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Time-reversal can be used to locate unknown acoustics sources in a medium at rest or in a flow. This method is
based on the time-reversal invariance of the wave propagation equation. A series of time-reversal simulations has
been performed with a ’mirror” in a two-dimensional free space environment. The waves propagation is simulated
by solving the linearized Euler’s equations. The results permit to characterize the time-reversal method in terms
of spatial resolution and localisation error by analyzing the focal spot width for each simulation. In this paper,
mathematical expressions of the time-reversed pressure and approached formulas for the resolution are derived
following the diffraction theory and the phase conjugation in two and three-dimensional cases. Numerical and
theoretical results are then compared. The focal spot width is then fully determined by two ratios involving three
parameters : the array-source distance,the array length and the wavelength.

1 Introduction

The continuous increase in air, railway and car transports
in the last three decades has led to a strong development
of imaging and array processing methods such like beam-
forming and holography to identify sound sources respon-
sible for environmental noise. In the late nineties, Mathias
Fink et al. [6, 7] have developed a sound source localiza-
tion method based on the Time-Reversal (TR) technique. It
relies on the invariance of wave equation when time is re-
versed (+ — —f). This property is used to back-propagate
waves recorded by a closed or open array of sensors so that
the wavefronts focus on the source position. Time-reversal
is an extension of a former method called phase conjugation
for non-monochromatic sources [7]. These two techniques
has been developed for applications in medecine (ultrasonics
field), geophysics, underwater acoustics,etc. One of the nu-
merous interests in these methods is that phase-compensation
between each sensor is naturally carried out unlike beam-
forming.

However the TR technique has been rarely applied to
aeroacoustics. In this case, due to the presence of a flow,
the convected wave equation needs to be used. In order to
achieve the Time-Reversal technique, the flow has to be re-
versed since the Green’s function adapted to this configura-
tion is no longer reciprocal. Recently, Deneuve et al. [12]

have established the possibility of locating aeroacoustic sources

by solving the Euler equations. The technique has also been
applied experimentally by Padois et al. [9, 11]: after record-
ing experimental data with a microphone array, the Linear
Euler Equations (LEE) were solved numerically to achieve
the time-reversed simulation allowing the localization of the
noise source. In order to get a better understanding of the po-
tentiality of the technique in the context of flow-noise appli-
cations, the objective of this study is to assess the geometrical
configurations favorable to an optimal resolution and local-
ization, and the effect of the flow on the resolution. Reso-
lution is indeed a crucial accuracy criteria that evaluates the
separation power of any imaging technique.

In section 2, a phase-conjugation model is proposed to
assess the resolution of the technique in a theoretical way,
while the numerical model is presented in section 3. The
results in terms of localization error and resolution are then
presented in section 4, before some concluding remarks (sec-
tion 5).

2 Theoretical model and definitions

2.1 Time-reversal and phase conjugation

The Time-Reversal (TR) method requires two steps to be
performed (Figure 1): a recording step and a re-emission
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step. Firstly, the acoustic signal generated by an unknown
source is recorded by an array of transducers within a period
T. The received signal is then re-emitted in backward time
(virtually or with an array of transducers) starting with the
last recording. In other words, the signal is time-reversed,
like a backward-played film. As a result, the wavefronts
are gradually reconstructed and finally focused on the initial
source position. This operation is mathematically validated

Array of transducers

Array of transducers

~< Source to locate

\ / Wavefront
4

—————————
(a) ®)

Figure 1: (a) First step of time-reversal: recording (b) Second
step of time-reversal: re-emission

by the time-reversal invariance of the propagation equation
[7] in the case of a non-lossy medium at rest. In the case of a
one-dimensional uniform flow uy, the propagation equation
for the pressure fluctuation p’ is:

0, ey

where ¢ is the celerity of sound. With this equation, time-
reversal is carried out by replacing ¢ by T' — ¢ and ugy by —uy.
Time invariance is allowed by the second-order derivatives
with respect to time.

