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In the framework of the Comprehensive Nuclear-Test-Ban Treaty, long range propagation of infrasound through the
atmosphere is investigated using numerical models. The study problem is a cylindrical blast in an inhomogeneous
atmosphere. Vertical profiles of temperature, wind and density obtained during the Misty Picture High explosive
experiment conducted in May 1987 are used. The propagation is simulated using two codes. First, the full 2-D
Navier-Stokes equations are solved with a low-dispersion and low-dissipation finite-difference algorithm initially
developed for aeroacoustics. Second, a nonlinear ray tracing model based on weak shock and locally plane
wave assumptions is used. In this code, the waveform evolves along rays following Burgers’ equation. The
initialisation of the cylindrical blast wave is described for both codes. A benchmark case of propagation is defined
and numerical comparisons are performed. Absorption and nonlinear effects are investigated for both stratospheric
and thermospheric paths. Some limits of the ray tracing model are shown and quantified.

1 Introduction
Infrasonic research is highly motivated by the

Comprehensive Nuclear-Test-Ban Treaty. The International
Monitoring System is developing a network comprising of
sixty barometric stations which should be able to detect a one
kiloton yield explosion anywhere on the globe. Explosion
studies are necessary to evaluate the detection capability
of this network and to develop tools for infrasound record
analysis. In this context, we develop numerical tools to
model the long range propagation of infrasound.

Long range propagation of infrasound is governed
at first order by sound speed and wind variations which
define tropospheric, stratospheric and thermospheric wave
guides. The waveform evolution depends on nonlinear
effects and on atmospheric absorption. For explosions,
nonlinear effects are dominant during the first stage of
the propagation, where shock waves are strong. A 2-D
benchmark propagation problem to study nonlinear and
classical absorption phenomena in the context of long
range atmospheric propagation appears important for the
validation and comparison of different codes.

In this article, we define a 2-D propagation benchmark
problem with atmospheric data and an initial linear energy
source. We present the Navier-Stokes equations solver with
a finite-difference algorithm and the weakly nonlinear ray
tracing method. Shock waves generated by the source are
analysed at short range.

2 2-D propagation problem
The propagation benchmark is designed to study

nonlinear and classical absorption phenomenon associated to
acoustic wave propagation at long range in the atmosphere.
Accordingly, the propagation problem is defined as the
resolution of Navier-Stokes equations. The ground is an
adiabatic rigid and flat surface. The atmospheric model and
the source model are defined below.

2.1 Simple atmospheric model
To define a simple 2-D benchmark propagation reference

case, we assume that the air is a perfect gas with a constant
specific ratio γ = 1.4 and a constant molecular weight
M0 = 28.85e-3 kg/mol. Atmospheric sound speed c0
and zonal u0 wind are functions of altitude z, defined by
cubic spline interpolation (see appendix 5.2 and fig. 1).
Atmospheric temperature is computed from sound speed:
T0 = M0c2

0/γR, with R the perfect gas constant. Hydrostatic
equilibrium is used to compute the atmospheric pressure p0
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Figure 1: Atmospheric sound speed and zonal wind profiles
(see appendix 5.2).

and atmospheric density ρ0:

∂p0

∂z
= −ρ0g = −

M0 p0

RT0
g,

assuming that gravity g is constant at 9.81 m/s2. This
equation is numerically integrated from the ground z = 0
with ground pressure pg of 101325 Pa.

Viscosity is given by Sutherland’s law:

µ(T ) = µS

(
T
TS

)1/2 1 + S S /TS

1 + S S /T
,

with S S = 117 K, µS = 1.18192e-5 Pa/s and TS = 293.15 K.
Bulk viscosity is defined as µb = 0.6µ and the thermal
conductivity coefficient is κ = µcp/Pr with a constant
Prandlt number Pr = 3/4.

Sound speed and wind profiles of fig. 1 are defined
to verify both static and dynamic atmospheric stabilities.
Static stability is obtained if the Brunt-Väisälä frequency
N is always defined (i.e. N2 > 0) and dynamic stability is
obtained for a Richardson number Ri above approximately 1.

N2 = −
g
ρ0

∂ρ0

∂z
−

g2

c2
0

=
γg
c2

0

∂c2
0/γ

∂z
+
γ − 1
γ

g
 , (1)

Ri =
N2∣∣∣ ∂u0
∂z

∣∣∣2 . (2)

Profiles of N and Ri as represented at fig. 1. Both stability
criteria are well satisfied. These atmospheric profiles
are smoothed versions of the Misty Picture atmospheric
profiles [6]. Observation of sound speed and wind profiles
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Figure 2: Brunt-Väisälä frequency N and Richardson
number Ri of the atmospheric model.

(fig. 1) shows that a stratospheric wave guide is defined
toward the West whereas only thermospheric wave guide
exists for propagation toward East or without wind.

2.2 Source model
The idealised source is designed to be easily initialised

in the finite difference methods and to mimic a point blast
behaviour. The source centre is located on the ground. In
two dimensions, the equivalent linear source energy is noted
E1 (J/m). The source is an initial Gaussian overpressure
distribution [4]:

p(x, z, t = 0) − p0(x, z) = Ae− ln 2 x2+z2

B2 , (3)

with B Gaussian half-width and A amplitude of the source
defined by:

A = (γ − 1)E1
ln 2
πB2 .

