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A hybrid finite element method is used to model wave propagation in a flanged cylindrical pipe containing a 
monopole source. Here, a modal expansion is used to represent sound propagation in the exterior domain and 
this avoids the use of perfectly matched layers normally found in commercial software packages. Complex 
intensity in the pipe is then obtained and the real part of the complex intensity is shown to represent the local 
travelling energy and the imaginary part the local oscillating energy. Results are presented in the plane wave 
region and at higher frequencies, where the first circumferential mode has cut-on. The predicted complex 
intensity is then compared to experimental measurements and generally good agreement is observed.  From this 
it is seen that the interaction between the acoustic pressure in the plane wave and the acoustic particle velocity in 
the first circumferential mode mainly contributes to the transverse flow of energy flow in the pipe, whilst the 
interaction between the acoustic pressure in the first circumferential mode pressure and the acoustic particle 
velocity in the first circumferential mode contributes to energy oscillation. 

1 Introduction 
It is common to see sound intensity used in the 

measurement of external sound propagation; however, its 
use for internal problems such as sound propagation in 
acoustic waveguides is less well developed.  Furthermore, 
sound intensity has traditionally been treated as a real and 
time independent quantity.  Such an approach is feasible in 
the acoustic far field, where the acoustic particle velocity is 
in phase with the pressure.  In general, however, this is not 
the case and in the near field of a sound source, or in an 
acoustic waveguide, one should account for the phase 
difference between the acoustic particle velocity and the 
pressure; this can be achieved by treating intensity as a 
complex quantity. 

This article examines complex intensity in a flanged 
cylindrical pipe, and analyses the influence of the reflection 
from the flange on the sound intensity field within the duct.  
Here complex intensity is computed for a monochromatic 
sound field, where the real part of the complex intensity 
refers to the magnitude of the local mean energy flow, and 
the imaginary part to the local oscillatory transport of 
energy [1].  For a general sound field Jacobsen [2] notes 
that a number of alternative formulae are available for the 
complex intensity and he suggests that the method of 
Heyser [3] may be the most useful.  However, a later series 
of article [4-6] proposes an alternative definition and here 
Stanzial and Prodi [6] introduce new parameters called the 
radiating and oscillating intensities in order to distinguish 
them from the more usual active (real) and reactive 
(imaginary) terminology [1-3].  This article will review 
both definitions, with a view to investigating how useful 
these different definitions are in quantifying sound intensity 
within a duct.  This is to be carried out by comparing 
theoretical predictions with experimental measurements.  
The theoretical predictions are generated using a hybrid 
numerical method of the type described by Kirby [7].  
Experimental data is obtained using a “p-u” Microflown 
transducer [8], which combines a pressure microphone with 
three particle velocity transducers that simultaneously 
measure particle velocity in three orthogonal directions. 

2 Theory 
The complex intensity in a duct is modelled here using a 

hybrid finite element method based on the method of Kirby 
[7].  The model includes a sound source located at one end 
of a circular duct and at the opposite end is an infinite 
flange, see Figure 1. 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Geometry of flanged duct. 
 
In Figure 1, region R1 contains the (monopole) sound 

source, and region R4 is assumed to extend to infinity (i.e. 
no reflections are permitted in this region).  Region R3 
consists of a section in the pipe joined to a circle of radius 
R that lies outside of the pipe.  The analysis here is 
restricted to symmetrical problems only and so it is 
assumed that a two dimensional (Cartesian coordinates) 
treatment of the problem is sufficient in the duct and r, θ for 
a spherical coordinate system external to the flange.  The 
hybrid mathematical model uses a full finite element 
discretisation of regions R1 and R3, and then uses wave 
based modal expansions for regions R2 and R4.  The 
acoustic wave equation for each region is given as  

 ଵ௖೜మ డమ௣೜డ௧మ − ∇ଶ݌௤ = 0. (1) 

Here, ݌௤ is the acoustic pressure, and c is the speed of 
sound in region q, respectively; t is time.  A monopole 
source is assumed to be present in R1, so that the amplitude 
of this source F1 is given as, 

ଵܨ  = ݕ)ߜ − ݖ)ߜ	(଴ݕ −  ଴)݁௜ఠ௧, (2)ݖ

with ݕ଴, ݖ଴ denoting the location of the monopole 
source, ݅ = √−1, ߱ the radian frequency and t time. 

