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Propagation in the atmosphere for long range seems to be a complex phenomenon: for instance the experimental
observations of signals of Concorde sonic boom to several hundred kilometers where the classical N-waves dis-
appears completely. In fact the transfer function of the atmosphere for the near field is a pure delay (propagation
time) with a gain (corresponding to the geometric attenuation).At long range this physical model is not valid. It is
well known for high frequency and long range it must be adjusted for the effects of viscosity. But this model must
also be corrected at low frequencies because the atmosphere is not homogeneous and therefore diffracts. Based on
the linearized Euler equations , it reveals a dimensionless number g . d / a 2 (with g the gravitational constant, d
the propagation distance and a the speed of sound). This number is 1 when the distance is about 5 km
The purpose of this paper is to show how the transfer function of the atmosphere changes when the propagation
distance increases, assuming the latter is a stratified medium.

1 Introduction
The observations of infra-sonic propagation of impulsive

distant sources show a strange behavior. In the first sec-
tion we describe the main characteristics of this phenomenon
which we call ”rumble”: lengthening of the duration increas-
ing with the distance. In [1] it is shown these chaotic fluc-
tuations at very low frequencies don’t modify the spectrum
between 1 and 10 Hz. In addition, azimuth, elevation angles
and travel times are in conformity with a traditional calcula-
tion by the ray tracing method. Among various explanations,
in this paper we investigate the fact that the atmosphere is a
heterogeneous medium. In fact, because of the gravity, the
atmosphere is a quasi-stratified medium, and the wave equa-
tion must be modified. This is done with the linearized Euler
equations . In the case of constant sound velocity, the gov-
erning equations are no more wave equations but a kind of
Klein-Gordon equation. Both in 3-D case (sound propaga-
tion) or in 2-D case (perturbation of supersonic body), the
Green function or the atmospheric transfer function is ex-
hibited. A dimensionless number naturally appears (r.g/2a2:
when it is small the waves equation is recovered but, when
it is greater than 1 (when the distance is greater than 5 km
which is compatible with the observations), the transfer func-
tion is dramatically different from that in homogeneous case.
Thanks a stationary phase hypothesis we are able to compute
a synthetic N-wave far from the source: it shows long dura-
tion and oscillations and at first sight its behavior is similar
to the observations.

2 Physical Problem
The starting point of this work is the observation of the

sonic boom from Concorde to a hundred miles off its trajec-
tory (see figure 1).

Figure 1: Distant N-wave (from [1])

As under track, a classical ”N wave” can be observed (see
figure 2), it is clear that far from the ground track, this N wave
is indistinguishable.

Figure 2: N-wave under track

The duration of the phenomenon (shock waves) near the
plane is .1s (the length of Concorde is 60 m. and its velocity
during the cruse is Mach 2). Its duration far from the ground
track (30km, at the boundary of the primary carpet) can be
2 s. (see figure 3 ). But very far away, the signal lasts for

Figure 3: Smoothed N-wave

several minutes. So the question is: what are the physical
mechanisms that increase the duration and cause the disap-
pearance of the shape of the wave ? Several causes may be
considered:

1. the non-linear phenomena,

2. the absorption of sound by the atmosphere,

3. diffraction of sound by the inhomogeneity of the latter,

4. turbulence,

5. or phenomena caused by caustic crossing.
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The non-linear phenomena are of great importance at the be-
ginning of propagation when the amplitude of perturbation
modifies the sound speed. The shape of the pressure signal
becomes an N-wave, then the amplitude decreases and non-
linear effects no longer intervene. The main effects of ab-
sorption ”sweeten” the wave by killing the high frequencies
but, in any case they cannot increase the duration. The caus-
tic crossing does have a strange effect: the transmitted signal
is the Hilbert transform of the incident wave. An N-wave be-
comes an U-wave with enhanced nonlinear effects but they
cannot increase the duration. Turbulence effects are difficult
to apprehend up to now. The third hypothesis is detailed in
this paper. For the author, this phenomenon is very close
to the rumble of thunder. During a storm one can observe
that when the lightning is close to the listener, the sound of
the thunder is very impulsive. Conversely when lightning
is away, the signal duration lengthens and thus resembles a
rumbling. It is also reported that during the First World War
the noise from the front was sounded like a roar.

