waveguide) to

transform problem into the frequency-wavenumber domain.

Then, the wave equations in the spectral domain governed

in 1D cross-section domain, which may actually have

inhomogeneous material properties, can be easily handled

using the finite element method [5, 14, 15].

This paper is organized as follows. Section 2 presents the

governing equations of an anisotropic poroelastic bone plate

immersed in fluid. Next, sections 3 presents the problem

governed in Laplace-Fourier domain and the finite element

formulation in this domain. Then, some numerical tests are

presented in Section 4 to validate the proposed procedure.

We will also present some comparison of the FAS (First

Arrived Signal) velocities computed by using equivalent

elastic and poroelastic models. Finally, conclusion and

discussion will be presented in Section 5.

2 Description of the problem

2.1 Geometrical configuration
In this work, we will employ a two dimensional (2D)

configuration which has been shown to be an appropriate

geometrical model for describing the ultrasound wave in

long bone in the framework of the AT technique [4]. Let

R(O; e1, e2) be the reference Cartesian frame. We denote
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the coordinates of a point x in R by (x1, x2) and the time

by t. The fluid occupies both half-spaces Ω
f
1

and Ω
f
2
. The

bone layer occupies the unbounded domain Ωb. Two plane

interfaces between the bone layer Ωb and the fluid domains

Ω
f
1

and Ω
f
2

are respectively denoted by Γ
b f
1

and Γ
b f
2

(Fig. 1).

The bone plate’s thickness is denoted by h.

e2

e1

Fluid 2 (Ωf
2)

source receivers

Fluid 1 (Ωf
1)

Solid (Ωb)

Γbf1

Γbf2

(xs1, x
s
2)

O

nbΓ1

nbΓ2

Γf∞1

Γf∞2

Figure 1: The trilayer model of axial transmission test

2.2 Governing equations
Wave equation in fluid domains The fluids occupying the

domains Ω
f
1

and Ω
f
2

are modeled by linear acoustic fluids.

Their mass densities and bulk modulus are denotes by ρ1,

K1 and ρ2, K2, respectively. The acoustical source is located

in the upper fluid domain Ω
f
1
. In later domain, the linear

acoustic wave equation may be expressed only in terms of

the pressure field p1(x, t) as follows:

p̈1 − c2
1Δp1 = ρ1c2

1F(t) δ(x1)δ(x2 − xs
2), ∀x ∈ Ω f

1
, (1)

where c1 is the wave celerity in Ω
f
1

which is defined by:

c1 =
√

K1/ρ1; F(t) is a scalar function and δ(.) is Dirac’s

delta function. Similarly, the pressure field p2(x, t) in the

fluid domain Ω
f
2

verifies:

p̈2 − c2
2Δp2 = 0, ∀ x ∈ Ω f

2
. (2)

Dynamic equations of anisotropic porous layer The

bone material is assumed to consist of a solid skeleton (with

mass density ρs) and a connected pore network saturated

by fluid (with mass density ρ f ). Here, the anisotropic

poroelasticity theory [16] is used to describe the dynamic

behavior of bone layer. Neglecting the body forces (other

than inertia), the equations of wave propagation within the

bone layer read:

ρ üs + ρ f ẅ − LT s = 0, (3)

ρ f üs + k−1ẇ + bẅ + LT mp = 0, (4)

where ρ = φ ρ f + (1 − φ) ρs is the mixture density, φ is

the porosity; s is Voigt’s representation of the stress tensor

σ(x, t): s = {σ11, σ22, σ12}T ; p(x, t) is the interstitial fluid

pressure in the pores; the vectors of displacement of the solid

skeleton and of the fluid are denoted by us(x, t) and u f (x, t),
respectively; the vector of relative displacement between the

fluid and the solid frame weighted by the porosity is denoted

by w = φ(u f−us); the tensor k is the anisotropic permeability

tensor (k = κ/η where κ is the intrinsic permeability tensor

and η is the viscosity of the fluid) and the tensor b is defined

as b = (ρ f /φ) a with a is the tortuosity tensor; m = {1, 1, 0}T
and the operator L is defined as follows:

L = L1∂1 + L2∂2, L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0

0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0

0 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (5)

where ∂1 and ∂2 denote the partial differentiation operators

with respect to x1 and x2, respectively.

