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Geometrical acoustics models are currently the most popular prediction tools in room-acoustics due to their low
computing load. However, they seldom take into account the diffraction occurring at free edges or apertures.
Moreover, the existing diffraction models implemented in geometrical acoustics algorithms are either limited to
specularly reflected paths or either present excessive complexity. Recently, a diffraction model based on an ap-
proximation of the far-field direction of the Poynting’s vector has been implemented in an acoustic ray-tracing
software. This model can handle both diffuse and specular reflections and sets no limit in terms of order of reflec-
tion or diffraction by half-planes. Results for single and double diffraction problems are presented here. Moreover,
this model is developed to handle diffraction occurring at slits and comparisons with experimental results are
shown.

1 Introduction
Geometrical acoustics models are very popular in room-

acoustics due to their relatively low computation time com-
pared to the more computationally intensive methods solving
the wave equation [1]. However, they only model the prop-
agation of the acoustic intensity and neglect the phase infor-
mation of the waves. These assumptions imply that diffrac-
tion occurring at free edges is not modeled, limiting their ap-
plications. To handle these phenomena, two models extend-
ing geometrical acoustics are particularly popular in room
acoustics: the uniform theory of diffraction (UTD) [2, 3] and
the Biot-Tolstoy-Medwin model (BTM) [4, 5, 6].

To apply these coherent diffraction models, the propaga-
tion paths must be found. If only specular reflections are
considered, each diffracting edge becomes a sound source
and its images onto the room’s surfaces can be recursively
constructed similarly to the classical source image method
[7, 8]. The number of images to evaluate grows then expo-
nentially with the order of reflection, restricting the practical
application to low reflection orders[9, 10]. Another method
consists in the detection of propagation paths including the
specularly reflected and the diffracted paths, by tracing from
the sound source beams [11, 12] or frustrums [13, 14]. These
paths are then used to propagate the energy from the source
to the receiver. In all wave based methods, the diffracted
paths are only associated with specular reflections and the
contributions of diffuse reflections are totally neglected.

Another approach is to model diffraction based on the
ray-tracing method [15, 16] which can take into account both
specular and diffuse reflections [1, 17]. In this case, the
problem is that the probability for a sound ray to intersect a
diffracting edge is extremely weak (theoretically 0). The de-
tection of the diffracting edge therefore implies the definition
of virtual surfaces extending them in space such as they be-
come visible by the propagating sound rays [18, 19, 20, 21].
Moreover, these algorithms imply the development of energy
based diffraction models.

In Ref. [18], the sound rays crossing the virtual surface
are redirected randomly. This model obtains good agreement
with measurements with a limited computation load but its
physical basis seems dubious. For the three other models,
each ray detecting the diffracting edge results in the emission
of several tens of diffracted rays according to some defined
directivity patterns implying a greater computation load. In
the first model [19], the energy carried by the diffracted rays
is evaluated using the Keller’s geometrical theory of diffrac-
tion [22]. The directivity pattern is derived from the uncer-
tainty relation for the second model [20] and from a shifted
screen model for the third one [21].

Recently, Hesse and Ulanowski [23] have introduced a
diffraction model based on the direction of the energy flow

lines [24] behind an infinite half-plane and a slit to evaluate
the light scattering created by ice crystals. In this model, the
rays are deflected in the shadow zone depending on the dis-
tance between the ray and the edge, similarly to Refs. [20]
and [21] . However, the rays are not split up and the number
of traced rays remains constant along a simulation. For an in-
finite half-plane, this model has been extended to obliquely
incident rays and applied to acoustical problems [25], show-
ing a good agreement with the UTD.

In this paper, the diffraction model based on the energy
flow lines is briefly presented and applied to single and dou-
ble diffraction problems in Section 2. In Section 3, the diffrac-
tion model for slits developed by Hesse and Ulanowski [23]
is extended to obliquely incident rays model and some results
are presented.

2 Diffraction by half-planes

2.1 Diffraction model
The problem under consideration is the diffraction of plane

waves by a half-plane. Let’s define θ the angle between the
incoming wave vector and the diffracting edge (Fig. 1):

cos θ =
~r · ~e
|~r| × |~e|

, (1)

where ~r is the ray direction and ~e the edge direction whose
orientation is chosen so that 0 < θ ≤ π/2.

Let’s now define the angle α between the incoming waves
and the half-plane such as (Fig. 1):

cosα = −
~r · ~IE

|~r| × | ~IE|
, (2)

where I is the intersection point between the ray and the
transparent plane including the half-plane and E the projec-
tion of I on the edge.