As the source is located on the ground, the total energy
E1 is twice the spatial integral of internal energy. Density
and velocity in the source area remain unchanged, with
atmospheric values.

In our numerical application, the Gaussian half width is
set to 300 m and the linear source energy at 183 GJ/m (i.e. ≈
44 tTNT/m and A = 1.8e5 Pa). This energy has been chosen to
give a maximum overpressure of approximately 3000 Pa at
10 km.

3 Numerical acoustics propagation
models

In this section are presented the two models used
to simulate the propagation of acoustic waves including
nonlinear effects and absorption. The first model is a direct
numerical resolution of Navier-Stokes equations using finite
difference numerical scheme. The second is a ray tracing
method with the resolution of the Burgers’ equation.

3.1 Finite difference method
The full 2-D Navier-Stokes equations are solved on

a regular Cartesian grid with an optimised high-fidelity

numerical procedure based on explicit spatial finite
differences and Runge-Kutta time integration [12, 7].

Away from boundaries, spatial discretization is
performed with explicit fourth-order eleven-point centred
finite differences optimised to minimise dispersion for
wavenumbers discretized by between 4 and 32 grid
points [2]. Close to boundaries, be they solid walls
or radiation conditions, optimised explicit non-centred
differencing schemes are used [1]. The non-centered
differencing schemes are all based on eleven-point stencils,
including the one-sided stencil used for wall points.
Time integration is performed with a six-step second-
order optimised low-storage Runge-Kutta algorithm [2].
Characteristics regarding dispersion and dissipation for the
spatial differencing schemes, filters, and the time integration
scheme can be found in previous papers [2, 1]. This solver
has been validated on reference viscous flow configurations
and on a demanding multi-body acoustic scattering test-case,
yielding results in good agreement with experimental and
analytical data [10, 11].

The schemes’ properties mean that the behaviour of
waves discretized by at least four points per wavelength is
accurately reproduced, with very low levels of dispersion
and dissipation, for frequencies such that ω∆t ≤ 1.25 × π.
The determination of the computational time step is based
on a CFL criterion, CFL= cmax∆t/∆x = 0.75, where cmax

is the largest value of the speed of sound in the atmosphere
modelled here.

Spatial filtering is carried out to ensure stable
computations. An explicit 11-point filtering stencil is
designed to remove fluctuations discretized by less than
four grid points per wavelength, while leaving all larger
wavelengths effectively untouched [2]. As the differencing
schemes used near boundaries are asymmetric, their effective
wavenumbers have an imaginary part which leads to them
being unstable for very high frequencies. It is therefore
essential to use them in conjunction with appropriate highly
selective filters, and to this end, we use the filters described
in Berland et al [1], which also selectively damp fluctuations
with fewer than four points per wavelength. Filters for grid
points more than two points away from a boundary are
built on eleven-point stencils, while the last and last but
one point stencils up to two points away from a boundary
are built respectively on four and seven points. Thus at the
wall, in the x direction, the centred eleven-point filter is
used, whereas in the y direction the family of non-centred
filters is applied. At the lateral radiation boundaries in the
x and y directions, Tam and Dong’s 2-D far-field radiation
condition [14] is used.

In addition a non-linear shock-capturing filtering [3] is
employed to avoid potential problems for standard finite-
differences time-domain acoustic solvers, which are not
designed to cope with steep wave fronts and which can lead
to Gibbs oscillations.

3.2 Ray tracing code
The ray tracing method models the propagation of

acoustic waves in the geometrical acoustic limits and in the
weak shock approximation. For a detailed presentation of
the ray tracing code and its validation, we refer the reader to
Gainville & al. [5, 6].

The ray tracing code solves ray tracing equations and
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geodesic elements equations to compute ray trajectory and
signature amplitude at first order. Pressure signatures evolve
along rays following a generalized Burgers’ equation which
takes into account nonlinear effects and classical absorption.
The pressure signature p′ = p − p0 is normalised using the
wave action conservation law as:

u(ξ, t) =

 ν

kρ0c3
0

1/2

p′ (x(t) + ξn/k, t) , (4)

where ξ is a scaled distance, t is the time curvilinear abscissa
along the ray and ν is the convected volume [5] which is
proportional to the classical ray tube section [13]. x(t) is the
trajectory of the wavefront and k = kn the local wave vector.
The Burgers’ equation is solved using a Fourier Galerkin
spectral scheme:

∂ũ(q, t)
∂t

= −Γ(kq, t)ũ − ı
1 + γ

2

(
c0k
ρ0ν

)1/2 kq
2

(̃u2), (5)

where kq is the acoustic wavelength. ũ and ũ2 are
respectively Fourier transforms of u and u2. The linear
attenuation coefficient is:

Γ(kq, t) =
µ

2ρ0

(
4
3

+
µb

µ
+
γ − 1

Pr

)
k2q2. (6)

Variables depend on the underlying atmospheric state at
the position x(t). Additional specific developments are
performed to pass through caustics [5].