The constitutive equations for the anisotropic linear

poroelastic material are given by:

s = C e − α̌ p, p = −M
(
mT
Lw + α̌T

Lus
)
, (6)

where e, C, α̌ are Voigt’s representation of the strain tensor ε,
of the drained elastic tensor and of the Biot’s effective tensor

α, respectively: e = {ε11, ε22, 2ε12}T and α̌ = {α11, α22, α12}T
(the superscript 
T designates the transpose operator); M is

the Biot scalar modulus. By noting that e = L u and by using

Eq. (6), one has:

s = Cu L us + Cα L w, mp = −
(
CMLw + CT

αus
)
, (7)

where the quantities Cu,Cα and CM are defined as: Cu =

C + Mα̌α̌T , Cα = Mα̌mT , CM = MmmT . The tensor

Cu is called the undrained elasticity tensor which may be

considered as the rigidity of an equivalent elastic medium

in which the relative movement between the interstitial fluid

and solid skeleton is null (i.e. when w = 0).

Boundary conditions At both interfaces Γ
b f
1

and Γ
b f
2

, the

continuity of pressure and stress fields between the porous

medium and the fluid domains is required. In addition, open-

pore condition at the interfaces is assumed, requiring:

1

ρ j
∂2 p j = −(ü2 + ẅ2)

p = p j, t = { 0,−p j}T

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , ∀x ∈ Γb f
j , (8)

p j → 0, ∀x→ Γ f∞
j , ( j = 1, 2). (9)

where us = {u1, u2}T and w = {w1,w2}T ; the traction vectors

t at the interfaces are defined by t = LT
2 s = {σ21, σ22}T .

3 Numerical method
The boundary value problem given by (Eqs. 1,2,3,

refeq:elasdyn02a,8,9) deals with solving a system of linear

partial differential equations of which the coefficients are

constant with respect to x1. Here we propose to solve the

system as follows: (i) the system of equations is firstly

transformed into wavenumber-frequency domain by using a

Fourier transform with respect to x1 combining to a Laplace

transform with respect to t; (ii) in the wavenumber-frequency

domain, the equations in both fluid domains are analytically

solved giving impedance boundary conditions for the solid

layer of which the dynamic equations will be solved by the

finite element method; (iii) the space-time solution is finally

obtained by performing two inverse transforms.

3.1 Equations in the Laplace-Fourier domain
We recall the general form of a Laplace-Fourier transform

applied to a real-valued function y(x1, x2, t): ỹ(k1, x2, s) :=∫ ∞
0

(∫ +∞
−∞ y(x1, x2, t)e−ik1 x1 dx1

)
e−stdt, where i =

√−1; s ∈
and k1 ∈ ; and denote the set of all the real and

complex numbers, respectively.
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Transformed problem in (s − k1) domain for the fluids
Ω

f
1

and Ω f
2

By applying the Laplace-Fourier transform to

Eqs. (1,8, and 9), one obtains a differential equation for p̃1

with respect only to x2:

⎛⎜⎜⎜⎜⎝ s2

c2
1

+ k2
1

⎞⎟⎟⎟⎟⎠ p̃1 − ∂2 p̃1 = ρ1F̃0(s)δ(x2 − xs
2), ∀x2 > 0, (10)

∂2 p̃1 = −ρ1s2(ũ2 + w̃2), at x2 = 0, (11)

p̃2 → 0, for x2 → +∞. (12)

The solution of this system may be presented in a semi-

explicit form as follows:

p̃1 = −ρ1F̃0

2β1

(
e−β1(xs

2
−x2) + e−β1(xs

2
+x2)
)
+
ρ1s2G̃21

β1

e−β1 x2 ,

∀ 0 ≤ x2 ≤ xs
2 (13)

p̃1 = −ρ1F̃0

2β1

(
eβ1(xs

2
−x2) + e−β1(xs

2
+x2)
)
+
ρ1s2G̃21

β1

e−β1 x2 ,

∀ x2 ≥ xs
2 (14)

where β1 =
√

s2

c2
1

+ k2
1

and G̃21 = ũ2(k1, 0, s) + w̃2(k1, 0, s).

