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Although acoustics is one of the disciplines of mechanics, its ”geometrization” is still limited to a few areas. As
shown in the work on nonlinear propagation in Reissner beams, it seems that an interpretation of the theories
of acoustics through the concepts of differential geometry can help to address the non-linear phenomena in their
intrinsic qualities. This results in a field of research aimed at establishing and solving dynamic models purged
of any artificial nonlinearity by taking advantage of symmetry properties underlying the use of Lie groups. As
an illustration, numerical and analytical trajectories of Reisner beams in the configuration space of transformation
matrix will be presented.

1 Introduction

The Reissner beam is one of the simplest acoustical sys-
tem that can be treated in the context of mechanics with sym-
metry. A Lie group is a mathematical construction that han-
dle the symmetry but it is also a manifold on which a mo-
tion can take place. As emphasized by Arnold [1], physical
motions of symmetric systems governed by the variational
principle of least action correspond to geodesic motions on
the corresponding group G. This paper will try, in a first part,
to illustrate this basic concept in the case of the continuous
group of motion in space. After a literature survey on this
subject, an extension from geodesics to auto-parallel sub-
manifolds is proposed in the second part.

2 Nonlinear model for Reissner Beam

2.1 Reissner kinematics

A beam of length L, with cross-sectional area A and mass
per unit volume ρ is considered. Following the Reissner kine-
matics, each section of the beam is supposed to be a rigid
body. The beam configuration can be described by a position
r(s, t) and a rotation R(s, t) of each section. The coordinate
s corresponds to the position of the section in the reference
configuration Σ0 (see figure 1).

Figure 1: Reference and current configuration of a beam.
Each section, located at position s in the reference

configuration Σ0, is parametrized by a translation r(s, t) and
a rotation R(s, t) ∈ S O3 in the current configation Σt.

2.2 Lie group configuration space

Any material point M of the beam which is located at
x(s, 0) = r(s, t)+w0 = sE1+w0 in the reference configuration

(t = 0) have a new position (at time t) x(s, t) = r(s, t) +
R(s, t)w0. In other words, the current configuration of the
beam Σt is completely described by a map(

x(s, t)
1

)
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(
R(s, t) r(s, t)

0 1

)
︸��������������︷︷��������������︸

H(s,t)
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)
, R ∈ S O(3), r ∈ R3,

(1)
where the matrix H(s, t) is an element of the Lie group S E(3) =
S O(3)×R3, where S O(3) is the group of rotation in R3. As a
consequence, to any motion of the beam a function H(s, t) of
the (scalar) independent variables s and t can be associated.
Given some boundary conditions, among all such motions,
only a few correspond to physical ones. What are the physi-
cal constraints that such motions are subjected to?

In order to formulate those constraints the definition of
the Lie algebra is helpful. To every Lie group G, we can
associate a Lie algebra g, whose underlying vector space is
the tangent space of G at the identity element, which com-
pletely captures the local structure of the group. Concretely,
the tangent vectors, ∂sH and ∂tH, to the group S E(3) at the
point H, are lifted to the tangent space at the identity e of the
group. The definition in general is somewhat technical, but
in the case of matrix groups this process is simply a multipli-
cation by the inverse matrix H−1. This operation gives rise to
definition of two vectors1 in g = se(3)

ε̂c(s, t) = H−1(s, t)∂sH(s, t) (2)

χ̂c(s, t) = H−1(s, t)∂tH(s, t), (3)

which describe the deformations and the velocities of the
beam. Assuming a linear stress-strain relation, those defini-
tions allow to define a reduced Langrangian function by the
difference of kinetic and potential energy l(χc, εc) = Ec−Ep,
with

Ec(χc) =

∫ L

0

1
2
χ

T
c Jχcds, (4)

Ep(εc) =

∫ L

0

1
2
(εc − ε0)T

C(εc − ε0)ds, (5)

where J and C are matrix of inertia and Hooke tensor respec-
tively and ε̂0 = H−1(s, 0)∂sH(s, 0) correspond to the defor-
mation of the initial configuration.

