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We investigate the influence of a time-varying blowing pressure on the oscillation threshold and attack transient of

a clarinet. In this experimental study, a clarinet-like instrument is blown through an artificial mouth, which allows

the time profile of the blowing pressure to be controlled during the experiment. The chosen profile is a slowly

increasing and decreasing linear ramp. Different experiments have been carried out and analyzed. Depending on

the slope of the ramp, the oscillation threshold and the attack transient are determined. To find out if the fact

that the blowing pressure varies in time have a similar influence on a real clarinet as on a simplified mathematical

model the experimental results are compared to the conclusions presented in a companion paper where a mixed

numerical/analytical approach has been developed on a simplified mathematical model of clarinet. Characteristics

such as bifurcation delay and dynamic bifurcation are addressed.

1 Introduction
Clarinet-like instruments have been thoroughly studied in

the literature. In particular, a simple model assuming that

losses in the cylindrical pipe are frequency independent (the

so-called ”Raman’s model”), allows to predict the mouth pres-

sure required to create the self-sustained oscillations [1]. This

particular value of the mouth pressure is called oscillation
threshold. Comparison between theoretical oscillation thresh-

old and its experimental value is sometimes good [2] but

sometimes the difference can reach several tens of percent

[3] even using more sophisticated models [4]. The inherent

difficulties of the comparison between theoretical threshold

and its experimental value are studied in [5].

One of the reasons which can explain this difference be-

tween the theoretical oscillation threshold and its experimen-

tal value is the intrinsic difference between the system de-

scribed by the usual theory and the one used in experiments.

Indeed, the oscillation threshold measurement consists in start-

ing from 0 the mouth pressure and to increase it until oscil-

lations start. This is a dynamic case because the blowing

pressure increases over time. On the other hand, the theory

considers the system in a static case: the blowing pressure is

constant. This theory is called static bifurcation theory and

the theoretical oscillation threshold is called static oscillation

threshold.

Recent mathematical and physical works [6, 7, 8] about

analytical description of dynamical nonlinear systems shows

that, in dynamic cases (as in experiments), the oscillations

start significantly after the static theoretical threshold has

been reached. This phenomenon is known under the name

of bifurcation delay or dynamic bifurcation. Bifurcation de-

lay may explain why measured thresholds are often larger

than their static theoretical value.

This paper presents a first experimental study of bifurca-

tion delay in clarinet-like systems and the influence of the

time evolution of the mouth pressure on it. The results are

compared to the conclusions presented in a companion paper

[9] where a mixed numerical/analytical approach has been

developed on a simplified mathematical model of clarinet.

Before that, Section 2 introduces the simplified mathemati-

cal model of clarinet-likes instruments (Raman’model). The

main theoretical results from static bifurcation theory are re-

minded to make the description of the experimental results

easier.

2 Model of clarinet-like instruments
The seminal article from Mc Intyre et al. [10] proposed a

general model for self-sustainded musical instruments such

as the clarinet.

This model divides the instrument into two elements: the

exciter and the resonator. The exciter is modeled by a non-

linear function F, also called nonlinear characteristic of the

exciter, which relates pressure P to flow U [11]. The res-

onator (the bore of the instrument) is described by its reflec-

tion function r(t).
In the case of a clarinet the coupling between the two ele-

ments allows to compute the state of the instrument through-

out all values of time t. The state of the instrument model

can be fully described by two variables: the pressure P(t) in-

side the mouthpiece and the flow U(t) created by the pressure

imbalance between the mouth and the bore input.

The solution P(t) and U(t) depends on the control pa-

rameters: Pm representing the mouth pressure and ζ which

characterizes the intensity of the flow. The nonlinear charac-

teristic is provided by the Bernoulli equation describing the

flow in the reed channel [12, 13].

Mathematical analysis of this model with off from the

extreme simplification of considering a straight, lossless (or

”Raman’s model” considering losses independent of frequency)

resonator and the reed as a ideal spring [14, 11, 15, 16, 1, 17].

With these assumptions, the reflection function becomes a

simple delay with sign inversion (multiplied by an attenua-

tion coefficient λ in the case of frequency independent losses).

Using the variables P+ and P− (outgoing and incoming waves

respectively) instead of the variables P and U, the system can

be simply described by the following equation :

P+(t) = Gγ
(
λP+(t − τ)) , (1)

where τ = 2l/c is the round trip time of the pressure pertur-

bation with velocity c along the resonator of length l. The

iteration function Gγ is obtained by transforming the nonlin-

ear characteristic F. An explicit expression was determined

by Taillard et al. [18]. The expression of the attenuation

coefficient λ is:

λ = e−2αl, (2)

where,

α ≈ 3 · 10−5
√

f /R. (3)

R is the radius of the bore: R = 7.5 · 10−3m in our experi-

ment and f is the frequency in Hz.