Similarly, the solution of p̃2 in (s − k1) domain may be

expressed as follows:

p̃2 = −ρ2s2G̃22

β2

eβ2(x2+h), ∀x2 ≤ −h, (15)

where β2 =
√

s2

c2
2

+ k2
1

and G̃22 = ũ2(k1,−h, s) + w̃2(k1,−h, s)

3.2 Transformed problem in (s − k1) domain
for the solid Ωb

By noting that in the Fourier-Laplace domain the operator

L becomes L̃ = ik1L1 + ∂2L2, the boundary value problem

defined by Eqs. (3) and (4) may be transformed into the (s −
k1) domain as follows:

ρs2ũs + ρ f s2w̃ − ik1LT
1 s̃ − ∂2LT

2 s̃ = 0 (16)

ρ f s2ũs +
(
sk−1 + s2b

)
w̃ + ik1LT

1 mp̃ + LT
2 ∂2(mp̃) = 0 (17)

where the constitutive equations (see Eq. (7)) read:

s̃ = ik1(CuL1ũs + CαL1w̃) + CuL2∂2ũs + CαL2∂2w̃,

− mp̃ = ik1(CT
αL1ũs + CM L1w̃) + CT

αL2∂2ũs + CML2∂2w̃.
(18)

By replacing (18) into Eqs. (16)-(17) and then making some

arrangements, we obtain a vectorial form of this problem:

s2
A1 + sA2 + k2

1A3 − ik1A4∂2 − ∂2 = O, (19)

where =
(
ũs, w̃
)T
, = ik1A

T
4 + A5∂2 and

A1 =

[
ρ1 ρ f 1
ρ f 1 b

]
, A2 =

[
0 0
0 k−1

]
, A3 =

⎡⎢⎢⎢⎢⎢⎣ C11
u C11

α(
C11
α

)T
C11

M

⎤⎥⎥⎥⎥⎥⎦ ,

A4 =

⎡⎢⎢⎢⎢⎢⎣ C12
u C12

α(
C21
α

)T
C12

M

⎤⎥⎥⎥⎥⎥⎦ , A5 =

⎡⎢⎢⎢⎢⎢⎣ C22
u C22

α(
C22
α

)T
C22

M

⎤⎥⎥⎥⎥⎥⎦ . (20)

In later equations, the 2-by-2 matrices Cab
u ,Cab

α and Cab
M with

a, b = 1, 2 are defined by:

Cab
u = LT

a CuLb, Cab
α = LT

a CαLb, Cab
M = LT

a CMLb. (21)

The 4-by-4 matrices A1,A2,A3,A4 and A5 depend only on

the material properties of the elastic porous material.

At two interfaces x2 = 0 and x2 = −h, in view of

Eqs. (13)-(15), the continuity conditions (8) between fluid

pressures and stress traction require that:

(0) = −P1 (0) + F0, (−h) = P2 (−h), (22)

where

P1 =
ρ1s2

β1

P, P2 =
ρ2s2

β2

P, P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (23)

F0 =
{
0, ρ1 F̃0

β1
e−β1 xs

2 , 0, ρ1 F̃0

β1
e−β1 xs

2

}T
. (24)

3.3 Finite element formulation in spectral
domain and time-space solution

Weak formulation The weak formulation of the boundary

value problem given by (19) and (22) may be now performed.

Let C ad be the admissible function space of the problem

constituted by the sufficiently differentiable complex-valued

functions such as: x2 ∈ Hb = ] − h, 0[→ δ (x2) ∈ 4.

Upon integrating (19) against a test vector function δ and

integrating by part, then applying the boundary condition

(22), the weak formulation of Eq. (19) reads:

s2 〈 δ ,A1 〉Hb + s 〈 δ ,A2 〉Hb + k2
1 〈 δ ,A3 〉Hb

+ ik1

{〈
∂2δ ,A

T
4

〉
Hb
− 〈 δ ,A4∂2 〉Hb

}
+ 〈 ∂2δ ,A5∂2 〉Hb + δ ∗(0) P1 (0)

+ δ ∗(−h) P2 (−h) = δ ∗(0) F0, ∀ δ ∈ C ad, (25)

where 〈., .〉Hb denotes the inner product over Hb; δ ∗ is the

conjugate transpose of δ .

