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In a room, the acoustic transfer between a source and a receiver is described by the so-called “Room Impulse
Response”, which depends on both positions and the room characteristics. According to the sampling theorem,
directly measuring the full set of acoustic impulse responses within a 3D-space domain would require an unrea-
sonably large number of measurements. Nevertheless, considering that the acoustic wavefield is sparse in some
dictionaries, the Compressed Sensing framework allows the recovery of the full wavefield with a reduced set of
measurements (microphones), but raises challenging computational and memory issues. In this paper, we exhibit
two sparsity assumptions of the wavefield and we derive two practical algorithms for the wavefield estimation.
The first one takes advantage of the Modal Theory for the sampling of the Room Impulse Responses in low fre-
quencies (sparsity in frequency), and the second one exploits the Image Source Method for the interpolation of
the early reflections (sparsity in time). These two complementary approaches are validated both by numerical and
experimental measurements using a 120-microphone 3D array, and results are given as a function of the number
of microphones.

1 Introduction
The acoustic properties of a reverberating room can be

given by analysing its Room Impulse Responses (RIRs). In
[1], the concept of Plenacoustic Function (PAF) is intro-
duced. This function gathers all RIRs of the room, and there-
fore it depends on time, on the source position, on the re-
ceiver position and on the room characteristics (geometry
and wall properties).

On one hand, in some applications the effect of room re-
verberation is undesirable and acoustic echo cancelers are
used to estimate the anechoic sound. On the other hand, re-
verberation plays an important role in auditory scene synthe-
sis, in virtual reality framework for example. In both cases,
knowing the whole set of RIRs in a given room could poten-
tially be used to improve their performance.

Measuring the PAF is fundamentally a sampling problem:
from a limited number of point measurements, the goal is
to reconstruct (i.e. interpolate) the acoustic wavefield at any
position in space and at any time.

1.1 Sampling of the Plenacoustic Function
Standard acquisition of signals relies on a regular sam-

pling of space and time with respect to Shannon-Nyquist the-
ory. Basically, to sample a band limited signal between 0 and
fc [Hz], the sampling rate Fs has to be chosen higher than
2 fc. In the same way, the space sampling has to be dense
enough to avoid aliasing in reconstruction.

Considering a fixe source and a 3-D regular microphone
array, the Nyquist criterion is satisfied if (cf. [1]):

δv <
c0

2 fc
, ∀v ∈ {x, y, z} , (1)

where δx, δy and δz are the sampling steps along the 3 axes.
Physically, this criterion states that the sampling steps must
be smaller that the half of the minimal wavelength λ=c0/ fc.

Unfortunately, the measurement of a time varying 3-D
image requires a too high number of microphones to be real-
ized as such in practice. For example, in order to reconstruct
the PAF inside a cube with side 2 m, and with fc = 6 kHz,
we need at least 340.103 point measurements (microphones).

Nevertheless, in [2] it is shown that the RIR part above a
certain Schroeder frequency (cf. [3]) and after a certain mix-
ing time (cf. [4]) behaves like a colored, modulated noise and
can be modeled and simulated using a stochastic model (part
C in fig. 1). Consequently, to reduce the number of required
microphones, we propose to sample only the hatched part of
fig. 1. For example, in [5] the low frequencies of the RIRs

Figure 1: Validity parts of the models. Here fc and Tm are
associated to the Schroeder frequency and the mixing time

respectively

(part A) are reconstructed using a model based on the modal
theory, and in [6] a method based on Dynamic Time Warp-
ing is proposed for the interpolation of the early part of the
RIRs (part B). But these 2 methods have been developped for
the interpolation of the RIRs on a line, and here we want to
sample the PAF in a 3-D domain.

In this work, we propose a method to sample and to inter-
polate in 3-D the parts A and B separately (cf. fig. 1), using
the same measurements. In order to reduce the number of
microphone in the array, an interesting approach is the Com-
pressed Sensing framework which is briefly described below.