2.3 Equations of motion

Applying the Hamilton principle to the left invariant La-
grangian l leads to the Euler-Poincaré equation

∂tπc − ad∗
χc
πc = ∂s(σc − σ0) − ad∗

εc
(σc − σ0), (6)

where πc = Jχc and σc = Cεc, (see for example [3], [4]
or [5] for details). In order to obtain a well-posed problem,

1here, left invariant vector fields
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the compatibility condition, obtained by differentiating (2)
and (3)

∂sχc − ∂tεc = adχc
εc, (7)

must be added to the equation of motion. It should be noted
that the operators ad and ad∗ in eq. (6)

ad∗(ω,v)(m, p) = (m ×ω + p × v, p ×ω) (8)

ad(ω1,v1)(ω2, v2) = (ω1 ×ω2,ω1 × v2 −ω2 × v1), (9)

depend only on the group S E(3) and not on the choice of the
particular ”metric” L that has been chosen to described the
physical problem [6].

Equations (6) and (7) are written in material (or left in-
variant) form (c subscript). Spatial (or right invariant ) form
exist also. In this case, spatial variables (s subscript) are in-
troduced by

ε̂ s(s, t) = ∂sH(s, t)H−1(s, t) (10)

χ̂s(s, t) = ∂tH(s, t)H−1(s, t) (11)

and (6) leads to the conservation law [18]

∂tπs = ∂s(σs − σ0) (12)

where πs = Ad∗H−1πc and σs = Ad∗H−1σc. The Ad∗ map for
S E(3) is

Ad∗H−1 (m, p) = (Rm + r × Rp,Rp). (13)

Compatibility condition (7) becomes

∂sχs − ∂tε s = adε sχs. (14)

Equations (6) and (7) (or alternatively ( 12) and (14)) provide
the exact non linear Reissner beam model.

Notations and assumptions vary so much in the litera-
ture, it is often difficult to recognize this model (see for ex-
ample [7] for a formulation using quaternions) . However,
this generic statement is used to classify publications accord-
ing to three axes. In the first one, geometrically exact beam
model is the basis for numerical formulations. Starting with
the work of Simo [2], special attention is focused on en-
ergy and momentum conserving algorithms [8], [9]. Numer-
ical solutions for planar motion are also investigated in [10].
Even, in some special sub-cases (namely where the longi-
tudinal variables do not appear) the non-linear beam model
gives rise to linear equations which can be solved by analyti-
cal methods [11]. Much of the literature is also devoted to the
so-called Kirchhoff’s rod model. In this case, shear strain is
not taken into account along a thin rod (i.e., its cross-section
radius is much smaller than its length and its curvature at all
points). In this approximation cross-sections are perpendicu-
lar to the central axis of the filament. (see [12] , [14], [15],
for example). In that context an interesting geometric corre-
spondence between Kirchhoff rod and Lagrange top can be
made [13].

Finally, if only rigid motion is investigated, ( i.e. if the
spatial dependance in (6) is canceled) the so-called underwa-
ter vehicle2 model is obtained. In absence of exterior force
and torque, the equation of motion for a rigid body in an ideal
fluid become more simply [16], [17]

∂tπc = ad∗
χc
πc, that is

⎧⎪⎪⎨⎪⎪⎩ṁ = m ×ω + p × v
ṗ = n × ω

(15)

2underwater vehicle in the case that the center of buoyancy and the center
of gravity are coincident

In this simpler form, a geometric interpretation is easier. The
solution of the equation of motion mentioned above, if it ex-
ists, should be interpreted as a geodesic of the group S E(3)
endowed with a non-canonical left invariant metric J. To ac-
complish the correspondence between the Euler-Poincaré’s
equation and geodesic equation the historical definition of
the covariant derivative is exposed in the next section.

3 Geometric interpretation

3.1 Geodesics on curved spaces

A trajectory of a particle of mass m which is moving on
a manifold3 M can be thought as a curve α(t) on M and
v(t) = α̇(t) is the speed of the particle. According to the New-
ton’s second Law of motion, its acceleration (the variation of
its velocity) is proportional to the net force acting upon it∑

F = m dv
dt . The expression of this variation, v(t + dt) − v(t),

shows that the velocities are evaluated at two different points
of the curve: α(t + dt) and α(t) which are, a priori, incom-
mensurable quantities. So, one of the two vectors needs to

v(t + dt)v(
t)

v(t + dt) − v(t)

Figure 2: For flat manifolds, a trivial parallel transport is
used to compute the acceleration.

be parallel transport as it is illustrated, for flat manifolds, in
figure (2). For curved manifolds the operation is not so easy
and its historical construction is related by M.P. do Carmo
in [19] for surfaces of R3.