Two kinds of arrays can be used to record the signal in
the first step of time-reversal: a array enclosing the source,
also called cavity, as shown in Figure 1 or an open array, also
called time-reversal mirror (TRM). The time-reversal cavity
is the optimal solution to get all the information necessary
to locate the source [7]. However, this kind of array cannot
be used for a periodic source. Indeed, the energy conser-
vation imposes that during the time-reversal the converging
wave is followed by a diverging wave [8]. Therefore, the su-
perimposition of converging and diverging waves creates an
interference phenomenon. That is why detecting a periodic-
source position with a cavity is difficult. Moreover, a closed
array would be very expensive in a real experiment since a
large number of transducers is required (increasing with the
source frequency to respect the Shannon criteria).In order to
avoid those issues and get closer to real conditions, the study
is restricted to a time-reversal mirror (linear array of trans-
ducers). The diverging wave will still exist but it will not in-
terfere with the converging wave generated only by one open
array.

a / 7’
(07 +uy - V)2p - gV?
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Mathematically, in the case of monochromatic sources,
time-reversal is equivalent to phase conjugation since the tem-
poral Fourier transform of a time-reversed signal is the con-
jugate of this signal [7]. In this paper, the phase conjugation
theory is used to describe the acoustic pressure field first in a
medium at rest, and then in a medium with a one-dimensional
uniform flow parallel to the TRM. The propagation environ-
ment is free.

2.2 Models for phase conjugated field

Here, the phase-conjugated field produced by a Time-
Reversal Mirror in the case of a point-like harmonic monopo-
lar source is investigated. The medium of propagation is two-
dimensional and free.

Medium at rest

In first approximation, the TRM can be compared to a
continuum of monopolar sources that re-emits in a reversed
way the signal received from the unknown source. In terms

of phase conjugation, the mirror conjugates the received Fourier

transform of the signal. The resulting field for a continuous
array is [2]:

Ppu(r.0) = f Gy 10) - oot r).drs, (2)
TRM

where

G (T o) = 5 Hy(kira = ) 3)
0

is the Green’s function in a free space environment without
flow for a harmonic source of pulsation w at position r, emit-
ting at position ry and G , its conjugate, H(()l) is the Hankel
function of order 0, k is the wavenumber. The vector r; refers
to the position of each transducer, ry is the source initial po-
sition and “TRM” denotes an integration over the mirror ex-
tent.

. M(x,y)

Source

S(xo,y0) Time-Reversal Mirror

L ; Mi(xi,yi)

Figure 2: Monopolar source and TRM in a uniform flow:
rectangular and polar coordinates

Medium in a uniform flow

Here, a stationary uniform one-dimensional flow ugy par-
allel to the the array is added to the free space environment.
To perform the phase conjugation, this flow has to be re-
versed. Thus the pressure field is given by:

Po(r,w) = f G (0 E0)G o (T ro) drs, (4)
TRM
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where G, ,,(T,, I'p) is the Green’s function in a free space en-
vironment with a uniform flow ug parallel to the TRM for a
harmonic source of pulsation w at position r, emitting at po-
sition rp. In rectangular coordinates (as shown in Figure 2),
G, 1s given by [5]:

i exp (ikl#w(xi - xo))

Gu,w =
4ct 1 - M?
k(i = x0)? + (i = y0)>(1 = M?)
(1)
Ho 1= M ®

where M is the Mach number defined by M = [ug|/co. The
coordinates (xg, yo) refers to the source position, (x;,y;) cor-
responds to the transducers position and (x,y) refers to an
observation point. The Green’s function G_,,, related to the
reversed flow is obtained by replacing M by —M in (5).

2.3 Spatial resolution

One of the main difficulties in detection and imaging meth-
ods (beamforming, microscopy, holography, photography, etc.)
is the separation of two close objects. Indeed, for an imaging
device, the image of a point-like object is not really a point
but a spot (often called focal spot) resulting from diffraction
effects. Thus it is obvious that the larger is the spot, the more
difficult is the separation of two point-like objects. The spa-
tial resolution is defined as the required minimal distance be-
tween two objects to detect them separately. The commonly
used criteria is the Rayleigh’s criteria : the peak of the first
focal spot peak must fall on the first zero of the second focal
spot. Quantitatively, if A is the maximum magnitude of the
focal spot, the resolution is the spot width at %.

1 Dig
J
Dtr

Y

[

Array

X

Figure 3: Focal spot with a TRM : transverse resolution (D,,) and
longitudinal resolution (Dy,)

The spatial resolution notion can then be introduced in
time-reversal. In the case of a closed cavity, the resolution is
limited only by the wavelength [7]. The diffraction is caused
by the superimposition of the converging and the diverging
waves during the time-reversal. In the case of a time-reversal
mirror, the focal spot width is linked to the array specifica-
tions (length, distance between each transducers), the array-
source distance and the wavelength. It is important to note
that there is a privileged direction since the array is one-
dimensional. Two spatial resolutions can then be defined for
a focal spot : the transverse resolution (along the array) and
the longitudinal resolution (perpendicular to the array).