Rays are emitted from the source where the wavefront
is assumed to be spherical. The waveform signature is
initialised at a distance rref where the shock is assumed
weak. This distance should be larger than approximately
2(E1/p0)1/2 [8]. As a first stage of the comparison between
codes, the ray tracing model is initialised using a waveform
given by the finite difference code. This waveform is taken
on the ground at the distance rref from the source. The
connection between codes is performed for variables p′/p0
as a function of time t. To take into account atmospheric
stratification effects, the waveform amplitude is scaled using
empirical law of equation (7). In this law, the atmospheric
pressure at the observed point should be used. This
approximation is discussed in the following section and in
[8, 9].

3.3 Shock and acoustic waves at short range
The initial overpressure distribution source produces

shock waves which propagate at long range in the
atmosphere. In this section, we analyse generated
shock waves and effects of the atmospheric pressure
exponential decay at short range. We analyse a finite
differences simulation performed with an isothermal
stratified atmosphere and the source defined above. With a
linear source energy of 183 GJ/m, the source characteristic
radius is r0 = 1345 m, using atmospheric pressure at the
source p0s. We additionally define a local characteristic
radius r0l = (E1/p0)1/2, with p0 the atmospheric pressure
at the point of interest. Then, for the isothermal stratified
atmosphere, r0l evolves from r0 at ground level to 3000 m at
15000 m (10r0) height.

The Gaussian overpressure distribution source generates
well formed shock waves (fig. 3). These signatures have
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Figure 3: Scaled waveform signature as function of time (s)
at distances 2r0 and 10r0 for three elevations.
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Figure 4: Scaled maximum overpressure as a function of the
scaled distance r/r0l for three elevations. The local source
characteristic distance is used: r0l = (E1/p0)1/2, with p0 at

point of interest. Empirical law of Korobeinikov [8] is
indicated.

the usual shape of explosion shock waves. In figure 3,
signatures are drawn for three elevations (horizontal, 45o

and vertical) and at two distances (2r0 and 10r0). Influence
of the atmospheric pressure on the signature shape is very
small.

In figure 4, the scaled maximum overpressure
(p2 − p0)/p0 obtained by simulations is plotted, for
three elevations. The distance is scaled with the local
characteristic radius r0l. This scaled distance r/r0l is well
adapted since the three curves are very close to each other.
Comparison to the homogeneous empirical law (7) is also
performed. For r < 2r0l, the shock wave has not yet been
formed and the simulation does not agree with empirical law.
For r > 2r0l, the dump of simulated maximum overpressure
and of the empirical law is the same, but a shift by a factor
1.1 exits. It is due to smoothing of the signature by the
numerical method and to the spatial source distribution. Note
that the shock becomes weak for approximately r > 2r0l.

The positive phase duration (see figure 5) and the arrival
time of the shock t0 (see figure 6) increase with the scaling
distance r/r0. Their evolution are slightly dependant of the
atmospheric pressure.

To conclude this analysis, we note that the initialisation of
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Figure 7: Waveform signature for the ray tracing code (red)
and the finite-difference code (blue) at 76.5 km.

the signature in the ray tracing method at a distance rref = 2r0
is consistent with both the weak shock approximation and
the formation distance of the shock from the initial Gaussian
distribution.

3.4 Codes comparison: first results
The waveform signature evolves during propagation

because of nonlinear and absorption effects. Waveform
signatures obtained at 76.5 km with both codes are presented
at figure 7. The same N-wave shape is observed and both
amplitude and duration appear similar.

4 Conclusion
In this article, a 2-D long range propagation benchmark

is defined. It allows the comparison and validation of codes
for wave guide atmospheric effects, nonlinear effects and
classical absorption effects. This case is relatively simple
with smooth and stable sound speed and wind vertical
profiles. The comparison of finite-difference resolution
of Navier-Stokes equation with the weakly nonlinear ray
tracing code shows good agreement.

5 Appendix

5.1 2-D Point blast empirical law
Point blast problem analysed in homogeneous media

have empirical solutions [8] for the maximum shock
pressure p2:

p2 − p0

p0
=


4γ
γ+1

(
(1 + 16γαbZ2)1/2 − 1

)−1
, 0 ≤ Z ≤ 2

4γ
γ+1

(
(1 + 16

√
2γαbZ3/2)1/2 − 1

)−1
, 2 ≤ Z

(7)
with Z = r(E1/p0)−1/2 and αb = 0.92 for γ = 1 [8].

5.2 Simple atmospheric model data
Sound speed and zonal wind profiles are defined by cubic

spline interpolation of table 1 data. Second derivatives of
the table are obtained by natural cubic spline interpolation of
values. Cubic spline interpolation is defined as follow: for z
∈ [zi, zi+1], with b = z−zi

zi+1−zi
and a = 1 − b:

v = avi + bvi+1 +
1
6

(
(a3 − a)v′′i + (b3 − b)v′′i+1

)
(zi+1 − zi)2.
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