Figure 3: Parallel transport along a curve

3a surface for short
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Let α(t) be a curve on a surface S and consider the en-
velope of the family of tangent planes of S along α (see fig-
ure 3). This envelope4 is a regular surface Σ which is tangent
to S along α. Thus, the parallel transport along α of any vec-
tor w ∈ Tp(S ), p ∈ S , is the same whether we consider it
relative to S or to Σ. Furthermore, Σ is a developable sur-
face; hence can be mapped by an isometry φ into a plane P
(without stretching or tearing). Parallel transport of a vector
w is then obtained using usual parallel transport in the plane
along φ(α) and pull it back to Σ (by dϕ−1).

Technically, this historical construction gives rise to the
concept of the covariant derivative Dw

dt = ∇vw of a vector
field w along α. The parametrized curves α : I → R2 of
a plane along which the field of their tangent vector v(t) is
parallel are precisely the straight lines of that plane. The
curves that satisfy an analogous condition , i.e.

Dv
dt
= ∇vv = 0, (16)

for a surface are called geodesics. Intuitively, the acceler-
ation as seen from the surface vanishes : in absence of net
force, the particle goes neither left nor right, but straight
ahead.

The kinetic energy (4) define a left invariant Riemannian
metric on S E(3), and then define also a symmetric connexion
∇ which is compatible with this metric (Levi-Civita connex-
ion). It can be shown that geodesic equation (16) for this
particular connexion coincide with Euler-Poincaré equation
of motion (15) when S E(3) is endowed with the kinetic met-
ric (4).

Now, this equation deals with motion of rigid body de-
scribed by a single scalar variable t. So what is the geometric
interpretation of the equations of motion (6) and (7) where
two variables s and t are involved. In other word, can we
extend a geodesic, which is a 1-dimensional manifold, to 2-
dimensional geodesic ?

3.2 Auto-Parallel submanifolds

A geodesic curve on a surface S is a 1-dimensional sub-
manifold of S for which the parallel transport of its initial ve-
locity stay in its own tangent space. In that sense, a geodesic
is an auto-parallel curve. If now, geodesics are seen as auto-
parallel curves on surface, a definition of an n-dimensional
auto-parallel submanifolds can be made.

A submanifold M is auto-parallel in S if the parallel trans-
lation of any tangent vector of M along any curve in M stays
in its own tangent space T (M). It should be notice, that a
parallel translation of a vector w ∈ T (M) certainly belongs
to T (S ) but not necessarily T (M). In orther words, M is auto-
parallel in S with respect to the connection ∇ of S if

∇XY ∈ T (M), ∀X,Y ∈ T (M) (17)

A correspondence between auto-parallel surface and solu-
tions to equations (6) and (7) is still to be demonstrated. But
if it is the case, any motion of the beam could then be seen as
an auto-parallel surface Σ immersed in the group G = S E(3)

H : A = [0, L] × R ∈ R2
→ S E(3)

(s, t)→ H(s, t),

4Assume that α(t) is nowhere tangent to an asymptotic direction

s

t
H

∂tH

∂sH

S E(3)

Σ

e

Figure 4: Symbolic representation of a parametrized surface
Σ immersed into the group G = S E(3)

rather than a function of two variables as it is illustrated sym-
bolically in figure (4). In this perspective, solving a physical
variational problem is therefore transposed to the problem of
finding a immersed surface which is auto-parallel but, since
the parametrization is far from being unique, finding also the
particular system of coordinates that has a physical meaning.

4 Conclusion

In the literature, it seems that auto-parallel submanifolds
coincide with totally geodesic submanifolds [20]. This gives
some mathematical tools to treated physical problems in a
more general form. In particular, the non linear normal modes
can be revealed to be auto-parallel surfaces with periodic
boundary conditions.
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