The solution proceeds by first calculating the 
eigenmodes for R2 and R4 and then using mode matching to 
match continuity of pressure and acoustic particle velocity 
over planes Γ୅, Γ୆	and	Γେ.  Accordingly, the sound pressure 
R2 is expanded as an infinite sum over the duct eigenmodes, 
to give ݌ଶ(ݕ, (ݖ = ∑ eି୧௞బఒ೘୸(ݕ)௠Φ௠ܣ +ஶ௠ୀ଴   

 ∑ eା୧௞బఒ೘୸ஶ௠ୀ଴(ݕ)௠Φ௠ܤ ,ݎ)ସ݌ (3)  (ߠ = ∑ (ߠ)௡Ψ௡ܥ ଵ௥ eି୧௞బఊ೙௥ஶ௡ୀ଴  (4) 
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Here, ܣ௝, ܤ௠, and ܥ௠, are modal amplitudes, ߣ௠, is the 
wavenumber in region Rଶ and ߛ௝, is the wavenumber in 
region R4.  The quantities Φ(x, y) and Ψ(x, y) are the 
eigenfunctions in Rଶ and R4, respectively, and ݇଴ = ߱ ܿ଴⁄ .  

The hybrid method proceeds by enforcing continuity of 
acoustic pressure and particle velocity over planes Γ୅, Γ୆ 
and Γେ.  The detailed procedure is described by Kirby [7] 
and only the final system equations are reported here.  The 
final equation to be solved for the unknown pressures in the 
system and the modal amplitudes is written as 

 ൤܀૚૛ ૜૚܀૚૜܀ ૜૝൨܀ ൤܂૚૛܂૜૝൨ = ቂ۴૚૙ ቃ. (5) 

where, each matrix is given by 

૚૛܂૚૛܀ = ൦۵૚ۯۯ ۵૚܍ۯ ૚்ۿ ۯ܍૚்۲૚۵૚ۿ− ۵૚܍܍ ૙ ૙ۿ૚ ૙ ૚ۻ− ૚۲૚૙ۻ− ૙ ૜۲૚ۻ− ૜ۻ−
൪ ൦ܘ૚ܘۯ૚ܣ܍௡ܤ෨௡ ൪ (6) 

૜૝܂૜૝܀  = ൦۵૜۰۰ ۵૜۰܍ ۵૜۰۱ ૙۵૜۰܍ ۵૜܍܍ ۵૜۱܍ ૙۵૜۱۰ ۵૜۱܍ ۵૜۱۱ ૝்૙ۿ ૙ ૝ۿ ૝ۻ−
൪ ൦ܘ૜۰ܘ૜ܘ܍૜۱ܥ௡ ൪ (7) 

૚૛܂૚૜܀  = ൦ ૙ ૙ ૙ ૙૙ ૙ ૙ ૙૙ ૙ ૙ ૙ۿ૜ ૙ ૙ ૙൪ ൦
෨௡ܤ௡ܣ܍૚ܘۯ૚ܘ ൪ (8) 

૜૝܂૜૚܀  = ൦૙ ૙ ۲૚ࢀ૜ࡽ− ૙ࢀ૜ࡽ ૙ ૙ ૙૙ ૙ ૙ ૙૙ ૙ ૙ ૙ ൪ ൦
ሚ௡ܥ૜۱ܘ܍૜ܘ૜۰ܘ ൪ (9) 

 ۴૚ = ሾۼ૚ݕ)܂଴, 		(଴ݖ ૙ ૙ ૙ሿ(10) ܂ 

Here, ሾࡰ૚ሿ and ሾࡰ૜ሿ are diagonal matrices with each 
diagonal element given by ݁ି௜௞మ஛౤௅మ , (݊ = 0,1,⋯ ,݉ଶ), and  ݁ି௜௞4ఊ೙ோ, (݊ = 0,1,⋯ ,݉ସ), respectively; and the modal 
amplitude coefficients are normalised as ۲ଵ۰ = ۰෩ and ۲ଷ۱ = ۱෨.  The constituent matrices are given as 

 ሾ۵૚ሿ = ׬ ૚ۼ∇܂૚ۼ∇ൣ − ݇଴ଶۼ૚ۼ܂૚൧ୖభ ݀Rଵ (11) 