A study of the stability of the fixed points of the function

Gγ, based on the usual static bifurcation theory (i.e. assum-

ing that the mouth pressure is constant along the time), gives

an analytical expression Pmt of the static oscillation threshold

[19]:

Pmt =
1

9

⎛⎜⎜⎜⎜⎜⎜⎜⎝ tanh(αl)
ζ

+

√
3 +

(
tanh(αl)
ζ

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎠

2

PM , (4)
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where PM is the static closing pressure of the reed and ζ is a

nondimensional parameter ; its expression is :

ζ = Zc S

√
2

ρPM
, (5)

where S is the opening cross-section of the reed channel

at rest, ρ the density of the air and Zc is the characteristic

impedance of the resonator.

To summary, we can say that the static bifurcation theory,

is restricted to the steady state. It can predict the asymptotic

(or static) behavior of an ideal clarinet as a function of a con-

stant mouth pressure. In other words, the results are obtained

by choosing a value of γ, letting the system relax to its final

state, and repeating the procedure for each value of γ.

3 Experimental setup : the pressure
controlled artificial mouth

The experimental results presented in Section 4.2 are ob-

tained thanks to a controlled artificial mouth [20, 21]. The

artificial mouth consists of a Plexiglas box. The mouthpiece

and the barrel are fixed in the box. Resonators (for example,

a real clarinet or a simple cylinder as in our experiment1) can

be fixed onto the other end of the barrel (see Figure. 1).

Figure 1: General view of the artificial mouth.

The machinery of the controlled artificial mouth is based

on a high-precision regulation of the air pressure in the Plex-

iglas box. What is meant by regulation is the control of the

blowing pressure around a target: a fixed value or around a

value whose evolution in time is slow (like slowly varying

ramps as in this present work). The experimental setup is

presented in Figure 2.

A servo-valve is connected to a compressed air source

through a pressure reducer. The maximum pressure available

is around 6 bars, and the pressure reducer is used to adjust

the pressure P1 upstream the servo-valve. The servo-valve is

connected to the entrance of the artificial mouth itself (whose

30 cm3 internal volume is the place where the air pressure Pm

is to be controlled). The artificial mouth blows into the clar-

inet. An air tank (120L) has been added between the servo-

valve and the artificial mouth (not represented in Figure 2) in

order to stabilize the feedback loop during onsets.

The principle of the control is as follows: through a con-

trol algorithm implemented on a DSP card, the volume flow

through the servo-valve is modified every 40 μs in order to

1We use a plastic cylinder, its length is l = 0.51m including the barrel.

*

Figure 2: Principle of the pressure controlled artificial

mouth.

minimize the difference between the measured and the target

mouth pressure.

The force applied by the lip on the reed has also an in-

fluence on the value of the oscillation threshold. Analyt-

ical/numerical work presented in the companion paper as-

sumes that this force is constant. Therefore, in order to com-

pare the analytical/numerical results and experimental ones,

this force is maintained constant during the experiment. For

this, an artificial lip is used and its position is locked (cf. Fig-

ure 3)

Figure 3: Lateral view of the mouthpiece placed in the

artificial mouth. We see the locked position of the artificial

lip.

Finally, a flowmeter is placed at the entrance of the arti-

ficial mouth in order to measure the nonlinear pressure/flow

characteristic F of the instrument.

4 Experiment

4.1 Description of the experiment
The procedure of the experiment is as follows: starting

from a small value (0.2 kPa in our experiment) the mouth

pressure Pm is increased at a constant rate (the slope) k, un-

til a limit value beyond the oscillation threshold. The mouth

pressure is then decreased. During the experiment, the mouth

pressure Pm, the pressure in the mouthpiece P and the incom-

ing flow U are recorded. The rms value PRMS of the pressure

in the mouthpiece is calculated.

Experiment is repeated for different values of the slope k
and three times for each value. The value of the slopes are:

0.10, 0.14, 0.23, 0.76, 1.57 and 2.73 kPa/s. Figure 4 shows an

example of the time profile of Pm, P and PRMS with k = 0.1
kPa/s.
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Figure 4: Time evolution of the mouth pressure Pm (green),

the pressure inside the mouthpiece P (blue) and its rms

value PRMS (red). The slope k, of the mouth pressure is

equal to 0.1 kPa/s.

4.2 Experimental results
The rms value PRMS is plotted as a function of the mouth

pressure Pm. Figure 5 highlights an hysteretic cycle: the

value of Pm when the oscillations start during the increas-

ing phase is larger than the value when the oscillations stop

during the decreasing phase. This is a first difference with

the static theory which predicts that these two values are the

same and equal to the static oscillation threshold Pmt (case of

a direct Hopf bifurcation). We can also notice that the stop-

ping Pm value for decreasing pressure is close to the theo-

retical static threshold. The theoretical static threshold is ob-

tained with equation (4). The parameter α is determined with

equation (3) using the fundamental frequency of pressure P
inside the mouthpiece. The parameters PM and ζ are deter-

mined using the coordinate of the maximum M
(
Mx,My

)
of

the nonlinear characteristic measured with the smaller slope

and for decreasing pressure [2, 17] :

PM = 3Mx, (6)

and,

ζ =
3
√

3

2

Zc

PM
My. (7)

Numerical values are: PM = 10.3 kPa and ζ = 0.172.