Finite element formulation We proceed by introducing a

finite element mesh of the domain [−h, 0] which contains nel

elements: [−h, 0] =
⋃

eΩe with e = 1, ..., nel. By using the

Galerkin finite element method, for which both functions

and δ in each element Ωe are approximated using the same

shape function Ne, one may derive the finite element equation

in the following form:

(
s2K1 + sK2 + k2

1K3 + ik1K4 +K5 +KΓ
)

V = F, (26)

where V is the global nodal solution vector; the vector F
is the external force vector due to the acoustical source;

KΓ represents the coupled operator between the fluid and

poroelastic layers; K j ( j = 1..5) are the global matrices of

the poroelastic layer (see [15] for further details)

Computation of time-space solution For fixed values

of (s, k1) in the Laplace-Fourier transformed domain, the

solution of may be computed by solving the system of

complex linear equations (26). The solutions for p̃1 and p̃2

in two fluid domains may then be determined by using the

equations (13)-(14) and (15), respectively.

In order to obtain the spatio-temporal solution, we need

to perform a numerical inverse Laplace-Fourier transform.

In this paper, the inverse Fourier transform is computed by

using the usual FFT (Fast Fourier Transform) technique. The
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inverse Laplace transform is carried out using the Quadrature

Convolution Method which has proved to be a very efficient

technique for computing the time response solution in many

dynamic problems [17].

4 Results
Physical parameters This section presents some

numerical tests describing an in vivo ultrasound test on

human cortical long bones. The acoustic source (Eq. 1)

located at the position (xs
1
, xs

2
) = (0, 2) (in mm) in the upper

fluid domain Ω
f
1

has the time-history function given by:

F(t) = F0 e−4( fct−1)2

sin(2π fct), where F0 = 1 m.s−2 and

fc = 1 MHz which is the central frequency. The spectrum

frequency bandwidth of this signal is about 0 − 2.5 MHz.

Both fluid domainsΩ
f
1

andΩ
f
2

are assumed to be identical

and are considered as an idealized water. The mechanical

properties of the fluids are given by ρ1 = ρ2 = 1 000 kg.m−3

et K1 = K2 = 2.25 GPa. Thus the wave velocities in two fluid

domains are: c1 = c2 = 1 500 m.s−1.

In order to describe the behavior of the poroelastic

bone plate, the drained elasticity tensor C as well as Biot’s

effective coefficients α̌ and M used in Eq. (6) should be

provided. For this study, these parameters are derived

from the characteristics of the interstitial fluid and solid

skeleton phases by using a continuum micromechanics

model proposed by Hellmich et al [18].

For the numerical tests presented here, the interstitial

fluid is also assumed to be the same as the exterior fluid

domain, i.e. ρ f = 1 000 kg.m−3 et Kf = 2.25 GPa. The

solid bone has the mass density ρs = 1 722 kg.m−3 and

is assumed to be a transversely isotropic elastic material

[18]. The components of the elastic tensor of the solid phase

are given by using the Voigt’s notations: cm
11
= 28.7 GPa,

cm
22
= 23.6 GPa, cm

12
= 9.9 GPa, cm

66
= 7.25 GPa,

cm
16
= cm

26
= 0. The viscosity of interstitial fluid is

η = 1 × 10−3 Pa.s and the permeability tensor is roughly

taken by κ11 = κ22 = 5 × 10−13 m2 [6].

Validation We consider a bone layer which has a porosity

φ = 0.05 and a constant thickness h = 4 mm. The numerical

parameters used for simulation have been chosen in a similar

way to which required for a classical procedure of dynamic

finite element analysis [9]. The space interval Δx is about

the 1/10 shortest wavelength. The time step is chosen for

satisfying the CFL condition. Here, the space interval in e1-

direction has been chosen to be Δx = 0.75 × 10−4 m. The

time step used is Δt = 10−7s. To perform the finite element

analysis on vertical direction e2, the bone plate’s thickness is

discretized into 12 quadratic Lagrangian elements.