1.2 Compressed Sensing
The problem consists in the reconstruction of a signal

y ∈ RN from M observations xm, linked by the linear sys-
tem x = Φy. Compressed Sensing (CS) deals with the under-
determined case, for which there are more unknowns than
equations (N >M), cf. e.g. [7, 8]. As such a problem cannot
be solved without additional hypothesis, the underlying idea
is that if y lives in a subspace of dimension K and with basis
ψ, for K < M, we can solve y = ψa writing x = Φy = Φψa =

θa. But, in general we do not know ψ.
Then, we define L vectors ψl, forming the matrix Ψ with

L � K, and we look for a basis which explains y. In other
words, we look for a vector α ∈ RL K-sparse (where no more
than K coefficients are non-zero), such that y = Ψα. Un-
fortunately this problem is not convex and difficult to solve.
However, we can change it into a convex problem by consid-
ering the following Basis Pursuit Denoising approach:

min
α∈RL
‖α‖`1 subject to ‖x − ΦΨα‖`2 ≤ ε, (2)

where the norm `n is given by ‖y‖`n = (
∑

i |yi|
n)1/n, and ε is a

fidelity parameter. A high ε allows a stronger sparsity of α,
and a small ε improves the reconstruction of y.

Some theoretical results (cf. e.g. [9, 10]) give a sufficient
condition for reconstructing y in the case of sparse signals,
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by the so-called Restricted Isometry Property (RIP). It quan-
tifies how Φ and Ψ are mutually incoherent with respect to
their use on sparse signals. In practice, the RIP is difficult
to compute, but it is verified with high probability for some
random sampling matrices. This encourages the use of ran-
domly selected observation points in practice, which are here
the microphone positions in the 3-D space.

In this work we will consider the Modal Theory and the
Image Source Method in order to justify the use of CS for the
parts A and B respectively (cf. fig. 1). We will see that these
2 deterministic models give 2 sparse representations of the
PAF in their respective part: sparsity in frequency for part A,
and sparsity in time for part B.

1.3 Outline
The outline of this paper is as follows. In section 2, con-

sidering two acoustic models consecutively, we show that the
two parts of the PAF (low frequencies and early reflections)
can have a sparse representation in some respective dictio-
naries, and so that the Compressed Sensing framework can
be used. For these two models, we briefly present the de-
rived algorithms of decomposition. Then, in section 3, we
present some experimental results and some comparisons.
Note that this paper focuses on the experimental results of the
proposed approaches, for more details about the algorithms,
see [11, 12]. Finally, in section 4, we conclude this paper.

2 Modelling and CS algorithms

2.1 Modal Theory
Here, we proposed two methods based on the modal the-

ory for the interpolation of the PAF in low frequencies.

2.1.1 Structured Sparsity

Considering linear acoustic propagation away from the
sources, the acoustic pressure p(t, ~X) is governed by the wave
equation c0

2 ∆p(t, ~X) − ∂2
t p(t, ~X) = 0, where ∆ = ∇2 is the

laplacian operator and ∂t is the time derivative. Assuming a
modal behavior (at low frequencies) for closed rooms with
ideally rigid walls, the solution can be decomposed as a dis-
crete sum of complex harmonic signals with the angular fre-
quencies ωq:

p(t, ~X) =
∑
q∈Z?

Aq φq(~X) gq(t), (3)

where gq(t) = e jωqt, φq is the modal shape of the mode q and
Aq is a related complex amplitude. With the wavenumber
kq = ωq/c0, we get the Helmholtz equation for every mode:
∆φq + k2

qφq = 0.
In the Helmholtz equation, φq is the eigenmode of the

laplacian operator with eigenvalue −k2
q. If the room is star-

shaped, previous studies [13, 14] have shown that an eigen-
mode of the laplacian with a negative eigenvalue can be ap-
proximated by a finite sum of plane waves incoming from
various directions, and sharing the same wavenumber kq. Then

φq(~X) ≈
R∑

r=1

aq,r e j~kq,r ~X (4)

is the R-order approximation of φq, with~kq,r the 3-D wavevec-
tor r of the mode q, such that ‖~kq,r‖2 = |kq|.

In the case of non rigid walls, the modes are damped in
time, kq now has an imaginary part: kq = (ωq− jξq)/c0, where
ξq < 0 is the damping coefficient. Therefore, gq(t) of eq. (3)
becomes: gq(t) = e jkq c0 t = eξqt e jωqt. In theory, these losses
modify φq, nevertheless we assume that the approximation
(4) remains valid, at least for ~X far from the walls.