For waves propagating in the plane perpendicular to the
half-plane(θ = π/2) and incident perpendicularly to the half-
plane (α = π/2), Hesse and Ulanowski [23] proposed an em-
pirical expression based on numerical simulations of the far
field deflection angle of the energy flow lines given through
the direction of the time-averaged Poynting’s vector [24] be-
hind the half-plane:

φ(d) = − arctan
λ

4π2d
, (3)

where d = | ~IE| is the distance between the considered ray and
the diffracting edge and λ is the wavelength. In this model,
the edge is assumed to be infinite and both the source and
the receptor are located far enough from the half-plane as
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Figure 1: Plane wave incident over a half-plane. ~r is the
incident wave vector and ~s the deflected one. ~e is the edge
line direction. — ~IE— is the shortest distance between the

intersection point I and the edge. In this particular example,
~e is collinear to ~y and ~IE to ~z. α is the incidence angle

(comprised between 0 and π) in respect to the half-plane and
θ is the incidence angle (defined between 0 and π/2) in

respect to the edge line. φ is the deflection angle.

assumed in the geometrical theory of diffraction [22] or the
uniform theory of diffraction [2, 3].

For oblique incident rays (α , π/2 and θ , π/2), the
following expression can be obtained [25]:

φ(d) = −2
π − α

π
arctan

λ

4π2d sinα
. (4)

Fig. 2 presents the obtained deflection angle computed
with Eq. 4 for θ = π/2 as function of the edge-ray distance
for an incidence angle α=π/4, π/2 and 3π/4. Note that for
α=π/2, Eq. 4 reduces to Eq. 3. For θ , π, the direction of the
deflected ray is the solution of the intersection of the diffrac-
tion cone [22] and the deflection cone [25]. In acoustics, the
Poynting’s vector can be interpreted as the acoustic intensity
vector [27] and the link with the acoustic ray-tracing algo-
rithm is therefore straightforward. Eq. 4 is very intuitive both
in geometrical optics [24] and in acoustics [27]: the closer of
the diffracting edge the rays travel, the greater their deflec-
tion angle. The proposed concept deals only with energetic
quantity and cannot thus predict the phase jump occurring at
the edge. On the other hand, the predicted field is continu-
ous at the shadow boundary. This diffraction model has been
shown to be very computationally efficient [25].

2.2 Single diffraction configuration
The ray-tracing results are compared with those obtained

using the UTD for a half-plane equivalent to a sound bar-
rier in Fig. 3. The sound source is an omnidirectional point
source with a sound power level of 100dB and three frequen-
cies (125, 500 and 2000Hz) are considered. The sound pres-
sure level (SPL) is computed behind the half-plane using 107

rays. The receptors are spherical with 0.5m diameter and
located every 2m. The computation time is about 60s on a
computer fitted with a 2.4GHz Pentium 4 with 2Gb of RAM.

The ray tracing’s results are in a good agreement with
those obtained with the UTD with a mean discrepancy lower
than 1dB (Fig. 4). The proposed diffraction model tends to
slightly underestimate the sound pressure level compared to

Figure 2: Evolution of the deflection angle -φ(d) obtained
using Eq. 4 as a function of the edge-ray distance d/λ for

incidence angles equal to θ = π/2 and α=π/4 (thin line), π/2
(bold line) and 3π/4 (dashed line).

Figure 3: (a) Cross-section of the studied configuration and
(b) top-view of the studied configuration. (•) Source

location, (dashed line) locations of the sound receptors.

Figure 4: Evolution of the sound pressure level (SPL)
behind the half-plane at (a) 125Hz, (b) 500Hz and (c)
2000Hz: (•) uniform theory of diffraction, (thick line)

ray-tracing.
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Figure 5: Sketch of the simulated Y-shaped barrier. S
indicates the sound source location and R the sound

receptor.

Figure 6: Insertion loss at the receptor as a function of the
frequency: (thick line) numerical data [28], (dashed line)

ray-tracing results.

the UTD. This underestimation is partly due to the empirical
expression of Eq. 4 and partly to the sampling issue asso-
ciated with the ray-tracing algorithm. The deviation is thus
greater closer to the half-plane, deeper in the shadow zone
and at higher frequencies. This corresponds to the greatest
deflection angles which are associated with the shortest pass-
ing distances (Fig. 2).

2.3 Double diffraction configuration
In this section, an application to a double diffraction prob-

lem is presented. A Y-shaped barrier (Fig. 5) is considered
and comparison with numerical data obtained with the bound-
ary element method [28] is carried out within the frequency
range from 100Hz to 1000Hz. The ground and the barrier are
assumed perfectly rigid (without scattering or absorption).
For the ray-tracing simulations, 107 rays are emitted and the
sound receptor is a 0.5m diameter sphere. In this configura-
tion, there are two virtual surfaces that extend each branch of
the barrier.

Despite neglecting the interference effects, the ray-tracing
is globally in good agreement with the reference data (Fig. 6).
It tends to overestimate the insertion loss below 300Hz and
cannot predict an insertion loss peak occurring at 400Hz. In
fact, this peak must be due to interference effects which are
not taken into account by the proposed model. On the other
hand, the agreement is very good above 500Hz.

Figure 7: Plane waves incident on a slit of width s
propagating in a plane perpendicular to the diffracting edges

(θ = π/2). α is the incidence angle and φ is the deflection
angle.

