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This study deals with identification and characterization of acoustic sources in flows. Analysis of aeroacoustic

noise generation and propagation often requires huge amount of data. Here, a versatile method called Complex

Variable Methods (CVM) is proposed. It is a powerful tool dedicated to analyze numerical simulations by adding

a small imaginary part to variables and parameters, without post-processing. Depending on the initialization of

these imaginary parts, CVM provide different informations. These methods are applied to the linearized Euler’s

equations, and illustrated with numerical simulations showing that it can be efficiently used to get the sensibility

to various parameters or to distinguish and follow the acoustic part in the total fields.

1 Introduction
The reduction of noise level for automotive vehicle pas-

sengers has become a priority for car manufacturers. A part

of this noise originates from the flow. Indeed, there are dif-

ferent type of sources due to flows [1, 3]. In this context, it is

interesting to identify and to characterize acoustic sources in

flows. Then, it’s important to develop some original tools

aimed at analyzing and tracking acoustic waves. Follow-

ing these considerations, some new applications of Complex

Variable Methods (CVM) allowing the resolution of both is-

sues are proposed in this paper.

Complex Variable Methods are mathematical methods ai-

med at working with complex numbers. These methods was

initially introduced by Lyness and Moller [7] to compute the

derivative of an analytical function. It consists in adding an

imaginary part to the real variable of the function. Then, if

the added imaginary part is small enough, the imaginary part

of the function is directly proportional to the derivative of

the function[9]. The order of precision depends only on the

small parameter introduced in the imaginary part. This tech-

nique has been recently extended to numerical simulations

for various applications [4, 6, 11, 12]. In these applications,

it was used to compute the sensibility of a chosen parameter

or variable. Briefly, it consists in changing the real variables

involved in numerical simulations into complex variables by

adding a small imaginary part to the real variables. Then, the

great advantage of this method is that the sensibility analysis

is performed during the numerical simulation by investigat-

ing the imaginary part of the solution [4, 6, 11, 12], without

post-processing. Moreover, the interest of such methods re-

lies on some particular applications for which it allows the

tracking of a particular event. This last result will be empha-

sized in the following.

Here, CVM are tested to elucidate the acoustic wave prop-

agation through a flow. Then after presenting the reference

case, a theoretical analysis of CVM is given emphasizing its

potential not only for sensibility analysis but also for track-

ing a particular event. Two applications of CVM are then

presented demonstrating 1) their interest to perform sensibil-

ity analysis and 2) their effectiveness to track the acoustic

part of flows.

In the next section, the use of complex variables to ana-

lyze the acoustic part of an aeroacoustic field is theoretically

presented. Numerical applications, based on multiple acous-

tic sources and a flow composed by a Rankine vortex, are

then performed to validate the method.

2 Sound analysis using Complex Vari-
ables Method

The purpose of this study is to analyze the propagation

of acoustic waves in a flow. In order to present the method

of complex variables analytically, we restrict the study to the

case of a stationary flow. In this case, the acoustic part is

governed by the linearized Euler’s equations[2, 8]:

∂ρa

∂t
+ ∇. (ρava + ρ0va + ρav0) = M,

ρ0

(
∂va

∂t
+ v0∇.va + va∇.v0

)
+ ρav0∇.v0 + ∇pa = F,

∂sa

∂t
+ v0∇sa + va∇s0 = 0,

pa − c2
0ρa − Υsa = 0, (1)

where

p(x, t) = p0(x) + pa(x, t),
ρ(x, t) = ρ0(x) + ρa(x, t),
v(x, t) = v0(x) + va(x, t),
s(x, t) = s0(x) + sa(x, t),

are pressure, density, velocity and entropy respectively, split

into a stationary part (indexed by 0) and an acoustic distur-

bance (indexed by a). M is a mass injection term and F
is a force injection term. c0 is the velocity of sound and

Υ =
(
∂p
∂s

)
ρ
.