We focuse here on the birth of the oscillations for increas-

ing mouth pressure. In this case, we can notice that the sys-

tem begins to oscillate for blowing pressure larger than the

theoretical threshold, this is the phenomenon of bifurcation
delay. We can notice in Figure 5 and 6 that bifurcation delay

increases with the slope k. To study the influence of the slope

k, the value Pup of PRMS corresponding to the point where

the second branch of the static bifurcation digram is reached

(cf. [9] for the definition of the static bifurcation digram) is

determined for each slope (see Figure 6).

Then, the values of Pup are plotted as functions of the

slope k (see Figure 7).

Figure 7 shows that Pup seems to increase linearly with

the slope k. In section 5 these experimental results are com-

pared to numerical simulation of equation (1).
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Figure 5: Graphical representation of PRMS as function of

Pm for different values of the slope k: k1 < k2 < ... < k6.

Arrows represent the direction of the mouth pressure time

evolution and highlight an hysteretic cycle.
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Figure 6: Part of the rms envelope PRMS corresponding to

the increasing mouth pressure and positions of Pup.
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Figure 7: Graphical representation of Pup versus the slope k.

5 Comparison with simulations and dis-
cussion

In this section, previous experimental results (cf. Fig-

ures 5, 6 and 7) are compared to numerical computation of

equation (1). Equation (1) is computed using the parame-

ters PM and ζ already estimated in Section 4.2. Firstly, the

simulated PRMS envelopes, obtained with the previous slopes

are plotted in Figure 8. As in experiments, hysteric cycles

and bifurcation delay are present in simulations. Except for
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the cyan curve (corresponding to the slope k5), in Figure 5

and just for decreasing blowing pressure, the influence of the

slope of the blowing pressure is the same in both experimen-

tal and simulated systems and for both increasing and de-

creasing pressure.
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Figure 8: Graphical representation of simulated PRMS as a

function of Pm for the different slopes.

Companion paper [9], focused on increasing blowing pres-

sure cases, shows that the precision (the precision is the num-

ber of digits used by the computer) used for the simulations

has a very important influence on the bifurcation delay: the

smaller the precision, the shorter is the bifurcation delay. Re-

sults presented in Figure 8 are calculated in Matlab R© with a

precision equal to 15 decimal digits.

Figure 9 shows a comparison between experimental val-

ues of Pup and simulated ones obtained with different values

of the precision (the choice of the precision is possible using

mpmath, the arbitrary precision library for Python).
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Figure 9: Graphical representation of Pup versus the slope k.

Comparison between experiment and simulations.

The first observation we can do on Figure 9 is the very

high dependence of the simulated Pup to the precision. We

can notice that the slope of the curve Pup = f (k) increases

with the precision used. Quantitatively the evolution of both

experimental and numerical Pup are the same: bifurcation

delay (≡ Pup) increase with the slope k of the mouth pres-

sure. One would expect that the noise in experimental system

corresponds to a low precision and therefore that bifurcation

delay would be smaller. Figure 9 shows that it is not the case.

However, the slope of the experimental curve Pup = f (k)

seems to be closer to the numerical ones with prec. = 4 and

7. The offset might be imputed to the tough approximation

in determining parameters PM and ζ.

6 Conclusion
This work presented a preliminary study on the bifurca-

tion delay in a clarinet. Static models for this instrument can

predict the amplitude of the standing wave inside the bore as

a function of the embouchure and the blowing pressure.

An artificial mouth in which the blowing pressure can be

accurately controlled throughout time was used to play a sim-

plified clarinet. With this device, the amplitude of the stand-

ing pressure wave inside the instrument was compared in two

different conditions: first when increasing the blowing pres-

sure from a value at which the instrument does not oscillate,

and then when decreasing the pressure from an oscillating

regime. In the latter case, the oscillation stops for a value

close to what is predicted with static theory. For the increas-

ing case however, the oscillation starts at a higher pressure

value than this prediction. This value increases for higher

rates of variation of the blowing pressure, revealing a phe-

nomenon of bifurcation delay.

Although the pressure slopes used in this work are gen-

tler than what can be obtained by a musician, these observa-

tions indicate that a sharp note attack probably requires the

use of other parameters such as embouchure, vocal tract, or a

more complicated profile of the blowing pressure (for exam-

ple with an overshoot).

These results are similar to what is obtained in simula-

tions based on Raman’s model. Further work will focus on

verifying this tendency for quicker pressure jumps and for

more complicated time-evolutions of the pressure, including

the use of an overshoot before stabilising the pressure.
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