3 Linearized Euler Equations (LEE)
The propagation of the sound in the atmosphere is gov-

erned by LEE (see e.g. [2]). First, we have to define the fluid
at rest and after to linearize around it. We assume a stratified
medium without wind.Let f0 the value of quantity f at rest.

• equation of momentum with respect of z (z is the ver-
tical axis):

∂zP0 = −ρ0g (1)

P0 is the pressure, ρ0 the density et g the gravity

• given a temperature profile T0 = T (z) depending on
the meteorological conditions, and thanks the law of
perfect gases:

P = ρRT (2)

it is possible to compute the pressure P0(z) and density ρ0(z)
profiles. To establish the equations of the fluctuations around
this atmospheric state, we linearize the Euler equations. Let
f1 the fluctuation of quantity f . First we define a dimension-
less density :

µ =
ρ1

ρ0(z)
.

Let u, v,w the components of the velocity. If we assume the
”isentropicity” of fluctuations:

dp1 = a2dρ1 a : sound speed

The LEE ca be written:

∂tu1 + a2∂xµ = 0
∂tv1 + a2∂yµ = 0

∂tw1 + a2(∂z(ρ0µ)/ρ0) + gµ = 0 (3)
∂tµ + ∂xu1 + ∂yv1 + ∂zw1 + ρ′0/ρ0w1 = 0

From now on, the index 1 can unambiguously be removed .

∂tu + a2∂xµ = 0
∂tv + a2∂yµ = 0

∂tw + a2(∂zµ + (kρ + k)µ) = 0 (4)
∂tµ + ∂xu + ∂yv + ∂zw + kρw = 0

with k = g/a2 As the atmosphere is an heterogeneous (strat-
ified) medium, it is necessary to define wave numbers kρ =

ρ′0/ρ0 and kθ = T ′0/T0 :

kρ = ρ′0/ρ0 = P′0/P0 − T ′0/T0 = −γg/a2 − kθ = γk − kθ (5)

This expression of is obtained thanks formula 2, 1 and the
sound speed in a perfect gase:

a2 = γRT

To give an idea of order of magnitude, in the case of Inter-
national Standard Atmosphere (ISA), 1/kθ ' −30km under
11km and above kθ = 0 . The value of g/a2 is 10−4m−1 and
kρ depend weakly on the temperature gradient. The charac-
teristic length of the stratification is then 10 km. In 4 we can
set:

ũ = uebz

ṽ = uebz

w̃ = uebz

µ̃ = µebz

Then 4 is modified :

∂tũ + a2∂xµ̃ = 0
∂tṽ + a2∂yµ̃ = 0

∂tw̃ + a2(∂zµ̃ + (kρ + b + k)µ̃) = 0 (6)
∂tµ̃ + ∂xũ + ∂yṽ + ∂zw̃ + (kρ + b)w = 0

If we assume a constant temperature, it is possible to define
a modified wave equations for ũ in this academic medium
by differentiating density equation with respect to time , mo-
menta x,y,z with respect to x,y,z:

∆µ̃−∂ttµ̃/a2−(k+2kρ+2b)∂zµ̃−(kρ+b)(k+kρ+b)µ̃ = 0 (7)

This equation is a small perturbation of classical wave equa-
tion due to the stratification. In addition, we can choose
k + 2kρ + 2b = 0 and

∆µ̃ − ∂ttµ̃/a2 + (k/2)2µ̃ = 0 (8)

Moreover equation 8 verifies conservation of energy. If we
study the small stationary perturbation of a supersonic mobil,
one obtains a similar equation (see [3]). If M0 = V0/a is
the Mach number and x axis the trajectory of the mobil, we
simply replace x by t in 7 :

∂zzµ+∂yyµ−(M2
0−1)∂xxµ−(k+2kρ)∂zµ−(kρ)(k+kρ)µ = 0 (9)

We define the Prandl-Glauert Number β =

√
(M2

0 − 1)

∆2µ − ∂xxµβ
2 − (k + 2kρ)∂zµ − (kρ)(k + kρ)µ = 0 (10)

(∆2 is the 2-D Laplacian). This is a perturbation of the 2-D
wave equation (where the time is replaced by x and the sound
speed is 1/β.