 ሾ۵૜ሿ = ׬ ૜ۼ∇܂૜ۼ∇ൣ − ݇଴ଶۼ૜ۼ܂૜൧ୖయ ݀Rଷ (12) 

 ሾۿ૚ሿ = ௠ߣ݇݅ ׬ Ф௠ۼ૚݀Γ୅୻ఽ ,				(݉ = 0,1,⋯ ,݉ଶ) (13) 

 ሾۿ૜ሿ = ௠ߣ݇݅ ׬ Ф௠ۼ૜݀Γ୆୻ా ,				(݉ = 0,1,⋯ ,݉ଶ) (14) 

ሾۿ૝ሿ = ቂ௜௞ఊ೘ோ + ଵோమቃ ׬ Ψ௠ۼ૜݀Γେ୻ి ,				(݉ = 0,1,⋯ ,݉ସ) (15) 

ሾۻ૚ሿ = ௠ߣ݇݅ න Ф௠Ф௡݀Γ୅୻ఽ ,			 
(݉ = 0,1,⋯ ,݉ଶ; ݊ = 0,1,⋯ ,݉ଶ) (16) 

ሾۻ૜ሿ = ௠ߣ݇݅ න Ф௠Ф௡݀Γ୆୻ా 	 
(݉ = 0,1,⋯ ,݉ଶ; ݊ = 0,1,⋯ ,݉ଶ) (17) ሾۻ૝ሿ = ቂ௜௞ఊ೘ோమ + ଵோయቃ ׬ Ψ௠Ψ୬݀Γେ୻ి   
(݉ = 0,1,⋯ ,݉ସ; ݊ = 0,1,⋯ ,݉ସ) (18) 

Here, N1 and N3 are the global shape functions in 
regions R1 and R3, respectively.  Equation (5) is a set of ݊௧ (= ݊ଵ + 2݉ଶ+݊ଷ + ݉ସ) linear equations, where ݊ଵ and ݊ଷ	are the number of nodes in regions ܴଵ and ܴଷ, and ݉ଶ 
and ݉ସ are the number of modes in regions ܴଶ and ܴସ, 
respectively. Modal amplitudes and the acoustic pressures 	are then found on the solution of Eq. (5)  

The complex intensity may then be found following the 
solution Eq. (5).  In general the instantaneous active and 
reactive intensity may be defined as 

(ݐ)۷  = 0.5Re{ܝ݌∗}ൣ1 + cos2(߱ݐ + ∅p)൧ (19) 

and 

(ݐ)۸  = 0.5Im{ܝ݌∗}	sin2൫߱ݐ + ∅p൯. (20) 

Here, ۷(ݐ) and ۸(ݐ) are the instantaneous active and 
reactive intensity, respectively, ܝ∗ is the complex conjugate 
of the velocity vector ܝ, and	∅୮ is the phase of the pressure.  
In R2 the pressure may then be written as 

,ݎ)ଶ݌  (ݖ =  ଶ|݁௜(ఠ௧ା∅మ) (21)݌|

where 

ଶ|ଶ݌|  = ∑ Φ௡ଶ(ݎ, (ݖ)ሾ߰௡ଶ(ߠ + ߮௡ଶ(ݖ)ሿஶ௡ୀ଴ . (22) 

and 

 ∅ଶ = arctan ቂ∑ ஍೙(௥)ట೙(௭)ಮ೙సబ∑ ஍೙(௥)ఝ೙(௭)ಮ೙సబ ቃ (23) 

with ߰௡(ݖ) = ሾRe(ܣ௡) + Re(ܤ௡)ሿ cos(݇ߣ௡ݖ) 
 +ሾIm(ܣ௡) − Im(ܤ௡)ሿsin(݇ߣ௡ݖ)            (24) ߮௡(ݖ) = ሾRe(ܤ௡) − Re(ܣ௡)ሿ sin(݇ߣ௡ݖ) 
 +ሾIm(ܣ௡) + Im(ܤ௡)ሿcos(݇ߣ௡ݖ).            (25) 