In order to use Complex Variable Methods (CVM), it is

first necessary to add a small imaginary part to flow variables

as well as parameters that are explicitly involved in the sys-

tem 1:

φ̄0(x) = φ0(x) + iεφ0I(x),

φ̄a(x, t) = φa(x, t) + iεφaI(x, t),
M̄(x, t) = M(x, t) + iεMI(x, t),
F̄(x, t) = F(x, t) + iεFI(x, t),

c̄0 = c0 + iεc0I ,

Ῡ = Υ + iεΥI . (2)

where φ represents the different flow variables:

φ = p, ρ, v, s (3)

and ε is an arbitrary small parameter (ε << 1). Com-

plex variables are denoted with an overbar. Introducing these

complex variables and parameters in the system 1, one ob-

tains a complex variables system that can be divided into two

systems of equations associated with the real part and the

imaginary one respectively. The first one is equal to the ini-

tial Euler equations system 1 but with a precision of ε2:
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∂ρa

∂t
+ ∇. (ρava + ρ0va + ρav0) = M + O(ε2),

ρ0

(
∂va

∂t
+ v0∇.va + va∇.v0

)
+ ρav0∇.v0 + ∇pa = F + O(ε2),

∂sa

∂t
+ v0∇sa + va∇s0 = O(ε2),

pa − c2
0ρa − Υsa = O(ε2), (4)

The second one, related to the imaginary part of the whole

system is:

∂ρaI

∂t
+ ∇. (ρaIva + ρ0Iva + ρaIv0) +

∇. (ρavaI + ρ0vaI + ρav0I) = MI ,

ρ0

(
∂vaI

∂t
+ v0∇.vaI + v0I∇.va + va∇v0I + vaI∇v0

)
+

ρaIv0∇.v0 + ρ0I

(
∂va

∂t
+ v0∇.va + va∇v0

)
+

ρa (v0∇.v0I + v0I∇.v0) + ∇paI = FI + O(ε2),

∂saI

∂t
+ v0∇saI + v0I∇sa + vaI∇s0 + va∇s0I = 0, (5)

paI − 2c0c0Iρa − c2
0ρaI − ΥI sa − saIΥ = O(ε2).

This imaginary system describes the evolution of the imag-

inary part of fields. These equations provide a way to carry

information on the real equations. Indeed, depending on the

choice and the nature of imaginary variables and parameters

imposed initially and at the boundary computational domain,

the solution of the imaginary equations provide different so-

lution that can be related to various investigations. In the

following, it is demonstrated that CVM allow:

• to compute the sensibility to a chosen parameter,

• to track an acoustic wave through the flow.

2.1 Sensibility analysis
The sensibility analysis of a specified parameter onto the

variable consists in analyzing the impact of changing this

parameter onto the solution of previous equations, for each

time step. Such sensibility analysis can be performed by

computing the partial derivative of each variable (here φa =

pa, ρa, va, sa) of this parameter called α:

φαa =
∂φa

∂α
. (6)

α can be a numerical parameter (related for instance to the

computational domain (mesh) or to the numerical schemes,

. . . ) or a physical parameter (such as the size of an obstacle,

the velocity of flow, the frequency of a wave, . . . ).

φαa can also be determined by solving the so-called equations

of sensibility. These are defined as the partial derivatives of

the initial equations (system 1) relative to α, as follows:

∂

∂α

(
∂ρa

∂t
+ ∇. (ρava + ρ0va + ρav0)

)
=
∂M
∂α
,

∂

∂α

(
ρ0(
∂va

∂t
+ v0∇.va + va∇.v0) + ρav0∇.v0 + ∇pa

)
=
∂F
∂α
,

∂

∂α

(
∂sa

∂t
+ v0∇sa + va∇s0

)
= 0,

∂

∂α

(
pa − c2

0ρa − Υsa

)
= 0. (7)

Depending on the parameter selected for this analysis, the

sensibility equations are different. But for each parameter, it

is possible to match the sensibility equations and the imag-

inary equations. Let’s take for instance the sensibility with

respect to the celerity c0. Sensibility equations are:

∂ρc0
a

∂t
+ ∇.

(
ρc0

a va + ρ
c0

0
va + ρ

c0
a v0

)
+ (8)

∇.
(
ρavc0

a + ρ0vc0
a + ρavc0

0

)
= Mc0 ,

ρ0

(
∂vc0

a

∂t
+ v0∇.vc0

a + vc0

0
∇.va + va∇vc0

0
+ vac0∇v0

)
+

ρc0
a v0∇.v0 + ρ

c0

0

(
∂va

∂t
+ v0∇.va + va∇v0

)
+

ρa

(
v0∇.vc0

0
+ vc0

0
∇.v0

)
+ ∇pc0

a = Fc0 ,

∂sc0
a

∂t
+ v0∇sc0

a + vc0

0
∇sa + vc0

a ∇s0 + va∇sc0

0
= 0,

pc0
a − 2c0ρa − c2

0ρ
c0
a − Υc0 sa − sc0

a Υ = 0.