3 Diffraction by slits

3.1 Diffraction model
The problem under consideration is the diffraction of plane

waves propagating in a plane perpendicular to the edges of a
slit (Fig. 7) which can be solved using the Kirchhoff’s diffrac-
tion theory [24]. For perpendicular incident waves (α = π/2
and θ = π/2), Hesse and Ulanowski [23] proposed an empir-
ical expression of the far field deflection angle of the energy
flow lines behind the slit:

φ(d) = − arctan
[
λ

4π2

(
1
d
−

1
s − d

)]
, (5)

where s is the slit width, d the distance between the consid-
ered ray and the lower edge (Fig. 7). Similarly to the previ-
ous model, it is assumed that the slit is infinite and both the
source and the receiver are situated in the far-field. Comput-
ing the angular energy density derived from Eq. 5, Hesse et
al. [23] found a good agreement with the Fraunhofer diffrac-
tion pattern [24] apart from neglecting the interference ef-
fects.

For obliquely incident rays (α , π/2 and θ , π/2),the
evaluation of the deflection angle must be separated in two
parts. For d ≤ s/2, the following expression is obtained:

φ(d) = −2
π − α

π
arctan

[
λ

4π2 sinα

(
1
d
−

1
s − d

)]
, (6)

and, for d > s/2, we can write:

φ(z) = −2
α

π
arctan

[
λ

4π2 sinα

(
1
d
−

1
s − d

)]
. (7)

3.2 Numerical results
The studied configuration, a 2m wide lit, is presented in

Fig. 8. The sound source is an omnidirectional point source
with a sound power level of 100dB. It is located 5m away
from the center of the slit. Three frequencies (125, 500 and
2000Hz) are considered. The sound pressure level (SPL) is
computed behind the slit with 107 rays. The receptors are
spherical with 0.25m diameter and located every 0.5m. The
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Figure 8: Cross-section of the studied configuration of the
studied configuration. (•) Source location, (dashed line)

locations of the sound receivers.

Figure 9: Evolution of the sound pressure level (SPL)
evaluated using 107 rays 3m behind a 2m wide slit included
between z = 4m and 6m (indicated by the arrows at 125Hz
(thick line), 500Hz (thin line) and 2000Hz (dashed line).

computation time is about 60s on a computer fitted with a
2.4GHz Pentium 4 with 2Gb of RAM.

The obtained results are physically consistent (Fig. ??):
sound energy reaches the shadow zones behind the slit. More-
over, the lower the frequency, the more energy reaches the
shadow zones. This increase of energy deflected into the
shadow zones is associated with a slight decrease of the sound
level computed into the lighted zone. However, the sound
levels computed into the shadow zones are not exactly sym-
metric for the two sides of the slit. This discrepancy increases
deeper into the shadow zones and with the frequency. It
can be associated with under-sampling issues as previously
shown for the half-plane configuration [25].

4 Conclusion
The ray-tracing method is a geometrical acoustics model

approximating the propagation of sound waves by rays car-
rying only energy information. This method is very popular
in room acoustics and auralization due to its low computa-
tion load. However, diffraction effects are seldom modeled,
restricting its application.

In this paper, a diffraction model developed to predict the
scattering of light by ice crystals is adapted to an acoustic
ray-tracing software. To simulate diffraction by half-planes
and slits, the rays passing in the vicinity of the diffracting
edges are deflected in the shadow zone depending on the ray-
edge distance and on the frequency. The deflection law is
based on an approximation of the far field direction of the
time-averaged Poynting’s vector. This model assumes that
the edge is infinite and that the source and the receiver are
far enough from the diffracting edge. This model is com-
putationally efficient. For the slit, this model has been here
extended to obliquely incident rays.

For the half-plane configuration, the agreement with the
uniform theory of diffraction is good, with mean discrepan-
cies lower than 1dB. They are due to the approximated de-
flection law, on the one hand, and to sampling issues, on the
other hand. In fact, the deflection of the rays occurs mainly
within the first wavelength over the half-plane. In this de-
flecting zone, the number of rays must be great enough to
completely cover the shadow zone, without discontinuities.
So, the obtained predictions are more reliable at lower fre-
quencies for a given number of rays. In addition, a config-
uration composed of a Y-shaped barrier on a rigid flat ground
was also investigated, this geometry presenting a double diffrac-
tion phenomenon. Despite neglecting the interference ef-
fects, a fair agreement is found between ray-tracing and bound-
ary elements method results for frequencies ranging between
100Hz and 1000Hz.

For the slit, the obtained results seem physically consis-
tent. More energy reaches the shadow zones behind the slit
for lower frequencies. Similarly to the half-plane configura-
tion, under-sampling issues can be highlighted as the sound
levels computed are not exactly symmetric in respect to the
slit center, particularly deep into the shadow zones and at
high frequencies. Further work must be done to experimen-
tally validate the diffraction model for slits.
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