Consequently, considering a finite frequency range [0, ωc]
containing Q real modes, or equivalently 2Q complex modes,
and considering R-order approximations of the φq’s, the PAF
p(t, ~X) can be approximated by a sum of 2QR damped har-
monic plane waves, exp( j(kq c0 t + ~kq,r ~X)).

Now, taking advantage of this Structured Sparsity, and
starting from the sampled signals p(tn, ~Xm) of a array of M
microphones at ~Xm covering a 3-D domain of interest Ω (a
finite convex domain within the room), we present an algo-
rithm previously proposed for the near-field acoustic holog-
raphy of plates [15]:

(a) The shared wavenumbers kq are estimated using a joint
estimation of damped sinusoidal components (cf. [16]).

(b) The operational shapes φq of (3) are estimated using
the projection of the measured signal onto a basis for-
med by the damped exponentials e jkq c0 t.

(c) Every φq is approximated using a finite sum of plane
waves sharing the same wavenumber kq (cf. eq. (4)).

(d) Finally, the PAF can be interpolated ∀t ∈ [0,N/Fs]
and ∀~X ∈ Ω using p̃(t, ~X) =

∑
q α̃q,r e j(kq c0 t+~kq,r ~X), where

α̃q,r are the coefficients optimised in stage (c).

2.1.2 Modal analysis in a rectangular room

In this section, we study the solutions of the wave equa-
tion in the simple case of a rectangular room. From this
study, we exhibit a stronger property of sparsity which justi-
fies the use of the Compressed Sensing framework (CS).

In the case of a rectangular room with rigid walls, we can
make the variable separation in cartesian coordinates (x, y, z).
Then, each modal shape is written as the product of 3 func-
tions of one variable. With ~X = [x, y, z]T , the PAF becomes:

p(t, ~X) =
∑
q∈Z?

Aq Fxq(x) Fyq(y) Fzq(z) e jkq c0 t . (5)

For each mode, these functions verify the 1-D Helmholtz
equation ∂2

v Fv + k2
v Fv = 0 for v ∈ {x, y, z}. With rigid walls,

the kv’s are real constants such that k2
x +k2

y +k2
z = k2 (cf. [17]).

According to the Helmholtz equation, for each cartesian co-
ordinate v the Fv’s are the sum of 2 solutions: Fv(v) = A+

v e jkvv

+A−v e− jkvv. Then, expanding FxFyFz, the modal shape φq(~X)
is written as the sum of 8 plane waves e± jkx x± jkyy± jkzz = e j~k~X ,
with ~k = [±kx,±ky,±kz]T .

In the case of non rigid walls, as the wavenumber k is
complex: k = (ω− jξ)/c0, the kv’s are complex. This implies
a slight decrease of the Fv’s near the walls. Nevertheless, for
~X far from the walls, we assume that the imaginary part of kv

is negligible, and that k2
x + k2

y + k2
z = Re(k)2 = ω2/c0

2.
Consequently, in a bandwidth containing 2Q complex mo-

des, the PAF can be written as the sum of 16Q harmonic
plane waves in the case of rectangular rooms. Note that in
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the previous section, each modal shape was approximated
by R fixed plane waves sampling uniformly the sphere of ra-
dius |ω|/c0, whereas here, with the assumption of rectangular
room, only 8 plane waves are required by complex mode.

In this work, the proposed method is based on the Match-
ing Pursuit algorithm (cf. e.g. [18]). It consists in iteratively
substracting from the signal the group of 8 harmonic planes
waves exp( j(kt + ~k~X)) that best approximates the measured
PAF. These plane waves are associated to one mode and share
the same wavenumber k.

Although this model doesn’t hold for arbitrary geome-
tries (cylindrical rooms for example), it can nevertheless be
extended to non rectangular rooms. Indeed, if all walls are
plane, we can assume that the modal shapes are still sparse
on a dictionary of plane waves. The corresponding wavevec-
tors remain on the sphere of radius |k|.

2.2 Image Source Method
The principle of the Image Source Method is that an acous-

tic path involving reflections in an enclosed space can be
represented by a straight line path connecting the listener to
a corresponding Virtual Source (VS) emitting in free space.
For a fixed real source at position ~Y0 and a receiver at position
~X, the RIR have the general form (cf. e.g. [19]):

p(t, ~X) =
∑
s∈J

βs
δ(t − ‖~X − ~Ys‖2/ c0)

4π ‖~X − ~Ys‖2

, (6)

where the ~Ys are the VSs positions, the βs coefficients take
into account the damping caused by the multiple reflections
against the walls, and J is a set indexing the virtual sources.