4 Green Function of Perturbed Wave
Equation

The formulae of this section come from [4]. Equations
10 and 7 are similar. Our goal is now to solve the perturbed
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problems to see if the stratification hypothesis can explain
the strange behavior of the signal at long range. We recall
the Green functions (actually distributions) for unperturbed
wave problems. For 3-D case:

< E, φ >=

∫ ∞
0

dt
4πt

∫
r2=c2.t2

φ dS

In the 2-D case,

∆2µ − β2 ∂xxµ = 0

the Green function is:

G =
1

2π
1√

x2 − β2r2

with now r2 = y2 + z2 The solution of the problem (without
boundary conditions) is simply the convolution of the Green
function by the source h. In the case of a supersonic slender
body and with a far field approximation, the solution of the
pressure is given by:

δp(x − βr) = p0
γM0

2
√

2βr
F(x − βr) (11)

F(x) = 1/2π
∫ x

0
A′′(s)
√

x−s
ds

with F: Whitham function and A the area profile of the body.
First we simplify the problem in setting G = ebzG̃. on a:

∂zG = ebz(∂zG̃ + bG̃)
∂zzG = ebz(∂zzG̃ + 2b∂zG̃ + b2G̃) (12)

As G verifies (in 2-D case) ,

∆2µ − ∂xxµβ
2 − (k + 2kρ + 2b)∂zµ − (kρ + b)(k + kρ + b)µ = 0

So G̃ verifies:

∆2G̃ − ∂xxGβ2 − (k + 2kρ + 2b)∂zG̃

−(kρ + b)(k + kρ + b)G̃ = (13)
e−bzδ(x)δ(y)δ(z − zs)

In addition one has:

e−bzδ(z) = δ(z)

In fact if φ is a test function,

< e−bzδ, φ >=< δ, e−bzφ >= e−b0φ(0) = φ(0)

If 2b + 2kρ + k = 0, the term ∂z disappears.

G = e−(k/2+kρ)zG̃

∆2G̃ − ∂xxG̃β2 − ξ2
0)G̃ = δ(x)δ(y)δ(z) (14)

with:
ξ0 =

g
2a2 = k/21 (15)

The problem is now to find the Green function of a ”Klein-
Gordon” equation in 2-D and 3-D case. For 3-D case, if the
source is harmonic in times, the new Green function is a so-
lution of the perturbed Helmholtz problem:

∆G̃ + (k2 − ξ2
0) G̃ = δ(x)δ(y)δ(z)

1this spatial frequency doesn’t depend on temperature gradient

the solution is well-known:

G̃ = exp(−i
√

k2 − ξ2
0r/4πr (16)

that means the low frequencies are no more propagative but
evanescent. For the 2-D Helmholtz problem,

∆2G̃ + ξ2G̃ = δ(y)δ(z)

In that case, a possible Green function 2 is:

−i/4H2
0(ξ0r)

Actually as, when z is small,

iH2
0(x) '

2
π

lnz

the solution must converge to the Green function of the 2-D
Laplace problem

1
2π

lnr

. For the modified 2-D Helmholtz problem, the fundamental
solution is:

G̃ = −i/4H2
0[
√

(ξ2β2 − ξ2
0) r] (17)

If a far field approximation of the Hankel function H2
0 is used,

H2
0(z) ' eiπ/4

√
2
πz

e−iz (2π > arg(z) > −π) , (18)

one can see the same behavior as in 3-D case i.e. if

‖βξ‖ ≤ ‖ξ0‖,

the wave is evanescent. If we take the Fourier transform of
equation 14, the Green function is the inverse Fourier trans-
form of:

1
− f 2β2 + |ξ|2 + ξ2

0

In [5], chapter 3 sections 2-7 2-8 and 2-9 give the answer: As
(k2 + P)−1 = (k2 + P+ i0)−1− (k2 + P− i0)−1, formula (10) and
(11) In 2-D case the Green function has a simple expression:

G̃ =
1

2π
cos(ξ0

√
x2/β2 − r2)√

x2 − β2r2
(19)

When ξ0 → 0, the expression of G̃ → the Green function of
2-D wave equation:

1
2π

1√
x2 − β2r2

(20)

For the 3-D case the expression of Green function is:

1
8π

J−1(ξ0c
√

t2 − r2/c2)
ξ0√

t2 − r2/c2

(J is the Bessel function).
In the 2-D case, a far-field expression of 20 is:

1

2π
√

2βr

1
√

x − βr
(21)

2as in equation 16, this choice is done in order to be compatible with the
usual definition of Fourier and Laplace transforms and p = iω+ εwith ε ≥ 0
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If the same approximation is done in 19

G̃ =
1

2π
√

2βr

cos(ξ0

√
2r
β

√
x − βr)

√
x − βr

(22)

If we take the Fourier transform of 22 we obtain the expres-
sion 19 where the far-field approximation 18 of H2

0 is done
and √

(ξ2β2 − ξ2
0) ' ξβ(1 −

ξ2
0

2ξ2β2 ) = ξβ −
ξ2

0

2ξβ

Figures 4 and 5 give the shape of the Green function for dif-
ferent ranges. When the latter is strongly oscillating, it is
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n=50;  x=1=> t=1500s.