One can note similarities between the sensibility equations

(system 8) and the imaginary equations (system 11). Imagi-

nary variables are governed by the same equations that sen-

sibility variables. Then to compute the sensitivity to c0, one

has to set c0I = 1, or in other words, to perturbe c0 with a

small imaginary part, and only this parameter.

Generally, imaginary equations match sensibility equations

by perturbing the parameter by iε. This result can be proved

with a Taylor expansion. For instance, for the variable pa:

p̄a(x, y, t;α + iε) = pa(x, y, t;α) + iε
∂pa(x, y, t;α)

∂α
+ O(ε2).

(9)

Thus, whatever the parameter disturbed, the imaginary part

of each variable contains, for all time steps, the sensibility of

the variable with respect to this parameter. In this case, the

imaginary part is the solution of the sensibility system.

2.2 Wave tracking method
The wave tracking method consists in firstly discriminat-

ing an acoustic event from the flow field. Then, this method

aims at following the propagation of this wave in the pres-

ence of a flow.

Based on CVM application and the resulting equations

associated with the imaginary part of the complex system

(system 11), it is quite interesting to note that when imposing

the following conditions:

p0I = ρ0I = v0I = s0I = c0I = ΥI = 0, (10)

the equations for imaginary fields are the same as those de-

scribing the propagation of the real acoustical disturbances

(system 1):

∂ρaI

∂t
+ ∇. (ρaIva + ρaIv0 + ρavaI + ρ0vaI) = MI ,

ρ0

(
∂vaI

∂t
+ v0∇.vaI + vaI∇v0

)
+

ρaIv0∇.v0 + ∇paI = FI + O(ε2),

∂saI

∂t
+ v0∇saI + vaI∇s0 = 0, (11)

paI − c2
0ρaI − saIΥ = O(ε2).
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In this case, the governing equations of the imaginary

part mimic exactly the equations of the real part. Hence,

by choosing the same initial and boundary conditions and

by imposing an imaginary part of the acoustic pressure field

that corresponds to its real part, the solutions of both prob-

lems (real and imaginary) are exactly the same. It enables

the tracking of the part of the field imposed in the imaginary

part.

3 Numerical applications with CVM

3.1 Numerical resolution
The code, based on the pseudo-characteristic formulation[10],

has already been used and presented in previous studies[4, 5].

It solves Navier-Stokes equations, without linearization and

handles Complex Variable Methods utilization. Depending

on the kind of analysis (sensibility, tracking), an imaginary

part is added to a parameter or a variable. In every case, the

parameter ε of the imaginary part has to be small enough to

ensure that the terms of magnitude ε2 are negligible. It can

be chosen as small as desired, within the limits of computer

precision. In the present study, ε = 10−8.

3.2 Application cases
As stated in the introduction part, the purpose of this work

is to analyze acoustic waves propagating in a flow. For such

a purpose a simplified two-dimensional (ex, ey) aeroacoustic

configuration is retained. The geometry of the problem is

depicted in figure 1. It’s an open area with a Rankine Vortex,

and two acoustic sources.

The Rankine vortex model is a circular flow in which

an inner circular region about the origin is in solid rotation,

while the outer region is free of vorticity, the speed being

inversely proportional to the distance from the origin. The

velocity v(r, θ) of a Rankine vortex with circulation Γ0 and

radius r0 is defined, in polar coordinates (r, θ), as:

v(r ≤ r0, θ) =
Γ0r
2πr2

0

eθ, (12)

v(r > r0, θ) =
Γ0

2πr
eθ. (13)

In addition, two acoustic sources M(x, y, t) and F(x, y, t)
are positioned close to the vortex, at a distance of about 3

times the characteristic size of the vortex. M(x, y, t) corre-

sponds to a mass injection (an acoustic monopole) of ampli-

tude M0, with a Gaussian profile of standard deviation σm in

space and of frequency f . F(x, y, t) corresponds to a force in-

jection (an acoustic dipole) of amplitude F0, with a Gaussian

profile of standard deviation σ f in space and of frequency f :

M(x, y, t) = M0e
− (x−xm )2+(y−ym )2

2σ2
m sin(2π f t) (14)

F(x, y, t) = F0e
− (x−x f )2+(y−y f )2

2σ2
f sin(2π f t) (15)

The physical dimensions of the domain are (Lx, Ly) =

(20 m, 20 m) that correspond to a uniform cartesian mesh of

(Nx × Ny) = (200 × 200) points. The time step is dt =
1.2 × 10−4 s. The computational domain is of size Lx × Ły.