Mathematical formulas exist to calculate the spatial res-
olutions from the above-cited parameters. In far-field (R >
kL?/2), Kim et al. suggest the following expression for the
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transverse resolution [1] in the case of a source in the central
axis:

R
Dy = 0.8861. (6)

where R is the distance between the array and the maximum
of the focal spot. He also proposes a mathematical expres-
sion (in the case of a source in the central axis) for the longi-
tudinal resolution, considering the phase difference from the

focal spot center:
R\2
Dlg = 6/1 (—) .

L

Finally, a one-dimensional linear array can introduce lo-
calization errors, particularly in the normal direction (see
section 4.1). That is why the spatial resolution must be cal-
culated at the position of focal spot maximum, which can be
more or less different from the real source position.

In the next section, time-reversal numerical simulations
with a harmonic monopolar source in a uniform flow and a
linear array are described. The results in terms of resolution
and localization errors are compared to the theory and dis-
cussed.

(7

3 Numerical model for time-reversal
in flows

Propagation of waves can be simulated by solving the
Linearized Euler Equations (EEL) [5] obtained from the con-
servation of mass, momentum and energy. Then each quan-
tity (pressure, density and velocity) is split into mean and
fluctuating quantities, denoted respectively by the subscript
(.)o and the symbol (.)’. Finally, the EEL are obtained by
writing the conservation equations at the first order:

oU OE OF
—+—+—+H=S8, 8
ot Ox Qdy ®)
where :
P pou’ + p'ug
U — p()u’ , E — Polt Ug +’p , (9)
Pov PolUgV
P p'ug +ypou’
pov' +p'vo
= PoU’vo (10)
povoV' + p’

P'vo +ypoV

The vector U contains the three main quantities (density,
pressure and velocity), E and F are the fluxes terms, S is the
source term. Finally, H contains the mean flow gradients and
its expression is specified in reference [5]. The time-reversal
is then done by replacing the time variable t by T — ¢ (T is
added to ensure the causality) and the velocity components
(u,v) by (—u, —v).

A series of time-reversal simulations have been performed
with a known source in a two-dimensional space. The propa-
gation in a free-space environment was carried out by solving
the Linearized Euler Equations. Spatial derivatives were cal-
culated with a dispersion-relation-preserving finite difference
scheme (order 4) [4] and time derivatives were computed
with a Runge-Kutta scheme of order 4. The main simula-
tion parameters are presented in table 1. Two sizes of domain
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Domain size 200 x 310, 200 x 500

Ax 1
Ay 1
CFL 0.75
At 0.75
Source magnitude 0.5
Source wavelength 10
Mach number [0,0.1,0.2,0.3,0.4,0.5]
Number of iterations [940,1280]

Table 1: Time-reversal simulation parameters

were used, depending on the array-source distance. In all fig-
ures, spatial resolution and distances are nondimensionalized
according to wavelength A. The general procedure for carry-
ing out the time-reversal simulation is detailed in references
[9, 11].

4 Results

Here, numerical and theoretical results concerning the er-
ror of localization and the spatial resolution are compared
and investigated. Theoretical results are obtained by com-
puting the integrals (2) or (4) with the Simpson’s method.
For all simulations, the source is on the central axis of the
TRM.

4.1 Localization error

A time-reversal mirror does not surround the source to be
located. Thus, there is an inherent lack of information in the
normal direction, as pointed out in the previous section. As
a result, some errors in terms of localization can appear in
some configurations, according to the array-source distance
and the length of the array. In this section, the source is on the
array central axis so that the localization error is only along
the y-axis. The distribution of the root mean square of the
pressure obtained from the time-reversed is computed. The
source position is then estimated by searching for the maxi-
mum of this distribution (within the focal spot). The distance
R between the array and the maximum of the focal spot is
called distance of focalization. The array-source distance is
noted Ry.

Figure (4) shows a distribution of acoustic pressure root
mean square obtained by time-reversal along x and y-axis.
The source is at position (0, 0) and the ratios Ry/A and L/A
are set to 15.5. Figure (4b) shows that the localization error
does not exceed one wavelength.

Figure (5) shows the evolution of the localization error
&, along y-axis as a function of Ry/L for a Mach number
equal to 0, 0.1, 0.3 and 0.5. Theoretical and numerical re-
sults are very close, which validates the numerical approach.
For Ro/L ratios greater than 1, &, increase almost linearly.
As a result, for a proper localization of the source, L must
not exceed 1.5Ry. It is also interesting to note that the error
localization decreases with the flow velocity (which is paral-
lel to the array).