For the early part t ∈ [0,T ] of the RIRs, we only have
to take into account the VSs within a ball of radius r = T c0
and center ~X. As a consequence, since the RIRs are repre-
sented as linear combinations of contributions of a few VSs
(cf. eq. (6)), the early part of the 4 dimensional function
p(t, ~X) has a sparse representation on a dictionary of spher-
ical waves, where the centers are the VSs. Then, to recon-
struct p(t, ~X) in a finite time interval [0,T ] and in a domain
Ω of the space, we propose to exploit this sparsity using the
CS approach.

As in section 2.1, the present method is based on the
Matching Pursuit algorithm (cf. e.g. [18]). Here, it itera-
tively substracts from the measured PAF the atom that best
approximates it. This atom is chosen among a dictionary Ψ

of monopoles within a virtual space which is a ball of radius
r = Tc0 and of center the microphone array. Then, every
atom ψs of Ψ is given by

ψs[n,m] =
δ(tn − ‖~Xm − ~Ys‖2/ c0)

4π ‖~Xm − ~Ys‖2

. (7)

The underlying assumptions of this model are as follows:
the walls have to be plane, only specular reflections are con-
sidered (no diffuse reflections), diffraction is not taken into
account, the domain Ω of analysis and reconstruction has to
be small enough in order to avoid a problem of visibility of
the VSs according to ~X (cf. [19]), and the imaginary part of
the wall reflections (in the frequency domain) have to be suf-
ficiently small. Note that for convex rooms, diffraction can
be neglected, and we consider complex wall reflections for a
more realistic modeling (cf. [12] for more details).

3 Experiments and results
We have designed a real 3-D array with 120 electret mi-

crophones (cf. fig. 2), randomly positioned within a cube of
size 2m with a statistical distribution close to uniform - up to
mechanical constraints. The room has dimensions (3.8, 8.15,
3.6)m, it was emptied but still had features that made it non-
ideal: a doorway, two windows, a cornice, concrete walls,
wood panels, etc.

Figure 2: Photograph of the experimental microphone array

Here, we present some results of the proposed algorithms,
using the same experiment. They will be named: methods
CS-A1 and CS-A2 for the reconstruction in low frequencies
(cf. sec. 2.1.1 and 2.1.2 respectively), and method CS-B for
the reconstruction of the early part (cf. sec. 2.2). Interpola-
tion CS-A1 and CS-A2 are compared using the estimation of
their Signal-to-Noise Ratio (SNR) [dB], and method CS-B
is evaluated using its SNR and its Pearson correlation coef-
ficient c [%]. With s the (N ×1) vector of the target RIR,
such that s[n] = p(tn, ~X), and s̃ its interpolation: SNR =

20 log (‖s‖2 / ‖s − s̃‖2) and c = 100 |〈s, s̃〉| / (‖s‖2. ‖s̃‖2) .
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Figure 3: Methods CS-Ax. Example of two interpolated
responses in low frequencies: fc = 300 Hz
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Figure 4: Method CS-B. Example of the interpolation of
the early part
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Figures 3 and 4 present some examples of the interpo-
lated RIRs, togehter with the measured ones. The analysis
is performed using 119 microphones of the array, and the
interpolations are evaluated using the measured RIR of the
120th microphone. Remark 1: as opposed to fig. 4, in fig. 3
the contributions of the reflections are not distinguishable be-
cause of the low-pass filtering at 300Hz. Remark 2: the RIR
of fig. 4 takes into account the non-ideal responses of the
microphones and the loudspeaker. Remark 3: whereas the
SNRs of methods CS-A1 and CS-A2 are quite good (24dB
and 18.2dB respectively), the SNR of method CS-B doesn’t
seem as good (7.14dB). But we can remark that the corre-
lation remains quite good (90.3%). This point will be dis-
cussed in conclusion.