 
Finally, using the momentum equation, the velocity may 

be written as 

ଶఙݑ  = ቀ ଵఘఠቁ ቂ−|݌ଶ| ௗ∅మௗఙ + ݅ ௗ|௣మ|ௗఙ ቃ ݁௜(ఠ௧ା∅), (26) 

with ߪ =  The instantaneous axial, radial and  .ݖ	or	ݎ
circumferential active and reactive intensities can then be 
written as  

(ݐ)ఙܫ  = −ቀ ଵఌ഑ఘఠቁ ቂ|݌ଶ|ଶ ௗ∅మௗఙ ቃ cosଶ(߱ݐ + ∅ଶ),, (27) 

and 
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(ݐ)ఙܬ  = −ቀ ଵସఌ഑ఘఠቁ ቂௗ|௣మ|మௗఙ ቃ sinଶ(߱ݐ + ∅ଶ) (28) 

where ܫఙ(ݐ) and ܬఙ(ݐ) are instantaneous active and 
reactive intensities in the direction ߪ, respectively.  The 
time independent complex intensity may then be calculated 
by dropping the time dependence from equations (19) and 
(20) and substituting in the values for pressure and velocity. 

3 Results and Discussion 
The theoretical predictions are compared here with 

experimental measurements taken in a harmonic (or 
monochromatic) sound field.  The duct studied is 6 m long 
and has a diameter of 150 mm.  The sound source in the 
experiment is a loudspeaker that is positioned behind the 
closed end of the duct and is connected to the duct by a 
narrow tube so that only the open end of the tube penetrates 
the far end (in region R1).  This is so the loudspeaker takes 
on a high acoustic impedance at the (nominally) closed end 
of the duct.  A microflown USP probe [8] is used to 
measure the acoustic pressure and tri-axial components of 
the particle velocity. 

The experimental complex intensity is calculated in two 
ways.  The first technique is that of Heyser [3], which uses 
Hilbert transforms to give 

(ݐ)ࡵ  = ଵଶ ࢛݌ + ଵଶ  ෝ࢛ (29)̂݌

(ݐ)ࡶ  = ଵଶ ࢛̂݌ − ଵଶ  ෝ࢛, (30)݌

where, ݌ and ࢛ is the recorded time history of pressure 
and velocity, and ̂݌ and ෝ࢛ are the Hilbert transform of ݌ and ࢛.  The second technique is that of Schiffrer and Stanzial 
[4] and the real and imaginary parts of the complex 
intensity are called here the radiating and oscillating 
instantaneous intensity, to give 

(ݐ)௥௔ௗࡵ  = ௣మ〈௣࢛〉〈௣మ〉  (31) 

(ݐ)௢௦௖ࡶ  = 〈௣మ〉௣࢛ି௣మ〈௣࢛〉〈௣మ〉 . (32) 

where 〈∙〉 indicates a time averaging process and ۷୰ୟୢ(ݐ) 
and ۷୭ୱୡ(ݐ) are the radiating and oscillating intensity, 
respectively [6].  These two techniques can be used to 
calculate the instantaneous complex intensity, but since 
they are used here in a monochromatic sound field they can 
also be used to recover the steady state response. 

In Figures 2 and 3, the instantaneous active and reactive 
intensity is shown for a location coincident with the exit 
plane of the duct (i.e. at the duct aperture) at an excitation 
frequency of 1 kHz (which lies within the plane wave 
regime of the duct).  It is seen that theory and experiment 
generally show good agreement between one another.  It is 
noticeable that the amplitude of the active intensity is much 
larger than that of the reactive intensity, and this shows that 
most of the energy radiates out of the duct.  In addition, 
from 0 to 2 ms the experimental complex intensity is not 
very stable, due to the initial response of the system; 
however, after this initial period the experimental response 

settles down and good agreement between prediction and 
experiment is observed. 

 

Figure 2: Instantaneous active intensity at 1kHz. 
theory;              , experiment [4];  

                    , experiment [3]. 

 
Figure 3: Instantaneous reactive intensity at 1kHz. 

theory;              , experiment [4];  
                    , experiment [3]. 

 
In Figures 2 and 3 it is evident that the method of 

Schiffrer and Stanzial [4] agrees well with the theoretical 
predictions.  The method of Heyser [3] cleary delivers a 
different interpretation of the sound field, and here it 
appears to act as a running time average for the active 
intensity, and as an upper envelope for the reactive 
intensity.  Thus, Figures 2 and 3 clearly demonstrate that 
the method of Schiffrer and Stanzial is of more use when 
attempting to recover the detailed characteristics of the 
complex intensity sound field within a duct. 