Figure 1: Schematization of the cases used to illustrate the

method of complex variables. The aeroacoustic field is

composed by two acoustic sources, and a Rankine vortex.

Acoustic sources have a standard deviation σ f = σm =

0.3 m. The acoustic frequency is f = 200 Hz. The acous-

tic monopole is located at (xm, ym) = (−3, 0). The acous-

tic dipole is located at (x f , y f ) = (2,−1). Amplitudes are

M0 = 0.55 kg.m−3.s−1 and F0 = 160.ex kg.m−2.s−2. The

Rankine vortex has a circulation Γ0 = 300 m2/s, a radius

r0 = 1 m, and is positioned at (0, 0).

The figure 2 shows the fluctuating pressure. The scale

has been saturated in order to observe the acoustic pressure

field. One observe that the monopole is fairly visible, unlike

the dipole. In this case, it is very tricky to extract the acoustic

source associated with the mass injection. A Fourier trans-

formation (temporal or spatial) would be useless because of

the proximity of frequencies and wave-vectors. Neverthe-

less, Complex Variable Methods allow to overcome this is-

sue.

In the following, imaginary parts divided by ε are shown.

Figure 2: Total fluctuating pressure field.

3.3 Sensibility analysis
The sensibility analysis of the acoustic fields with respect

to a geometrical parameter characterizing the acoustic source

is presented. To illustrate the method, the sensibility to the
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standard deviation σm, a parameter characterizing the width

of the acoustic monopole, is conducted. According to the

discussion of section III, to analyze the sensibility to σm, one

has to impose a small imaginary part to this parameter:

σ̄m = σm + iε. (16)

From a numerical point of view, this can be done by imposing

the following source term in the code:

M̄(x, y, t) = e−
(x−xm )2+(y−ym)2

2(σm+iε)2 sin(2π f t) (17)

Results are presented for two different time steps in fig-

ures 3 and 4. At the time step n = 1 (figure 3), the sensibility

of the source to σm is highest at the edges of the wave. In-

deed, a variation of the size of the source has an obvious

impact on the border of this one. Figure 4 shows that it is

possible to extract directly from the code the sensibility to

σm for each spatial point, and for each time step.

Figure 3: Imaginary part of pressure in a sensibility

calculation configuration after 5 time steps.

Figure 4: Imaginary part of pressure in a sensibility

calculation configuration after 300 time steps.

3.4 Wave Tracking Method
In this part, the effectiveness of CVM in tracking selected

waves is presented. From the theoretical part, it appears that

wave tracking method allows to follow a part of the field. To

do that, one has to tag the selected acoustic event by impos-

ing a small imaginary part to it. From a numerical point of

view, the imaginary part of the acoustic source is imposed

similar to the real part, in accordance with theoretical back-

ground. For example, to track the acoustic dipole that doesn’t

clearly appears in the total pressure field (fig. 2), one has to

impose:

F̄(x, y, t) = F0e
− (x−x f )2+(y−y f )2

2σ2
f sin(2π f t)(1 + iε). (18)

As shown previously, the pressure added to the imaginary

part is solution of equations governing the evolution of the

associated acoustic pressure in the total field. One can see in

the figure 5 the acoustic dipole after 330 time steps, under-

going the effect of the flow. To measure the accuracy of the

tracking method, a second simulation without the acoustic

dipole has been conducted. This simulation allows to extract

the acoustic dipole with a difference between the two pres-

sure fields of both simulations. This reference is compared

to the acoustic dipole obtained with the tracking method. The

relative error is shown for the time step n = 330. It may be

noted that locations where the error is the largest correspond

to locations where the pressure is of greater amplitude. One

obtains that the tracked acoustic wave is equal to the corre-

sponding wave in the total field, with a relative error inferior

than 0.07%.

Thereby, it is possible to extract very neatly and very sim-

ply any acoustic source, just by adding to it a small imaginary

part, even in the presence of a steady flow.

Figure 5: Imaginary part of pressure in a wave tracking

configuration after 330 time steps.
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Figure 6: Relative error of the acoustic dipole extracted with

CVM.

4 Conclusions
Sensibility analysis by Complex Variable Methods CVM)

appears as a tool that can carry accurate informations about

the source. In addition, CVM provide a way to track an

acoustic wave, which enables to see the evolution of a se-

lected source and understand how it evolves in a steady flow.

These analyses are running during the simulation. No post-

processing is required, and it is not necessary to save all steps

of the initial simulation.
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