Figure 2 presents snapshots of the wave field in the

coupled trilayer system at the instants t = 5 μs. At each

point x in the domain, the quantity presented for obtaining

these snapshots is log(|p1(x, t)|) if x ∈ Ω f
1
, log(|p2(x, t)|) if

x ∈ Ω f
2

and log(|p(x, t))| if x ∈ Ωb. In this figure, we can

clearly observe the transmission and reflection of ultrasonic

waves through the interfaces. Note that using the proposed

method allows us to take into account the exact radiation

conditions of two fluid domains, therefore the results involve

only the waves diffracted by the bone layer.

Figure 3 presents the numerical solution of p1 measured

at two positions R1(x1, x2) = (2, 2) (mm) (upper) and

Figure 2: Snapshots of the fluid pressure (p1, p and p2)

R(x1, x2) = (20, 2) (mm) (lower) by using the proposed

spectral/finite element procedure. We also present numerical

solutions obtained by using conventional time domain finite

element analysis [9]. The comparison shows that proposed

semi-analytical/FE and conventional FEM results perfectly

match each to other. Note that both methods use the same

time step for the calculation. Due to the fact that only very

small matrices need to be factorized, the proposed method

only requires 400 seconds to obtain these results by using a

very common PC.

0 0.5 1 1.5

x 10
−5

−50

0

50

time (s)

p 1(x
1,t)

 (
P

a)

x
1
 = 0.002 m

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−5

−20

0

20

time (s)

p 1(x
1,t)

 (
P

a)

x
1
 = 0.02 m

SFEM
FEM

SFEM
FEM

Figure 3: Comparison between SFE and FE solutions of p1

at x1 = 2 mm (upper) and at x1 = 20 mm (lower)

Influence of porosity on FAS velocity When the axial

transmission technique is used, the FAS First Arriving

Signal velocity have been shown to be a relevant index of

bone status . In this section, we aim to study the influence of

the bone’s porosity on the FAS velocity denoted by VF . For

this purpose, the material properties of bone matrix (ρm, cm)

were fixed. The poroelastic properties were then determined

by using the micromechanics analysis. The FAS velocity is

determined VF based first zero-crossing locations on time

axis of measured p1-signal captured at an array of 14 sensors

which has a gap 0.8 mm from each to other.

Figure 4 shows the variation of the FAS velocity with

respect to φ when considering a bone plate with thickness

h = 4 mm. One may observe that the VF versus φ relation

is practically linear and VF decreases when the porosity φ is

higher. We also present in this graph the VF versus φ relation

obtained by using equivalent elastic media. For a given

porosity φ, the corresponding elastic models use the mass

density taken as the mixture density and the elasticity tensor

is taken as the undrained elasticity tensor Cu (Eq. (7)). For

lower porosities, the VF obtained by using the poroelastic

model are slightly different from the ones obtained using

the elastic model. The difference becomes more significant

for higher porosity because the fluid-solid movement is
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more important and would be not negligible. A similar

discussion may be made when considering a thin bone layer

(h = 0.6 mm) (see more detail in [19]).
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Figure 4: FAS velocities versus different bone porosities

5 Conclusion
By using a hybrid semi-analytical/finite element

technique, we have derived a finite element formulation in

spectral domain for anisotropic poroelastic plate saturated by

an interstitial fluid and immersed in a fluid. The procedure

is based on a Laplace-Fourier transform which leads to a

one-dimensional differential equation with respect only to

x2 which may be solved by using conventional FEM. In the

Laplace-Fourier domain, the radiation conditions presenting

two half-spaces of fluid may exactly be introduced. Since

only one-dimensional finite element problem need to

be solved in spectral domain, the proposed procedure

requires a very small memory size for computation. In

addition, the computation time is very low, especially for the

configuration used for ultrasonic test presented here wherein

we only need to compute the time-domain solution at some

specific points.

Using the proposed method, numerical studies of

ultrasonic wave propagation in poroelastic bone layer may

be easily carried out, eventually in the very high frequency

domain. This allows us to consider the anisotropy and the

heterogeneity of the bone matrix material as well as bone

porosity. Some preliminary results presented in this paper

show that the FAS velocity is strongly influenced by the

bone porosity. It seems that using of equivalent elastic model

might lead to a poor estimation of FAS velocity in cortical

bone with higher bone porosity.
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