4.2 Spatial resolution

Here, some results about spatial resolution with and with-
out flow are presented and discussed. The numerical results
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Figure 4: Distribution of acoustic pressure root mean square
obtained by time-reversal, Ry = L = 15.5A. The cross indicates the
source position, the circle corresponds to the peak of the pressure
field and €, is the localization error along y-axis. (a) Global view

and (b) magnification.

25
20¢

e /A

Figure 5: Localization error €,/ A along the y-axis as a function of
the array-source-distance-array-length ratio. The crosses
correspond to the theoretical results and the squares correspond to
the simulation results. In green, the Mach number M is equal to 0,
in blue, M = 0.1, in red, M = 0.3 and in black, M = 0.5.

are obtained from the profiles of the normalized root mean
square of the pressure and the theoretical results are obtained
from the normalized profiles of pressure Fourier transform
by computing integrals (2) and (4).

Medium at rest

Figure(6) shows the pressure profiles along x-axis and
y-axis at the pressure field peak. The source is at position
(0,0). The ratios Ry/A and L/A are equal to 15.5. As the ar-
ray has a finite aperture, side lobes due to diffraction appear
besides the main lobe. One can note that only the x-profile is
symmetrical. Numerical and theoretical results give exactly
the same main lobe width (thus the same resolution) and the
same number of grating lobes. These profiles are used to
measure the transverse and longitudinal resolutions. Figure
7 present the theoretical and numerical results for transverse
and longitudinal resolutions. The array length is fixed at
L = 15.51 and the results are plotted as a function of the
focalization distance. Again, the simulations results are very
close to those obtained from Eq. (2). Moreover, concerning
the transverse resolution, although simulations have not been
carried out in the far-field conditions suggested in [1], the ap-
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Figure 6: Medium at rest: pressure profiles at the field peak along
(a) x-axis and (b) y-axis for Ry/A = L/A = 15.5. The black curve
corresponds to the theoretical profile and the red curve
corresponds to the simulation results.
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Figure 7: Medium at rest: (a) transverse resolution and (b)
longitudinal resolution as functions of focalization distance r for
L/A =15.5. (+) theoretical results obtained with Eq. (2), (O)
simulations results, (x) resolutions obtained with Eq. (6) and Eq.
(7), respectively for (a) and

proximated formula (6) does not differ from more than 1/2
from the exact calculation. Conversely, the mathematical ex-
pression of the Eq. (7) for the longitudinal resolution leads to
an error that can reach 50% of the exact calculation. Finally,
one can notice that longitudinal focal spot width increases
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more rapidly, which is explained by the one-dimensional ge-
ometry of the array.

Medium in a uniform flow

A series of simulations has bee run with a one-dimensional
uniform flow parallel to the array for Mach numbers 0.1 <
M < 0.5. The source is at position (0,0). Effects of this
configuration on spatial resolution are investigated. Figure
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Figure 8: Medium in a uniform flow: (a) transverse resolution
and (b) longitudinal resolution as functions of the Mach number
for Ry/A = L/A =15.5. Black crosses refers to theoretical results
and red crosses correspond to simulations results.

8 shows the evolution of transverse and longitudinal reso-
lutions as a function of the Mach number (Figure 2). The
theoretical and numerical results are very close and show
that transverse and longitudinal focal spot widths decrease
with the flow velocity. The improvement in resolution from
M =0to M = 0.5 is about 30%. The increase in the Mach
number probably results in an increase of the effective aper-
ture of the array, improving the resolution of the localization.

5 Conclusion

In this study, time-reversal simulations have been achieved

with and without flow for a monopolar harmonic source recorded

by a Time-Reversal Mirror. The transverse and longitudi-
nal resolutions have been measured and compared to models
given by phase-conjugation theory and gives very close re-
sults. In a medium at rest, transverse resolution increases
linearly according the focalization distance and is close to
the far-field approximation given by S. Kim et al.. Longi-
tudinal resolution increases in a parabolic way, as predicted
by Eq. (7). To keep a localization error perpendicular to
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the TRM lower than one wavelength, the array-source dis-
tance must not exceed the array length. Moreover, accept-
able transverse and longitudinal resolutions are obtained for
ratios Ry/A < 15.5. The effect of a flow parallel to the array
has then been investigated. It has been observed that the lon-
gitudinal and transverse resolution tend to decrease when the
flow Mach number increases, which is probably the result of
an increase of the effective aperture of the array.
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