In Figures 4 and 5 the time independent axial active and 
reactive intensity is plotted as a function of the axial 
coordinate z (at a frequency of 1 kHz).  Here, it is evident 
that away from the exit plane of the duct the theoretical 
active intensity is almost constant, whereas closer to the 
duct exit higher order evanescent modes significantly affect 
the sound intensity distribution.  This near field effect is 
also seen in the plot of the reactive intensity.  It is 
noticeable also that good agreement between prediction and 
experiment is generally observed for the time independent 
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intensity, although some oscillation is evident with the 
experimental vales for active intensity. 

 
 

Figure 4: Time independent active intensity 
theory;  * * * * *  , measurement. 

 
 

Figure 5: Time independent reactive intensity 
theory;  * * * * *  , measurement. 

It is interesting to look more closely at the complex 
intensity patterns close to the flange of the duct and so in 
Figures 6 and 7 the predicted active and reactive time 
independent intensity is plotted.  Here, the length of the 
arrow denotes the magnitude of the intensity and in Fig. 6 it 
can be seen that the magnitude of the active intensity is 
almost constant inside the duct, and the intensity vectors are 
all aligned with the z axis.  This is caused by the plane 
wave condtions within the duct and it is only very close to 
the open end of the duct that the active intensity vectors 
take on a small radial component.  It is noted here that at 
the sharp corner between the duct and the flange the 
predicted intensity becomes singular, as the velocity vector 
transfers from being purely axial to purely radial at the 
corner in order to maintain the Neumann boundary 
condition on the wall.  It is the presence of evanescent 
modes at the duct aperture that is responsible for the radial 
component appearing in the active intensity; however, it is 
interesting to note that this effect is much more pronounced 
for the reactive intensity, where the effect of evanescent 
modes is seen to extend much further into the duct.  Thus, it 
appears that evanescent modes play an important role in the 

oscillatory behaviour of the sound field close to the open 
end of the duct.  In Figure 7 the magnitude of the reactive 
intensity outside of the duct is also seen to drop more 
quickly when compared to the active intensity.  This 
indicates that the oscillating energy decays more quickly 
than the travelling energy once sound wave exits the duct, 
which is to be expected as there is no discontinuity or sound 
source present outside of the duct. 

 

 
Figure 6: Time-independent active intensity 

distribution at 1 kHz 

 
Figure 7: Time-independent reactive intensity 

distribution at 1 kHz 

In Figure 7 the reactive intensity is seen to reduce to 
approximately zero at a distance of roughly 44 mm from 
the end of the duct.  This has a physical significance, as the 
reactive intensity vector is normal to the surfaces of 
constant pressure and points in the direction of decreasing 
pressure.  The reactive intensity thus reveals the anti-node 
position of the acoustic intensity for the duct.  This means 
that the end correction for the duct at 1 kHz is given by (0.0858 − 0.045) 0.075⁄ = 0.544, where 0.0858 m is a 
quarter of the wavelength and 0.075 m is the radius of the 
duct.  This value of end correction is close to a value 
0.0525 which may be calculated using plane wave theory; 
the small discrepancy is caused by the fact that the anti-
node position in Figure 7 is influenced by the evanescent 
modes rather than assuming purely plane wave propagation. 
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5 Conclusion 
A hybrid finite element model is used here to compute 

the instantaneous and time independent complex intensity 
within an open ended duct with an infinite flange.  
Theoretical predictions are compared with a “p-u” 
Microflown [8] intensity probe and here good agreement 
between prediction and measurement is observed in the 
plane wave regime of the duct.  Furthermore, it is shown 
that for the experimental measurements the method of 
Schiffrer and Stanzial [4] is the most useful when it comes 
to capturing the complex sound intensity field in the duct, 
whereas the method of Heyser [3] only delivers a rolling 
average of the sound intensity.  Accordingly, it appears 
viable in the future to adopt the method of Schiffrer and 
Stanzial, and later articles [5, 6], to investigate the effect of 
the presence, say, of blockages or other area discontinuities 
such as ductwork systems on the complex intensity field in 
a duct  
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