In figure 5, the performances are evaluated according to
the number of microphones for the analysis. Here, we have
randomly selected 15 microphones for the interpolation and
the SNR averages, and the analyses are performed using the
105 other microphones. As a general trend, performance de-
creases with M. It is however interesting to notice that with
M > 40 method CS-A1 outperfoms method CS-A2 which
suddenly falls for M < 16. Nevertheless, between 19 and 28
microphones method CS-A2 is better with a stable SNR (ap-
proximately 10dB); this observation has been noticed with
other tests.
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Figure 5: Effect of the number of microphones for the
analysis. Top: Methods CS-Ax, bottom: Method CS-B

Figure 6 presents the performances according to the dis-
tance of the interpolation position from the center of the ar-
ray. In this figure, the vertical lines represent the standard
deviation of the SNRs per interval. As expected, the per-
formances decrease when the position moves away from the
center, although it can be noticed that whereas method CS-
A1 is better around the center of the array, the SNR of method
CS-A2 decreases slower and is better at the edge.

An interesting experiment is the comparison of the meth-
ods according to the array configuration. In figure 7, we have
numerically simulated and tested 6 different array configura-
tions with 125 microphones: 3 random arrays (with a uni-
form distribution within the cube with side 2m), the exper-
imental array (which is approximately random, cf. fig. 2), a
spherical array with radius 1.24m (for which the volume is
8m3 like the cube), and a regular array (where the receivers
are uniformly positioned within the cube with side 2m). The
noticeable result is that: whereas methods CS-A1 and CS-
A2 (for low frequencies) are better with random arrays, as
expected, the best result for method CS-B (early part) is ob-
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Figure 6: Effect of the distance from the array center. Top:
Methods CS-Ax, bottom: Method CS-B

tained with the regular array. The first observation can be ex-
plained because for Compressed Sensing, the measured sig-
nals have to be decorrelated from the decomposition dictio-
nary (plane waves), consequently random arrays are prefer-
able (cf. the RIP property in sec. 1.2) . Moreover with ran-
dom arrays, the probability that all microphones lie on the
zeroes of a modal shape is smaller than with regular arrays.
For method CS-B (for early reflections), the observation can
be explained because the diffences of time of arrival have
to be maximized between the microphones of the array, and
this is done with a regular array where the microphones are
uniformly spaced. Nevertheless, we have realised a random
array because method CS-B remains acceptable, and because
method CS-A1 cannot be used with regular array.
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Figure 7: Six different microphone arrays. Top: Methods
CS-Ax, bottom: Method CS-B

We have checked the robustness of both methods to the
geometry of the room, in particular when the measured room
gets further away from the “ideal” rectangular room. This
has been made by opening the windows and the door, and by
placing a chair and a wood panel. Moreover, in the first set
of experiments the baffled loudspeaker, which has a complex
directivity pattern, was oriented towards the array ; in this
second set of experiments the loudspeaker was turned so as
to not face the array. The results of these new measurements
reveal that methods CS-A1 and CS-A2 (based on the modal
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theory) are stable with obstacles and with several orientations
of the loudspeaker, while the SNR for method CS-B (based
the image source method) decreases.

For methods CS-A1 and CS-A2, since the modal density
strongly increases with the frequency, the sparsity assump-
tion is less and less valid in high frequencies. Indeed, the
performances of method CS-A1 decreases when the cutoff

frequency fc increases, but method CS-A2 seems very stable
when fc varies, at least up to 400Hz.

In the same line for method CS-B, since the echo density
strongly increases with time, the sparsity assumption is less
and less valid. Indeed, when the RIRs duration increases for
the analysis, the global performance decreases. Nevertheless,
we observe that the interpolation quality doesn’t change at
the begining of the reconstructed response.

4 Conclusion
Starting from a random array with a small number of mi-

crophones, and exploiting two sparsity assumptions of the
acoustic wavefield in reverberating room (sparsity in frequen-
cy and sparsity in time), we have shown that it is possible
to use the Compressed Sensing framework to interpolate in
space the Room Impulse Responses. Consequently, we can
seperately sample the low frequencies and the early reflec-
tions of the Plenacoustic Function (respectively part A and
part B of fig. 1), but using the same measures. Then, part C
can be synthesized using a stochastic model (cf. [2]).

Note that, the performances are evaluated using the SNR
and the correlation coefficient which are probably not signif-
icant. For specific applications, more relevant criteria should
be designed. For example human perception should be taken
into account in the case of a digital reverberation.
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