Figure 4: Green function of perturbed wave equation in the
2-D case
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Figure 5: Green function of perturbed wave equation (2-D)
for different ranges

understood that the shape of the source is completely destruc-
tured, and therefore it is impossible to recognize the original
signal.

5 Synthetic Far-Field N-Wave
(see [3, 6] for details ) To obtain the shape of a N-wave

at long distance we have to compute the convolution of the
Green function of the modified wave problem by the N-wave:
we do that by multiplying the Fourier transforms of both
functions and taking the inverse Fourier transform. If we as-
sume the distance of propagation is great, a stationary phase
approximation can be used in the inverse Fourier transform.
The FT of an N-wave of lenth L (assumed to be odd) is:

N(ξ) = iPmax(
cos(ξL)
ξL

−
sin(ξL)
(ξL)2 )

To be more realistic, we ”kill” the high frequencies to simu-
late absorption in multiplying by the filter:

F(ξ) = exp(−αrξ2)

The FT of a smoothed N-wave is shown in figure6.

Figure 6: smoothed N-wave FT

The ”temporal” signal is given by:

S (x) =
1

2π

√
2
π

e−iπ/4
∫ +∞

−∞

exp[iφ(ξ)]
r1/2(β2ξ2 − ξ2

0)1/4
N(ξ) dξ (23)

with φ(ξ) = xξ − r
√
β2ξ2 − ξ2

0 (24)

If we set
ξ =

ξ0

β
η

then
φ(ξ) = ξ0 [xη/β − r

√
η2 − 1]

the phase is stationary when:

x
β
− r

η√
η2 − 1

We define:
s =

x
βr

so s =
η√
η2 − 1

then
η̂ =

s
√

s2 − 1
( remark the formulae are involutive ). The corresponding
phase is :

φ(η̂) = ξ0 r
√

s2 − 1

It is now possible to understand how the temporal signal is
built: the resulting signal is the impulse response (Green
function) modulated by the Fourier transform of the N wave
from high frequencies N to low given by the relation between
x and ξ obtained in ”stationarizing” the phase ( to compare
with figure 1)

6 Conclusions and Perspectives
To explain the rumble phenomenon (abnormal duration

and oscillations at long distance of propagation), several hy-
potheses may be envisaged:
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Figure 7: Synthetic N-wave

• Non-linear effects

• Dissipative processes

• Diffraction effects due to the gravity

• Turbulence

• Caustics crossing

If the two first hypothesis cause a longer duration of an im-
pulsive source, this duration cannot be sufficient to explain
the observations at long distance. Otherwise the diffractive
effects due to the gravity seem to be the best candidate. In
the academic (but realistic) case of a constant sound veloc-
ity where the medium remains stratified, we obtained the
transfer function of the atmosphere, which is nothing but
the Green function of the stratified Helmholtz equation. This
function is approximatively equal to the usual free-space Green
function when a dimensionless constant (kr/2 with 1/k '
10km) is small. But one has a dramatic different behavior
when it becomes greater than 1, which seems to agree with
observations. To be more realistic and to obtain multiple ar-
rivals and caustics, it is necessary to take in account gradients
of temperature, wind profiles, and boundary condition at the
ground. To do that, one can envisage:

• Numerical simulations of L.E.E, but as the domain con-
tains a important number of wavelength, they will be
rapidly heavy.

• As the medium, atmosphere is quasi 1-dimensional,
one can obtain ordinary differential equations in z (in-
stead of partial differential equation as in the previous
point) with use of adapted Fourier transform.

• to deal with the most general case, it is probably pos-
sible to compute the first term of the WKB asymptotic
development which takes into account the multiplica-
tion term (symbol of order zero) (c.f. [7] for instance).

The main task is to build a computer code capable of taking
into account not only the nonlinear effects and absorption
(like in [8]) but also scattering due to heterogeneity of the
atmosphere.
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